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Abstract. Minimum Common String Partition (MCSP) has drawn much
attention due to its application in genome rearrangement. In this paper,
we investigate three variants of MCSP: MCSP c, which requires that
there are at most c elements in the alphabet; d-MCSP, which requires the
occurrence of each element to be bounded by d; and x-balanced MCSP,
which requires the length of blocks being in range (n/k − x, n/k + x),
where n is the length of the input strings, k is the number of blocks in
the optimal common partition and x is a constant integer. We show that
MCSP c is NP-hard when c ≥ 2. As for d-MCSP, we present an FPT
algorithm which runs in O∗((d!)2k) time. As it is still unknown whether
an FPT algorithm only parameterized on k exists for the general case of
MCSP, we also devise an FPT algorithm for the special case x-balanced
MCSP parameterized on both k and x.

1 Introduction

String comparison has drawn a lot of attention due to its applications in compu-
tational biology, text processing and compression. In this paper, we revisit the
Minimum Common String Partition (MCSP) problem which has a close relation
to the genome rearrangement problems such as Edit Distance, Sorting by Re-
versals and Sorting by Transpositions, etc. In fact, MCSP was initially studied
as ‘edit distance with moves’ [4, 15].

A partition P of a string X is a sequence P = 〈P1, P2, . . . , Pm〉 of strings
whose concatenation is equal to X , that is P1P2 . . . Pm = X . The string Pi’s are
called the blocks of P . Given a partition P of a string X and a partition Q of
a string Y , we say that the pair π = (P, Q) is a common partition of X and Y
if Q is a permutation of P , that is, there exists a permutation σ on [m] such
that Pi = Qσi

, 1 ≤ i ≤ m. The minimum common string partition problem is to
compute a common partition of X and Y with the minimum number of blocks.

In the Minimum Common String Partition (MCSP) problem, we are given
two strings X and Y of length n over an alphabet Σ. Let each element appear the
same number of times in X and Y . Throughout this paper, we assume that X and
Y satisfy this condition. Clearly, this is a sufficient and necessary condition for X
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and Y to have a common string partition. For example, two strings X = beabcdb
and Y = abdbebc have a common partition (〈b, e, ab, c, db〉, 〈ab, db, e, b, c〉). There
are several variants of MCSP. The restricted version where each letter occurs
at most d times in each input string is denoted as d-MCSP. Another important
version where the input strings are over an alphabet with size bounded by c, is
abbreviated as MCSP c. We also introduce a new version where the resulting
blocks in the partition are designated to have nearly the equal length, we call it
x-balanced MCSP. For the x-balanced MCSP problem, if the optimum solution
has k blocks, the length of each block ranges from n/k−x to n/k+x. The signed
minimum common string partition problem (SMCSP) is also a variant of MCSP
in which each letter of the two input strings is given a “+” or “-” sign. For a
string S with signs, let −S denote the reverse of S, with each letter sign flipped.
The definition of common partition on signed strings is a bit different from that
of unsigned strings, where Pi = Qσi

or Pi = −Qσi
.

Related Work

The problem d-MCSP is well studied. 2-MCSP (and therefore MCSP) is
NP-hard; moreover, APX-hard [9]. Several approximation algorithms are known
for the problem [9, 12]. Chen et al. [1] studied the problem of computing signed
reversal distance with duplicates (SRDD). They introduced the signed minimum
common partition problem as a tool for dealing with SRDD and observed that
for any two signed strings X and Y , the size of a minimum common partition
and the minimum number of reversal operations needed to transform X and
Y , are within a multiplicative factor 2 of each other. Kolman and Walen [14]
devised an O(d2)-approximation algorithm running in O(n) time for SRDD.

Chrobak et al. [3] analyzed the greedy algorithm for MCSP. They showed that
for 2-MCSP the approximation ratio is exactly 3; for 4-MCSP the approximation
ratio is Ω(log n); for the general MCSP, the approximation ratio is between
Ω(n0.43) and O(n0.67). In fact, the same bounds hold for SMCSP. Kaplan and
Shafrir [11] improved the lower bound to Ω(n0.46) when the input strings are
over an alphabet of size O(log n). Kolman [13] described a simple modification of
the greedy algorithm, and the approximation ratio of the modified algorithm is
O(p2) for p-MCSP. Christie and Irving [2] proved that the problem of computing
(unsigned) reversal distance is NP-hard for binary strings, it turns out that this
problem has some connection to MCSP c.

In the framework of parameterized complexity, Damaschke first solved MCSP
by an FPT algorithm with respect to a combination of parameters k (size of the
optimum solution), r (the repetition number) and t (the distance ratio) [5]. In
that paper, the repetition number r of a string X is the maximum integer i so
that X = uviw holds for some strings u, v, w and v is nonempty, where vi is the
concatenation of i v’s; the distance ratio is defined as t = n/m, where m is the
shortest blocks in the optimum solution.

Our Contribution

We prove that the problem MCSP c is NP-complete when c ≥ 2. For d-
MCSP, we present an FPT algorithm for it with running time O∗((d!)2k). When
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the MCSP solution is supposed to be x-balanced, we devise an FPT algorithm
with parameter k and x which runs in O((2x)kk!n)) time.

2 Preliminaries

As aforementioned, we recall the formal definition of parameterized MCSP.

Minimum Common String Partition:
Input: two strings X, Y over an alphabet Σ, an positive integer k.
Question: Can X have a partition P and Y have a partition Q such that Q is
a permutation of P , where both P and Q contain k blocks ?

We say that the elements from Σ occur or appear in X and Y . A specific
occurrence of some element is called a letter. The strings in the partition are
called blocks and there is a break or cut between two consecutive blocks in X or
Y .

An FPT (Fixed-Parameter Tractable) algorithm for a decision problem Π
with input parameters k1, · · · , ki is an algorithm which solves the problem in
O(f(k1, · · · , ki)n

c)=O∗(f(k1, · · · , ki)) time, where f is any function only on k1,
· · ·, ki, n is the input size and c is some fixed constant not related to k1, · · · , ki.
For convenience we also say that Π is in FPT. More details on FPT algorithms
can be found in [6, 7].

It is open whether an FPT algorithm exists for the general MCSP problem
with k, the size of the optimal solution, being the unique parameter. In fact
this problem is also connected to computing the breakpoint distance between
genomes with gene duplications, which is also NP-complete and the existence of
an FPT algorithm is also unknown [10]. In this paper, we try to handle variants
of MCSP by using additional parameters.

This paper is organized as follows. In Section 2, we present the NP-completeness
of MCSP c. In Section 3, we present FPT algorithms for the two variants of
MCSP. In Section 4, we conclude the paper with several open questions.

3 Hardness for MCSP
c

In this section, we prove that MCSP c is NP-complete when c ≥ 2 by a re-
duction from 3-PARTITION [8]. Firstly, we recall the formal definition of 3-
PARTITION.

3-PARTITION :
Input: Positive integers n and B, and a set of positive integers A = {a1, a2, . . .,
a3n}, with B/4 < ai < B/2 and

∑

ai∈A ai = nB.
Question: Can A be partitioned into n disjoint sets S1, S2, . . . , Sn such that,
for 1 ≤ i ≤ n,

∑

aj∈Si
aj = B?

The problem 3-PARTITION is strongly NP-hard: that is, there is a polyno-
mial p(n) such that it is still NP-hard when all the ai’s are at most p(n). Our
reduction is polynomially bounded for instances of this type.
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Given an instance of 3-PARTITION with integers (weights) a1, a2, . . . , a3n,
we construct two strings X , Y for an instance of MCSP 2 as follows

X = 11110a111110a2 · · · 11110a3n

Y = (0B1)n111n

For the sake of clarity, we first make the following claims.

Claim. Any block in the optimal common string partition has the form 0p1q,
0p1, 10p, 0p or 1q where p, q ≥ 1; moreover, there is exactly one block of the
form 0p1q, for p ≥ 1, 2 ≤ q ≤ 4.

Proof. Suppose to the contrary that there is a common block H with the form
0p1q0r · · ·, then from the format of X and Y , q is either equal to one or equal to
four. But H cannot be a substring of X when q = 1 and cannot be a substring of
Y when q = 4. Similarly, if there exists a common block in the optimal common
partition H ′ = 1q0p1s · · ·, then H ′, as a substring of X , must satisfy that p < B;
and as a substring of Y , must satisfy that p = B. which is a contradiction.
Consequently, all the common blocks must be of the form 0p1q, 10p, 0p and 1q,
as there is only one 1 between two 0’s in Y . To see why there is one block of the
form 0p1q for p ≥ 1, 2 ≤ q ≤ 4, notice that such block can only occur once as a
substring at the end of Y . So the claim holds. ⊓⊔

Claim. Except for the common block 0p1q for p ≥ 1, 2 ≤ q ≤ 4, the interior ’11’
from other ’1111’ in X is matched to ’11’ from 111n+1 in Y .

Proof. From the first claim we conclude that, except for the common block 0p1q

for p ≥ 1, 2 ≤ q ≤ 4, if a common block contains some 0’s, then it contains at
most one 1. So the interior two 1’s from other ’1111’ must be in the common
blocks containing only 1’s. Since there are no consecutive 1’s in Y besides the
substring 111n+1, the claim holds. ⊓⊔

In fact, except for the common block 0p1q for p ≥ 1, 2 ≤ q ≤ 4, the interior ’11’
from other ’1111’ in X is matched to ’11’ from the last 11n + 1 − q 1’s in Y .

Theorem 1. MCSP 2 is NP-complete.

Proof. As MCSP 2 is obviously in NP, it suffices to prove that the 3-PARTITION
instance has a precise partition if and only if X and Y have a common partition
with 6n − 1 blocks.

(⇒) Assume that S1, S2, . . . , Sn satisfy
∑

aj∈Si
aj = B, for all i. For exactly

one Si = {ap, aq, ar}, we obtain three blocks from X : 0ap , 0aq , 0ar1111 and one
block from Y : 0B1111. For any other Si = {ap, aq, ar}, we obtain three blocks
from X : 0ap , 0aq , 0ar1 and one block from Y : 0B1. Obviously, the block from Y
can be split into three blocks corresponding to the blocks from X . Then there
are 2n remaining blocks of the form ’1111’ and n − 1 remaining blocks of the
form ’111’ in X and all these blocks are separated (not adjacent). The unique



Minimum Common String Partition Revisited 5

block left in Y is 111n−3. Consequently, we obtain a common partition of X, Y
with 6n − 1 blocks.

(⇐) From the above two claims, we can see that, except for one ’1111’ sub-
string, all the 0ai ’s and the interior substrings ’11’ of ’1111’ are in mutually
distinct blocks in the common partition. So there are at least 6n − 1 blocks in
any optimal common partition. If the number of blocks is exactly 6n− 1, which
means that each 0ai substring of X falls into one block in the optimal common
partition and those blocks are mutually distinct. Then each substring of the
form 0B in Y is split into exactly three blocks of the form 0ai , the reason is that
B/4 < ai < B/2. Thus, the 3-PARTITION instance has a valid partition. ⊓⊔

Since we can construct an instance of MCSP c when c > 2 from an instance of
MCSP 2 by adding the same substring composed of letters other than those in
MCSP 2 at the end of the two input strings, we can easily obtain the following
corollary.

Corollary 1. MCSP c is NP-complete for c ≥ 2.

4 The FPT Algorithms

In this section, we design FPT algorithms for two variants of MCSP. As it is still
unknown whether MCSP has an FPT algorithm parameterized only on k, we
hope these algorithms could help shed light on answering this open question. On
the other hand, these two variants are closely related to genome rearrangement
problems, hence are meaningful practically.

4.1 On d-MCSP

Firstly, we introduce the following definitions and notations. A duo is a substring
of length two. A specific duo is an occurrence of a duo in X or Y . Note that
two specific duos may share a letter when they form a substring of length three.
Two specific duos are continuous if they form a substring of length three. A
match is a pair (aiai+1, bjbj+1) of specific duos, one from X and the other
one from Y , such that ai = bj and ai+1 = bj+1. We also say that the pair of
specific duos are matched to each other if they form a match. Two matches
(aiai+1, bjbj+1) and (akak+1, blbl+1) can co-exist if (1) {i, i + 1}∩ {k, k + 1} = ∅
and {j, j + 1}∩ {l, l +1} = ∅; or (2) k = i+ 1 and l = j + 1; or (3) i = k + 1 and
j = l+1. Otherwise, if (1) i = k, j 6= l; or (2) j = l, i 6= k; or (3) k = i+1, l 6= j+1;
or (4) i = k + 1, j 6= l + 1, then the matches form a conflict.

We take two strings X = a−1a−2a−3ba−4 and Y = a−1a−2a−3a−4b, where
a−1 = a−2 = a−3 = a−4 = a, for an example. There exists a duo {aa} in both X
and Y , but there are two specific duos {a−1a−2, a−2a−3} in X and three specific
duos {a−1a−2, a−2a−3, a−3a−4} in Y ; moreover, these specific duos are continu-
ous in X and Y respectively. Matches (a−1a−2, a−2a−3) and (a−2a−3, a−3a−4)
can co-exist, but (a−1a−2, a−1a−2) and (a−2a−3, a−3a−4) form a conflict.



6 Jiang, et al.

Note that two matches with continuous specific duos in one string are not in
conflict if and only if these duos are matched to two continuous specific duos in
the other string.

Lemma 1. Each duo appears the same number of times in a common partition

of X and Y .

Proof. Otherwise, there must be such a specific duo that is unmatched in the
partition. ⊓⊔

Lemma 2. If each duo appears the same number of times in a partition of X
and a partition of Y , then two matches are in conflict if and only if the specific

duos are continuous in one string and not continuous in the other.

Proof. Two matches are in conflict means that there exists a letter which is
matched to two occurrences of that element in the two matches. Clearly in this
case the two specific duos cannot be continuous in both strings. ⊓⊔

Lemma 3. Given a pair of partition π = (P, Q) for X and Y , if all specific duos

are matched and all matches are not in conflict then π is a common partition.

Proof. For any block G = g1g2 · · · gm in P , since all the specific duos gigi+1 are
matched, there must be matches (gigi+1, hjhj+1) and (gi+1gi+2, fkfk+1) that
can be realized at the same time. Since gigi+1 and gi+1gi+2 are continuous duos,
hjhj+1 and fkfk+1 should be continuous as well; that is, hj+1 and fk are the
same letter. As the above analysis holds for all i, we can see that there is a block
H = h1h2 · · ·hm in Q such that G = H . The lemma holds. ⊓⊔

Our FPT algorithm Cut-Duos is based on the above three lemmas. The rough
idea is to cut redundant specific duos such that all duos appear the same number
of times in X and Y , then cut one of the continuous duos that corresponds to
two matches in conflict. In the algorithm, we use arrays C and D indexed by
duos to store the number of occurrence of each duo in X and Y respectively.
That is, Cab = r means ab appears r times in X .

Algorithm Cut-Duos
Input: two strings X,Y such that each element appears at most d times in each string
Output: A common partition (P,Q)
1 Compute the number of occurrence of each duo in X and Y , and store them

in arrays C and D.
2 For every duo ab in X, if r = Cab > Dab = s
2.1 Choose r − s ab’s in X, cut them.
2.2 Compute matches between the remaining ab’s in X and Y .

3 For every duo ab in Y , if r = Cab < Dab = s
3.1 Choose s − r ab’s in Y , cut them.
3.2 Compute matches between the remaining ab’s in X and Y .

4 For every two matches (ab, ab) and (bc, bc) computed in step 2 and step 3
with the common element b, if they are in conflict

4.1 Choose one duo from ab and bc, cut it in both X and Y .
5 Return the remaining blocks in X and Y respectively as the common

partition (P, Q).
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Theorem 2. Algorithm Cut-Duos computes a minimum common partition for

the two input strings X and Y in O∗((d!)2k) time.

Proof. Correctness: firstly all specific duos are matched after executing Step 2
and Step 3, then all the remaining matches can co-exist after executing Step 4.
Consequently, Lemma 3 guarantees that algorithm Cut-Duos computes a com-
mon partition for the two input strings.

Time Analysis: In the algorithm Cut-Duos, Step 2 has a recurrence relation

f(k) =

(

r

s

)

(s!)f(k − (r − s)).

Step 3 has a similar recurrence relation. Step 4 has a recurrence relation

f(k) = 2f(k − 1).

Since r, s ≤ d and f(k) achieves its maximum value when r − s = 1, we have
f(k) ≤ O∗((d!)2k) . ⊓⊔

4.2 On x-balanced MCSP

In this subsection, we deal with the x-balanced MCSP problem. For the specific
applications in genome arrangement, due to the relation between MCSP and
genome rearrangement, each block corresponds to a gene and each gene should
have roughly the same gene content. So the blocks are supposed to have nearly
the equal length, possibly with some small deviations. Assume that the optimal
solution size is k, then we can see that every block is of some length between
(n/k) + x and (n/k) − x.

The idea of the FPT algorithm is to cut the input string into k blocks of
length ranging from (n/k) − x to (n/k) + x, then compute all possible matches
between the resulting k blocks. In the algorithm, assume that the length of the
ith block Xi in X is L(i). When we refer to positions from integer u to v (u < v)
in X , we mean the set of duos {xuxu+1, xu+1xu+2, . . . , xv−1xv}. The algorithm
Cut-Depending-on-Length is presented as follows.

Theorem 3. Algorithm Cut-Depending-on-Length computes a minimum com-

mon partition for the two input strings X and Y in O((2x)kk!n) time.

Proof. In the algorithm we branch on Step 2 and Step 3. Step 2 runs in (2x)k−1

times. Step 3 has k! possibilities. Step 4 and Step 5 run in O(n) time. So the
total running time of the algorithm is O((2x)kk!n)). ⊓⊔

We comment that Algorithm Cut-Depending-on-Length works for other variants
of MCSP whenever they are x-balanced.
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5 Concluding Remarks

An earlier version of this paper appears in FAW’10, LNCS 6213, pp.45-52. In this
paper, we deal with some variants of MCSP. The first one, MCSP c, is proved
to be NP-complete when c ≥ 2. For d-MCSP and x-balanced MCSP, we devise
FPT algorithms for them. The original MCSP problem seems difficult to be
solved with an FPT algorithm only on the parameter k, so some extra practical
parameters which make the problem fixed-parameter tractable are meaningful.
As d-MCSP has close relation to some specific genome rearrangement problem,
it would be interesting to design good approximations for the d-MCSP problem.

Algorithm Cut-Depending-on-Length
Input: an x-balanced instance of MCSP
Output: A common partition (P,Q)
1 Compute the range of the length of blocks.
2 For input string X, for 1 ≤ i ≤ k − 1
2.1 Let S0 be set of position from n − (n/k + x)(k − i) to n − (n/k − x)(k − i)
2.2 Let S1 be set of position from

∑

1≤j<i
L(j) + (n/k − x) to

∑

1≤j<i
L(j) + (n/k + x)

2.3 Choose a duo from S0 ∩ S1 and cut it.
3 Generate a random permutation T = t1, t2, · · · , tk on {1, 2, . . . , k}.
4 For i = 1 to k, cut on Y such that the length of the ith block Yi in Y

is equal to L(ti).
5 For i = 1 to k, check whether Yi = Xti

.
6 Return a common partition (P, Q) with k common blocks, if exists.
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