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Abstract. In this paper, we present a survey of the approximability and
fixed-parameter tractability results for some Exemplar Genomic Distance
problems. We mainly focus on three problems: the exemplar breakpoint
distance problem and its complement (i.e., the exemplar non-breaking
similarity or the exemplar adjacency number problem), and the maximal
strip recovery (MSR) problem. The following results hold for the simplest
case between only two genomes (genomic maps) G and H, each containing
only one sequence of genes (gene markers), possibly with repetitions.
1. For the general Exemplar Breakpoint Distance problem, it was shown

that deciding if the optimal solution value of some given instance is
zero is NP-hard. This implies that the problem does not admit any
approximation, neither any FPT algorithm, unless P=NP. In fact,
this result holds even when a gene appears in G (H) at most two
times.

2. For the Exemplar Non-breaking Similarity problem, it was shown
that the problem is linearly reducible from Independent Set. Hence,
it does not admit any factor-O(nε) approximation unless P=NP and
it is W[1]-complete (loosely speaking, there is no way to obtain an
O(no(k)) time exact algorithm unless FPT=W[1], here k is the op-
timal solution value of the problem).

3. For the MSR problem, after quite a lot of struggle, we recently
showed that the problem is NP-complete. On the other hand, the
problem was previously known to have a factor-4 approximation and
we showed recently that it admits a simple FPT algorithm which
runs in O(23.61k

n + n
2) time, where k is the optimal solution value

of the problem.

1 Introduction

In bioinformatics and computational biology, we constantly need to process var-
ious biological data to extract meaningful biological relation, like building a
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phylogenetic tree. However, such a process usually involves solving hard combi-
natorial optimization problems which are typically NP-complete.

In the area of bioinformatics and computational biology, one would typically
apply three methods to handle these NP-complete problems. One is to find an
approximation solution, with the requirement being that the approximation fac-
tor is small (better close to one). The other is to look for an exact solution (FPT
algorithm) when the solution size of the problem is small. The vast majority
of practical solutions for bioinformatics and computational biology are heuris-
tic ones, which are possibly based on some formal methods like integer linear
programming, branch-and-bound, etc.

In this paper, we review the approximability and fixed-parameter tractability
results for three problems related to exemplar genomic distance computation.
In these problems, we are given some genomes or genomic maps and we try to
optimize some solutions values by deleting some genes or gene markers. So these
problem fit naturally for approximation and/or FPT solutions. Unfortunately,
as we will review a bit later, some of these problems are very hard in both
aspects. In other words, it might be impossible to design good approximation
and/or FPT algorithms for them, unless P=NP or FPT=W[1]. On the other
hand, many problems are still open along these lines.

The paper is organized as follows. In Section 2, we review the approxima-
bility and fixed-parameter tractability for the Exemplar Breakpoint Distance
(EBD) problem. In Section 3, we review the approximability and fixed-parameter
tractability for the Exemplar Non-breaking Similarity (ENbS) problem (which
is the dual of EBD). In Section 4, we review the approximability and fixed-
parameter tractability for the Maximal Strip Recovery (MSR) problem. In Sec-
tion 5, we list a set of open problems to conclude this paper.

2 Approximability and Fixed-Parameter Tractability for

EBD

In the genome comparison and rearrangement area, a standard problem is to
compute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This problem
is important in evolutionary molecular biology. Typical genetic distances include
edit [23], signed reversal [26, 24, 6] and breakpoint [30], etc. (The idea of signed
reversal and, implicitly, breakpoint, was initiated as early as in 1936 by Sturte-
vant and Dobzhansky [29].) In the past years, conserved interval distance was
also proposed to measure the similarity of multiple sequences of genes [9]. Inter-
ested readers are referred to [21, 22] for a summary of the research performed in
this area.

However, in genome rearrangement research, it is almost always assumed that
each gene appears in a genome exactly once. Under this assumption, the genome
rearrangement problem is in essence the problem of comparing and sorting signed
permutations [21, 22]. However, this assumption is very restrictive and is only
justified in several small virus genomes. For example, this assumption does not
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hold on eukaryotic genomes where paralogous genes exist [25, 27]. On the one
hand, it is important in practice to compute genomic distances, e.g., Hannenhalli
and Pevzner’s method [21], when no gene duplications arise; on the other hand,
one might have to handle this gene duplication problem as well.

Sankoff first considered the problem of computing genomic distance with du-
plicated genes. About ten years ago, Sankoff proposed a way to select, from the
duplicated copies of genes, the common ancestor gene such that the distance
between the reduced genomes (exemplar genomes) is minimized [27]. A general
branch-and-bound algorithm was also implemented in [27]. In [25], Nguyen, Tay
and Zhang proposed to use a divide-and-conquer method to compute the exem-
plar breakpoint distance empirically.

For the theoretical part of research, it was shown that both of the problems
of computing the signed reversal and breakpoint distances between exemplar
genomes are NP-complete [7]. A few years ago, Blin and Rizzi further proved
that computing the conserved interval distance between exemplar genomes is
NP-complete [8]; moreover, it is NP-complete to compute the minimum con-
served interval matching (i.e., without deleting the duplicated copies of genes).
Recently we showed much stronger inapproximability result for the exemplar
conserved interval distance problem (even under a weaker model of approxi-
mation) [12]. While various exemplar genomic distances have been researched
before, in this survey we will focus on the exemplar breakpoint distance. In
fact, all the inapproximability result for exemplar breakpoint distance under the
normal model of approximation holds for any other genomic distance d(−,−)
satisfying d(G, H) = 0 implies G = H or G = −H .

2.1 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes. (In general a genome could
contain a set of such sequences. The genomes we focus on are typically called
singletons.) The order of the genes corresponds to the position of them on the
linear chromosome and the signs correspond to which of the two DNA strands
the genes are located. While most of the past research are under the assumption
that each gene occurs in a genome once, this assumption is problematic in reality
for eukaryotic genomes or the likes where duplications of genes exist [27]. Sankoff
proposed a method to select an exemplar genome, by deleting redundant copies
of a gene, such that in an exemplar genome any gene appears exactly once;
moreover, the resulting exemplar genomes should have a property that certain
genetic distance between them is minimized [27].

The following definitions are very much following those in [8]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G, H , if gene
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a immediately precedes b in G and neither a immediately precedes b nor −b
immediately precedes −a in H , then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality
of g in G, written as card(g,G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. A genome G is called r-repetitive,
if all the genes from the same gene family appear at most r times in G. For
example, G = c − adc − bdeb is 2-repetitive.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = −bcaadag − e, there are two exemplar
genomes: −bcadg − e and −bcdag − e.

The Exemplar Breakpoint Distance (EBD) problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.
Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the breakpoint distance between them is at most K?

In the next subsection, we present some hardness results on the approximabil-
ity and fixed-parameter tractability for EBD, namely, the hardness to compute
or approximate the minimum value K in the above formulation. Given a mini-
mization (maximization) problem Π , let the optimal solution value of Π be OPT.
We say that an approximation algorithm A provides a performance guarantee of
α for Π if for every instance I of Π , the solution value returned by A is at most
α ×OPT (at least OPT/α). Usually we say that A is a factor-α approximation
for Π . For the obvious reason, we are only interested in polynomial time approx-
imation algorithms. Readers are referred to [16, 19] for more details regarding
the definitions related to approximation algorithms and NP-completeness.

As a well-known subject as well, an FPT algorithm for an optimization prob-
lem Π with optimal solution value OPT = k is an algorithm which solves the
problem in O(f(k)nc) time, where f is any function only on k and c is some
fixed constant not related to k. More details on FPT algorithms can be found
in [18].

2.2 Hardness Results

In [10], we presented the first set of inapproximability and approximation re-
sults for the Exemplar Breakpoint Distance problem, given two genomes each
containing only one sequence of genes drawn from n identical gene families. We
showed that even if a gene appears at most three times, deciding whether the op-
timal exemplar breakpoint distance is zero, i.e, whether G = H , is NP-complete.
It was left as an open problem whether the result holds when each gene ap-
pears at most twice in each of the input genomes [10, 1]. This year, this open
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question was finally answered, i.e., it remains NP-complete even when each gene
appears at most two times [4]. Combining these results, we have the following
inapproximability result.

Theorem 1. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance problem does not admit any polynomial time approxima-
tion (regardless of its approximation factor), unless P=NP.

Proof. If we view the Exemplar Breakpoint Distance problem as a minimization
problem, then the result in [4] implies that deciding whether OPT = 0 is NP-
complete (even if the input genomes are 2-repetitive). Let A be any approxima-
tion algorithm for EBD with factor α. By definition, A returns an approximation
solution value APP, with

APP ≤ α × OPT.

When OPT = 0, clearly APP must also satisfy APP = 0. In other words, A
would be able to solve the instance in [4] in polynomial time. This, however,
contradicts with the corresponding NP-completeness result (unless P=NP). ut

Regarding the fixed-parameter tractability for EBD, we have the following
theorem.

Theorem 2. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance problem does not admit any FPT algorithm, unless P=NP.

Proof. Again, if we view the Exemplar Breakpoint Distance problem as a mini-
mization problem, then the result in [4] implies that deciding whether OPT = 0
is NP-complete (even if the input genomes are 2-repetitive). Let B be any FPT
algorithm for EBD which runs in O(f(k)nc) time. When OPT = k = 0, B solves
EBD in O(f(0)nc) = O(nc) time. In other words, B would be able to solve the
instance in [4] in polynomial time. This, again, contradicts with the correspond-
ing NP-completeness result, unless P=NP. ut

3 Approximability and Fixed-Parameter Tractability for

ENbS

We comment that the negative results in Section 2.2 hold for any genomic dis-
tance d(−,−) satisfying that d(G, H) = 0 implies G = H or G = −H . This, of
course, implies that all the exemplar genomic distance problems (like exemplar
reversal, exemplar transposition, and exemplar conserved interval distances) do
not admit any polynomial time approximation algorithms or any FPT algorithm,
unless P=NP.

There have been two ways to handle this problem. One is to use a weak model
of approximation, which will be covered as related to open problems in Section 5.
The other, on the other hand, is to use a different similarity measure. In this case,
one would try to maximize certain similarity measure. The most notably such
measures include non-breaking similarity (or number of adjacencies) [13] and
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the number of common intervals [3]. (A common interval is a pair of substrings
appearing in the two genomes with the same genes, but possibly different orders.
Example. G = abced, H = deacb. (abc, acb) is a length-3 common interval.) We
will focus the non-breaking similarity, which is really the complement of the
breakpoint distance.

For two exemplar genomes G and H over the same alphabet of size n, a
breakpoint in G is a two-gene substring gigi+1 such that neither gigi+1 nor
−gi+1 − gi is a substring in H . A non-breaking point (or an adjacency) is a
common two-gene substring gigi+1 that appears either as gigi+1 or as −gi+1−gi

in G and H . The number of non-breaking points between G and H is also
called the non-breaking similarity between G and H , denoted as nbs(G, H).
Clearly, we have nbs(G, H) = n − 1 − bd(G, H). For two genomes G and H,
their exemplar non-breaking similarity enbs(G,H) is the maximum nbs(G, H),
where G and H are exemplar genomes derived from G and H. Again we have
enbs(G,H) = n − 1 − ebd(G,H).

The Exemplar Non-breaking Similarity (ENbS) problem is formally defined
as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.
Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the non-breaking similarity between them is at least K?

We have the following negative results which have been proved in [13].

Theorem 3. If one of G and H is exemplar and the other is 2-repetitive, then
the Exemplar Non-breaking Similarity problem does not admit any factor-nε poly-
nomial time approximation unless P=NP.

Proof. We give a sketch of proof from [13]. In [13], it was shown that Independent
Set can be linearly reduced to ENbS; i.e., the input graph has an independent
set of size k iff the constructed ENbS instance has a non-breaking similarity (or
number of adjacencies) equal to k. As Independent Set cannot be approximated
within a factor of nε unless P=NP [20], the theorem follows. ut

Theorem 4. If one of G and H is exemplar and the other is 2-repetitive, the
Exemplar Non-breaking Similarity problem does not admit an FPT algorithm
unless FPT=W[1].

Proof. It is noted that the reduction from Independent Set to ENbS in [13] is in
fact an FPT reduction. As Independent Set is W[1]-complete [18], the theorem
simply follows. ut

In fact, with the lower bound results proved in [15], Independent Set (hence
ENbS) cannot be solved in O(f(k)no(k)) time even if k is bounded by an arbitrar-
ily small function of n, unless ETH fails. (ETH — Exponential Time Hypothesis:
3SAT cannot be solved in subexponential time.)
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4 Approximability and Fixed-Parameter Tractability for

MSR

Given two genomic maps G and H represented by a sequence of n gene markers,
a strip (syntenic block) is a sequence of distinct markers of length at least two
which appear as subsequences in both of the input maps, either directly or in
reversed and negated form. The problem Maximal Strip Recovery (MSR) is to
find two subsequences G′ and H ′ of G and H , respectively, such that the total
length of disjoint strips in G′ and H ′ is maximized An example is as follows:
G = abcde, H = cbdae and the optimal solution is G′ = H ′ = cde.

The MSR problem was proposed to handle the elimination of noise and am-
biguities in genomic maps. This is related to the well-known problem in com-
parative genomics — to decompose two given genomes into syntenic blocks, i.e.,
segments of chromosomes which are deemed to be homologous in the two in-
put genomes. Two years ago, a heuristic method was proposed to handle the
MSR problem [17, 32]. In [14], a factor-4 polynomial time approximation algo-
rithm was proposed for the problem. This was done by applying the Maximum
Weight Independent Set on 2-interval graphs, which admit a factor-4 approx-
imation [5]. We also proved that several close variants of MSR, MSR-d (with
d > 2 input maps), MSR-DU (with marker duplications), and MSR-WT (with
markers weighted) are all NP-complete. It was left as an open problem whether
the problem can be solved in polynomial time or is NP-complete [14].

Recently, in [31] we showed that MSR is in fact NP-complete, via a poly-
nomial time reduction from One-in-Three 3SAT (which was shown to be NP-
complete in [28, 19]). We summarize the results in [14, 31] as follows.

Theorem 5. MSR is NP-complete, and it admits a factor-4 polynomial time
approximation.

As an effort to solve the MSR problem practically, we tried to solve MSR
and its variants exactly with FPT algorithms, i.e., showing that MSR is fixed-
parameter tractable [31]. Let k be the minimum number of markers deleted in
various versions of MSR, the running time of our algorithms are O(23.61kn +
n2) for MSR, O(23.61kdn + dn2) for MSR-d, and O(27.22kn + n2) for MSR-DU
respectively. We summarize this result in [31] as follows.

Theorem 6. Let k be the optimal number of gene markers deleted from the
input genomic maps. MSR can be solved in O(23.61kn + n2) time; i.e., MSR is
fixed-parameter tractable.

Note that as k is typically greater than 50 in real datasets, our FPT algo-
rithms are not yet practical.

5 Concluding Remarks and Open Problems

The negative results on EBD and ENbS do not mean that we have absolutely
no way to tackle these problems. For instance, in [2], with integer linear pro-
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gramming, very nice empirical results are obtained. Here, we try to present a
different way to handle these problems formally.

In many biological problems, the optimal solution value OPT could be zero.
(Besides EBD, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution value could be zero.) As implied by Theorem 1, if
computing such an optimal solution with zero solution value is NP-complete
then the problem does not admit any polynomial time approximation (unless
P=NP). However, in reality one would be satisfied to obtain a solution with
value one or two. Due to this reason, we can relax the traditional definition of
approximation to a weak approximation. Given a minimization problem Π , let
the optimal solution of Π be OPT. We say that a weak approximation algorithm
W provides a performance guarantee of α for Π if for every instance I of Π , the
solution value returned by W is at most α × (OPT + 1).

In [10–12] we showed that EBD and the exemplar conserved interval distance
problems are both hard to approximate even under the weak approximation
model. But for the exemplar reversal distance problem, no such result is known
yet.

For the exemplar common interval number problem [3], the only negative
result is its NP-hardness. It would also be interesting to know whether it admits
an efficient polynomial time approximation. We conclude this paper with a list
of open problems.

1. For the exemplar reversal distance problem, does there exist a good weak
approximation?

2. For the exemplar common interval number problem, does there exist a good
approximation?

3. For the MSR problem, does there exist a polynomial time approximation
with factor better than 4?

4. For the MSR problem, does there exist a more efficient FPT algorithm?
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