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One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V1, V2, ) E)bea bipartlte graph
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Problem (OSCM)
Given a bipartite graph G = (V,,V,, E), a linear order 7, on V,

and R € N. Is there a linear order r, on V, such that the
two-layer drawing specified by (4, 7,) has at most k edge
crossings?
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Grouping by Swapping (GbS)

Definition (Swap)
c a d d a b a ¢ ¢ d d

Definition (Blocks string)
a a a C C C b d d d d

Problem (GbS)
Given a finite alphabet T, a string w € >*, and k € N. Can we

transform w in a blocks string w' with at most k swaps?
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What is known, what is open

OSCM is NP-complete if G = (V4, V5, E) is a collection of K, ,
with centers of stars in V.

OSCM is polynomial-time solvable in graphs of maximum
degree 2.

GbS is NP-complete if each letter occurs (at most) 4 times.

GbS is polynomial-time solvable if each letter occurs (at most)
2 times.

OPEN: OSCM with a max-3 restriction.
OPEN: GbS if each letter occurs (at most) 3 times.

Recall: Reeb graph presentation!
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Problem (KRA)
Given a list of votes I over a set of candidates C and k € N Is

there a ranking T on C such that the sum of the KT-distances

of T from all the votes is at most k.
C. C, G, G, G, G G G

M G < € < G < 6 < G < G < G
G, < G < G < G < 4 < G < G
C, < C < G < 6 < Cg < 3 < €
T: G < G < 6 < G < G < G < G

KT-Distance
(m,7) = {{i,j} | ¢i <= €}, ¢ >+ Gj}|
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What is known, what is open

KRA is NP-complete already for 4 voters.
KRA is polynomial-time solvable with 2 voters.

OPEN: KRA with 3 voters.



