# The Magic Number Three P versus NP

Henning Fernau 22 July 2025



**Trier University** 

# 

## **Definition (Two-layer drawing)**

Let  $G = (V_1, V_2, E)$  be a **bipartite** graph.

$$U_0 < U_1 < U_2 < U_3 < U_4$$
 $V_1 - ullet -$ 

V<sub>2</sub> -----

#### **Definition (Two-layer drawing)**

Let  $G = (V_1, V_2, E)$  be a **bipartite** graph.

1











#### **Definition (Two-layer drawing)**

Let  $G = (V_1, V_2, E)$  be a **bipartite** graph.



#### **Problem (OSCM)**

Given a **bipartite graph**  $G = (V_1, V_2, E)$ , a **linear order**  $\tau_1$  on  $V_1$  and  $k \in \mathbb{N}$ . Is there a **linear order**  $\tau_2$  on  $V_2$  such that the two-layer drawing specified by  $(\tau_1, \tau_2)$  has at most k edge crossings?

1

**Definition (Swap)**c a d d a a b c c d d

Definition (Swap)
c a d d a a b c c d d

#### Definition (Swap)

caddab<sup>k-</sup>accdd

Definition (Swap)
c a d d a b a c c d d

Definition (Swap)

c a d d a b a c c d c

Definition (Blocks string)







**Problem (GbS)**Given a **finite alphabet**  $\Sigma$ , a **string**  $w \in \Sigma^*$ , and

Given a **finite alphabet**  $\Sigma$ , a **string**  $w \in \Sigma^*$ , and  $k \in \mathbb{N}$ . Can we transform w in a **blocks string** w' with at most k **swaps**?

2

#### **GbS**

An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.

# **GbS** An alphabet $\Sigma = \{a,b,c,d\}$ and w = caddaabccdd.

#### **GbS**

An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



-----

#### **GbS**

An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.

**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



**GbS** An alphabet  $\Sigma = \{a, b, c, d\}$  and w = caddaabccdd.



OSCM is NP-complete if  $G = (V_1, V_2, E)$  is a collection of  $K_{1,4}$  with centers of stars in  $V_2$ .

OSCM is polynomial-time solvable in graphs of maximum degree 2.

OSCM is NP-complete if  $G = (V_1, V_2, E)$  is a collection of  $K_{1,4}$  with centers of stars in  $V_2$ .

OSCM is polynomial-time solvable in graphs of maximum degree 2.

GbS is NP-complete if each letter occurs (at most) 4 times.

GbS is polynomial-time solvable if each letter occurs (at most) 2 times.

OSCM is NP-complete if  $G = (V_1, V_2, E)$  is a collection of  $K_{1,4}$  with centers of stars in  $V_2$ .

OSCM is polynomial-time solvable in graphs of maximum degree 2.

GbS is NP-complete if each letter occurs (at most) 4 times.

GbS is polynomial-time solvable if each letter occurs (at most) 2 times.

OPEN: OSCM with a max-3 restriction.

OPEN: GbS if each letter occurs (at most) 3 times.

Recall: Reeb graph presentation!

#### Problem (KRA)

#### Problem (KRA)

Given a **list of votes**  $\Pi$  over a **set of candidates** C and  $k \in \mathbb{N}$  Is there a **ranking**  $\tau$  on C such that the sum of the KT-distances of  $\tau$  from all the votes is at most k. C:  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_5$ ,  $C_6$ ,  $C_7$ 

5

#### Problem (KRA)

C: 
$$c_1$$
,  $c_2$ ,  $c_3$ ,  $c_4$ ,  $c_5$ ,  $c_6$ ,  $c_7$ 
 $c_1$ :  $c_1$  <  $c_4$  <  $c_7$  <  $c_2$  <  $c_5$  <  $c_6$  <  $c_3$ 
 $c_4$  <  $c_7$  <  $c_2$  <  $c_6$  <  $c_1$  <  $c_5$  <  $c_3$ 
 $c_4$  <  $c_6$  <  $c_7$  <  $c_2$  <  $c_6$  <  $c_7$  <  $c_8$  <  $c_8$ 

#### Problem (KRA)

#### Problem (KRA)

C: 
$$c_1$$
,  $c_2$ ,  $c_3$ ,  $c_4$ ,  $c_5$ ,  $c_6$ ,  $c_7$ 
 $\square$ :  $c_1 < c_4 < c_7 < c_2 < c_5 < c_6 < c_3$ 
 $c_4 < c_7 < c_2 < c_6 < c_1 < c_5 < c_3$ 
 $c_4 < c_6 < c_7 < c_2 < c_5 < c_5 < c_3 < c_1$ 
 $\tau$ :  $c_4 < c_7 < c_2 < c_6 < c_1 < c_5 < c_3$ 
**KT-Distance**
 $(\pi, \tau) = |\{\{i, j\} \mid c_i <_{\pi} c_j, c_i >_{\tau} c_j\}|$ 

KRA is NP-complete already for 4 voters.

KRA is polynomial-time solvable with 2 voters.

KRA is NP-complete already for 4 voters.

KRA is polynomial-time solvable with 2 voters.

OPEN: KRA with 3 voters.