
For Peer Review
 O

nly

Protein Chain Pair Simplification Under the Discrete Fréchet
Distance

Journal: IEEE/ACM Transactions on Computational Biology and Bioinformatics

Manuscript ID: TCBBSI-2012-08-0204.R3

Manuscript Type: Regular Paper

Keywords:
I.2.8.d Dynamic programming < I.2.8 Problem Solving, Control Methods,
and Search < I.2 Artificial Intelligence < I Computing Methodologies, F.2
Analysis of Algorithms and Problem Complexity < F Theory of Computation

Transactions on Computational Biology and Bioinformatics

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 1

Protein Chain Pair Simplification Under the
Discrete Fréchet Distance

Tim Wylie and Binhai Zhu

Abstract—For protein structure alignment and comparison, a lot of work has been done using RMSD as the distance measure,
which has drawbacks under certain circumstances. Thus, the discrete Fréchet distance was recently applied to the problem of protein
(backbone) structure alignment and comparison with promising results. For this problem, visualization is also important since protein
chain backbones can have as many as 500∼600 α-carbon atoms which constitute the vertices in the comparison. Even with an
excellent alignment, the similarity of two polygonal chains can be difficult to visualize unless the chains are nearly identical. Thus,
the chain pair simplification problem (CPS-3F) was proposed in 2008 to simultaneously simplify both chains with respect to each other
under the discrete Fréchet distance. The complexity of CPS-3F is unknown, so heuristic methods have been developed. Here, we define
a variation of CPS-3F, called the constrained CPS-3F problem (CPS-3F+), and prove that it is polynomially solvable by presenting a
dynamic programming solution, which we then prove is a factor-2 approximation for CPS-3F. We then compare the CPS-3F+ solutions
with previous empirical results, and further demonstrate some of the benefits of the simplified comparisons. Chain pair simplification
based on the Hausdorff distance (CPS-2H) is known to be NP-complete, and here we prove that the constrained version (CPS-2H+) is
also NP-complete. Finally, we discuss future work and implications along with a software library implementation, named FPACT (The
Fréchet-based Protein Alignment & Comparison Toolkit).

Index Terms—Protein structure alignment, Protein structure simplification and visualization, Discrete Fréchet distance, Approximation
algorithms, Dynamic Programming, NP-complete

F

1 INTRODUCTION

T HE comparison and simplification of polygonal chains
have been well studied in several fields including com-

puter vision, bioinformatics, computational geometry, and
parametric curve approximations [1], [4], [28]. Within struc-
tural biology, polygonal chain similarity is one of the central
problems of protein research. In general, it is believed that
a protein’s structure might imply its function, and thus to
compare the functionality of proteins their structures must be
compared [19]. This is known to be true for certain situations,
especially with homologous traits between proteins, and the
empirical evidence between proteins in general is in agreement
[17], [19]. The structure is defined by the α-carbon atoms
of the residues (amino acids) along the backbone of each
chain. These atoms represent the vertices that constitute our
3D polygonal chains.

Since the structure of the protein is suspected to be related to
its function, there have been many software systems designed
for protein structure alignment and comparison in the last
couple of decades. A few of the more well-known systems are
SCOP [9], DALI [13], [14], CATH [20], MAMMOTH [21],
CE [23], ProteinDBS [24], SSAP [25], and 3D-BLAST [32].
None of these systems use the discrete Fréchet distance, and
the majority of the work previously done on protein global
structure alignment and protein local structure alignment
uses the RMSD (Root Mean Square Deviation) evaluative

• T. Wylie is with the Department of Computer Science, Montana State
University, Bozeman, MT, 59717. E-mail: timothy.wylie@cs.montana.edu

• B. Zhu is with the Department of Computer Science, Montana State
University, Bozeman, MT, 59717. E-mail: bhz@cs.montana.edu

measure. Given two m-vectors V1 = 〈u1, u2, ..., um〉 and
V2 = 〈v1, v2, ..., vm〉, RMSD is defined as:

RMSD(V1, V2) =

√∑
i(ui − vi)2
m

.

RMSD gives an average pair-wise distance along the two
vectors, which provides some insight into the similarity of
the two chains, but the reliance on m shows one of the major
drawbacks of using RMSD. The comparison hinges on the
necessity that the two vectors be the same length and that the
vertices at a given index in each chain be pairwise similar. If
we modified the chains, then we could receive substantially
different RMSD values. Suppose we have two chains C1, C2

with m vertices, and we then add some vertices on C1 and C2

by alternatively duplicating/repeating some different vertices
in C1 and C2 to obtain C ′1, C

′
2, then RMSD(C ′1, C

′
2) could

be dramatically different from RMSD(C1, C2), even though
geometrically C ′1 and C ′2 are as similar as C1 and C2. This
suggests that a measure independent of the number of vertices
or a pair-wise alignment might be a better indicator of the
similarity of the two chains.

As an example, to handle the issue of differing chain
lengths, ProteinDBS [24] only computes the RMSD between
matched parts of the chains, and disregards the very dissimilar
parts in the calculation. This allows for the same number of
vertices to be used from each chain, but coverage percentages
must be considered to understand similarity. This makes
understanding the overall relationship between the two protein
backbones difficult.

To achieve a more accurate measure of similarity between
two protein structures, Jiang et al. proposed using the discrete
Fréchet distance for the protein backbone comparison [16].

Page 1 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 2

The two main problems they addressed were the alignment
of the two chains, and then the comparison itself. They
showed that the optimal alignment problem, as defined in
[16], between two 3D chains under the discrete Fréchet
distance takes O(n7m7 log(n +m)) time to solve [16]. Due
to the high time complexity they proposed a heuristic method
not dependent on the discrete Fréchet distance. We revis-
ited the optimal alignment problem by proposing a possible
PTAS (Polynomial-Time Approximation Scheme) algorithm in
which all translations and rotations were based on the current
discrete Fréchet distance of the two chains [29]. We also
showed that this was at worst a 2-approximation algorithm for
the optimal alignment problem. The new algorithm provided
better alignment results than the previous method for all
empirical evaluations.

When comparing polygonal structures, alignment is just one
of the issues. Given that protein backbones can have as many
as 500∼600 vertices (α-carbon atoms) in each chain, even
with an optimal alignment, visualizing the similarity of two
chains is difficult unless those chains are nearly identical.
To address this issue the chain pair simplification (CPS-3F)
problem was proposed by Bereg et al. in 2008 [6]. They
were unable to show whether CPS-3F is NP-complete, but
they proved that the Hausdorff version of the problem (CPS-
2H), which simplified the chains via the Hausdorff distance,
is NP-complete [6]. This led them to postulate that under the
discrete Fréchet distance the problem was likely to be NP-
complete. In our previous work [29] we used a heuristic O(n)
time algorithm to simplify pairs of chains. Here, we prove that
a variation of CPS-3F, denoted as CPS-3F+, is polynomially
solvable, and that it is a factor-2 approximation for CPS-
3F. This restricted version is also beneficial because as we
simplify the proteins, we usually want to visually compare
the two backbone chains without distorting their lengths.
However, we also look at cases where uneven simplification
may be beneficial for visualization. Further, we prove that the
constrained version on CPS-2H, similarly denoted as CPS-
2H+, is NP-complete.

As previously mentioned, the majority of software systems
for aligning and comparing protein backbones use the RMSD
measure. Thus, we have created a software library called
FPACT (The Fréchet-based Protein Alignment & Comparison
Toolkit), which uses the alignment, comparison and simplifi-
cation algorithms (including CPS-3F+) based on the discrete
Fréchet distance [31].

This paper is an extension of our previous work [30]. All
sections have been expanded, many sections with better ex-
planations for clarity, including an enriched empirical section
looking at a greater variation of protein chain length and
similarity. The 2-approximation proof is now included, and
there is more explanation for the previous proofs. There is
more information about FPACT and about the algorithms.
Further, Section 3.3 gives an example demonstrating that CPS-
3F does not always have a minimum moving cost. We also
answer one of our open questions by proving that CPS-2H+

is NP-complete .
The paper is organized as follows. In Section 2 we discuss

the discrete Fréchet distance, CPS-3F+, and the related back-

ground. In Section 3 we present a polynomial time solution for
CPS-3F+ and analyze the algorithm complexity. We then give
a pseudocode algorithm to implement the solution in Section 4.
In Section 5 we compare the results to our previous heuristic
for CPS-3F. Section 6 gives an overview of the libraries in
the toolkit. Then in Section 7 we prove that CPS-2H+ is NP-
complete along with some examples of the reduction. Finally,
we outline some implications and future work in Section 8
and then conclude with some open problems.

2 PRELIMINARIES

2.1 The Hausdorff Distance
The Hausdorff distance was first defined by Felix Hausdorff
in 1914 [12]. Since its introduction, the Hausdorff distance
has become one of the most widely used similarity measures
across many disciplines.

Definition 1. [18] Let X and Y be two non-empty subsets
of a metric space (M,d). We define their Hausdorff distance
dH(X,Y) by

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)},

where sup represents the supremum and inf the infimum.

2.2 The Discrete Fréchet Distance
The Fréchet distance was first defined by Maurice Fréchet
in 1906 as a measure of similarity between two parametric
curves [11]. Subsequently, it has become a standard measure
in parametric analysis. In the early 90s, the Fréchet distance
for polygonal curves was first considered by Alt and Godau
who gave an O(mn log(mn)) algorithm [2], [3]. Then in 1994
Eiter and Mannila defined the discrete Fréchet distance as
an approximation of the Fréchet distance to be used between
two polygonal chains using only the nodes along the chains
for the measurements [10]. They also referred to this discrete
form as the coupling distance, which is used synonymously.
Furthermore, they proved the discrete version can be computed
in O(mn) time, where m,n are the number of vertices in the
polygonal chains.

The discrete Fréchet distance has since been applied in sev-
eral fields of research, but recently, one of the prominent ap-
plications has been in aligning and comparing the similarity of
protein backbones [5], [16], [33]. In this comparison between
backbones each vertex in the polygonal chains represents an α-
carbon atom, which gives the comparison based on the atoms
a clear biological meaning. Thus, a comparison between two
backbones using the discrete Fréchet distance may be more
appropriate than one using the continuous version.

Given two paths, we define their discrete Fréchet distance
below. (We use the graph-theoretic term “paths” instead of the
geometric term “polygonal chains” here because our definition
makes no assumption that the underlying space of points is
geometric.) We use d(a, b) to represent the Euclidean distance
between two 3D points a and b, but certainly it can be
replaced with some other distance measure, depending on the
application.

Page 2 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 3

Definition 2. Given a path P = 〈p1, . . . , pn〉 of n ver-
tices, a t-walk along P is a partitioning of P along the
path into t disjoint non-empty subpaths {Pi}i=1..t such that
Pi = 〈pni−1+1, . . . , pni

〉 and 0 = n0 < n1 < · · · < nt = n.

Definition 3. Given two paths A = 〈a1, . . . , am〉 and B =
〈b1, . . . , bn〉, a paired walk along A and B is a t-walk
{Ai}i=1..t along A and a t-walk {Bi}i=1..t along B for some
t, such that, for 1 ≤ i ≤ t, either |Ai| = 1 or |Bi| = 1 (that
is, either Ai or Bi contains exactly one vertex).

Definition 4. The cost of a paired walk W = {(Ai, Bi)}
along two paths A and B is

dWF (A,B) = max
i

max
(a,b)∈Ai×Bi

d(a, b).

Definition 5. The discrete Fréchet distance between two paths
A and B is

dF (A,B) = min
W

dWF (A,B).

A paired walk that achieves the discrete Fréchet distance
between two paths A and B is called a Fréchet alignment
of A and B.

The continuous Fréchet distance is typically explained as
the relationship between a person and a dog connected by a
leash walking along the two curves and trying to keep the
leash as short as possible. However, for the discrete case, we
only consider the nodes of these curves, and thus the man and
dog must “hop” along the nodes of the chain. Consider the
scenario in which a person walks along A and a dog along B.
Intuitively, the definition of the paired walk is based on three
cases:

1) |Bi| > |Ai| = 1: the person stays and the dog hops
forward;

2) |Ai| > |Bi| = 1: the person hops forward and the dog
stays;

3) |Ai| = |Bi| = 1: both the person and the dog hop
forward.

Figure 1 shows the relationship between the discrete and
continuous Fréchet distances. In Figure 1(a), we have two
chains 〈a1, a2, a3〉 and 〈b1, b2〉, the continuous Fréchet dis-
tance between the two is the distance from a2 to segment b1b2,
i.e., d(a2, o). The discrete Fréchet distance is d(a2, b2). The
discrete Fréchet distance could be quite larger than the contin-
uous distance. On the other hand, with enough sample points
on the two chains, the resulting discrete Fréchet distance, i.e.,
d(a2, b) in Figure 1(b), closely approximates d(a2, o).

With enough evenly sampled nodes the discrete Fréchet
distance can closely approximate the continuous version, and
with a standard dynamic programming approach, it is straight-
forward to obtain the following theorem.

Theorem 1. [10] The discrete Fréchet distance between two
paths with m and n vertices respectively can be computed in
O(mn) time.

In 2008 the chain pair simplification problem in three
dimensions under the discrete Fréchet distance was defined
to improve visualization of the two chains. The problem not

(a) (b)

Figure 1: The relationship between the discrete and continuous
Fréchet distance where o is the continuous and the dotted line
between nodes is the discrete. (a) shows a case where the chains
have fewer nodes and a larger discrete Fréchet distance, while (b)
is the same basic path with more nodes, and thus provides a better
approximation of the Fréchet distance.

only allows one to see the two chains in a simplified form, but
it also keeps the characteristic similarities that exist between
the chains. Although the problem is not necessarily limited
to 3D space, we state the original decision problem as it was
defined relating to protein backbone chains.

The CPS problem is:
Instance: Given a pair of 3D chains A and B, with lengths
O(m), O(n) respectively, an integer K > 0, and three real
numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′, B′, each
of at most K vertices, such that the vertices of A′, B′ are
from A,B, respectively, and d1(A,A

′) ≤ δ1, d2(B,B
′) ≤

δ2, dF (A
′, B′) ≤ δ3?

When d1 = d2 = dF , the problem is called CPS-3F since
all three distance measures are the discrete Fréchet distance.
When d1 = d2 = dH (the Hausdorff distance), the problem is
called CPS-2H since two of the distances are Hausdorff.

2.3 The Moving Cost

We now define a new measure for the discrete Fréchet distance
based on the paired walk between two chains.

Definition 6. The moving cost of a paired walk W =
{(Ai, Bi)} is

mW
c (Ai, Bi) = max{|Ai|, |Bi|}. (1)

The moving cost of a paired walk W between A and B is

mW
c (A,B) =

t∑
i=1

mW
c (Ai, Bi). (2)

The moving cost for A and B is the sum of the number of
“hops” the man or dog make along the two chains. However,
when they both move at once, this only counts as a single
move. In other words, it is the number of pairs of points, or
matched points, between the chains used in calculating the
discrete Fréchet distance.

In Figure 2 we show a simple example of two chains that
can be simplified in two possible ways. In 2(a) the moving
cost is six and the number of nodes for each chain is four. In
2(b) the moving cost is still six, yet the number of nodes is
now five in each chain.

Page 3 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 4

Figure 3: The rectangle ri,j constructed from subchains of A,B where d(ai, bj) ≤ δ3. Here SA(ai, δ1) contains the vertices ai−1 to ai+2,
and SB(bj , δ2) contains the vertices bj−1 to bj+1. Thus, ri,j is defined by the min and max node indices in each subchain.

(a) (b)

Figure 2: The difference between the number of nodes and the
moving cost. Suppose that both (a) and (b) are valid simplifications
of two chains. They have the same moving cost, yet (a) only has four
nodes in each of the simplified chains, but in (b) both chains have
five nodes.

We can prove some nice properties of the moving cost,
such as the complexity being polynomial and its ability to
approximate the number of vertices. As we make use of later,
max(|A|, |B|) ≤ mW

c (A,B) ≤ |A| + |B| − t for a paired t-
walk W along A and B. This is because in any paired walk
(Ai, Bi), the moving cost is at least max{|Ai|, |Bi|} and at
most |Ai|+ |Bi| − 1. This is the motivation for our variant of
CPS-3F and CPS-2H.

The constrained CPS problem is now defined as follows:
Instance: Given a pair of 3D chains A and B, with lengths
O(m), O(n) respectively, an integer K ′ > 0, and δ1, δ2, δ3 ∈
R+.
Problem: Does there exist a pair of chains A′, B′ where the
vertices are from A,B, respectively, such that for some paired
walk W between A′, B′, mW

c (A′, B′) ≤ K ′, and d1(A,A
′) ≤

δ1, d2(B,B
′) ≤ δ2, dF (A′, B′) ≤ δ3?

Now when d1 = d2 = dF , we call the problem CPS-3F+,
and when d1 = d2 = dH , the problem is called CPS-2H+.

2.4 Dynamic Time Warping

Another parametric distance measure is Dynamic Time Warp-
ing (DTW), and was first introduced by Vintsyuk in 1968
in the field of speech processing [27]. During the last 15
years it has been used largely in the data mining community
as a method for comparing, indexing, and learning with
temporal and spatial data. This technique was recently applied
in determining similarity between protein flexibility [26], and
could prove useful in alignment and simplification as well.

Dynamic time warping has been developed extensively in
many areas for specific applications. The idea is related to the
discrete Fréchet distance, but differs in finding the minimum
sum between points as opposed to the minimum maximum
distance between any two pairs. Although related, no work
has been done with DTW and chain pair simplification. Many
strategies created for reducing the running time of DTW such
as the Itakura Parallelogram [15] or the Sakoe-Chiba Band
[22] may be adaptable to our work though.

3 CPS-3F+ IS POLYNOMIALLY SOLVABLE

3.1 CPS-3F+ ∈ P
In this section we present a polynomial time solution for CPS-
3F+, which is an adaptation of CPS-3F. Several versions of the
single chain simplification problem were addressed and shown
to be polynomially solvable by Bereg et al. [6]. However,
CPS-2H (where the Hausdorff distance is used for d(A,A′)
and d(B,B′)) was shown to be NP-complete, and thus it was
postulated that the Fréchet version might also be NP-complete.
The solution presented here proves that under the discrete
Fréchet distance, the constrained chain pair simplification
problem (CPS-3F+) is polynomially solvable if the dimension
is fixed. The algorithm returns the optimal K ′ specified in the
definition of the decision problem, which is equal to

mc(A
′, B′) = min

W
mW

c (A′, B′), (5)

among all feasible W . We now define several necessary terms
and data structures.

Given two polygonal chains A = 〈a1, a2, ..., am〉, and
B = 〈b1, b2, ..., bn〉, and constraints δ1, δ2, δ3 ∈ R+, we design
a dynamic programming algorithm to find the optimal moving
cost K ′. First, let D = {(ai, bj)| ai ∈ A, bj ∈ B and
d(ai, bj) ≤ δ3}. This is the set of all pairs of nodes between
the two chains that are at a distance of at most δ3 from each
other. We then define a matrix C of size m×n that in any cell,
Ci,j , contains the minimum number, K ′, of pairs (ak, bl) ∈ D,
which given δ1, δ2, and δ3 simplify A and B via CPS-3F+

from (a1, b1) up to (ai, bj).
In order to maintain C, we need another data structure

R and some other helpful definitions. We define SX(xi, δ)

Page 4 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 5

Initial Conditions: Q1,1 6= ∅, R1,1 = Q1,1, and C1,1 = 1.

Ci,j = min
(k,l)∈{(i-1,j),(i,j-1),(i-1,j-1)}


Ck,l, if Qi,j ∩Rk,l 6= ∅
Ck,l + 1, if Qi,j ∩Rk,l = ∅, Qi,j 6= ∅, Rk,l 6= ∅
NULL, if Qi,j = ∅

(3)

Ri,j =
⋃

(k,l)∈{(i-1,j),(i,j-1),(i-1,j-1)}


Rk,l ∩Qi,j , if Ci,j = Ck,l, Rk,l ∩Qi,j 6= ∅
Qi,j , if Ci,j = Ck,l + 1, Rk,l 6= ∅,

Rk,l ∩Qi,j = ∅
(4)

as the maximal continuous subchain containing xi on the
polygonal chain X such that all the vertices on this subchain
are contained in the sphere centered at xi and with radius δ.
Now let ri,j be the rectangle on C defined as 〈min(SA(ai, δ1)),
max(SA(ai, δ1)), min(SB(bj , δ2)), max(SB(bj , δ2))〉 such
that (ai, bj) ∈ D. Here, min and max refer to the minimum
or maximum indexed element within SX(xi, δ). For every
pair in D, we envision the corresponding rectangles as being
overlayed on C. A rectangle ri,j covers all the cells of C that
are analogous to the vertices in SA(ai, δ1) ∪ SB(bj , δ2) as
shown in Figure 3.

Our dynamic programming approach must take two differ-
ent concurrent simplifications into account to find the mini-
mum moving cost. First, the distance between each original
and simplified chain is represented by the sphere, SX(xi, δ),
and captured as part of a rectangle (Figure 3). Second, D
represents the distance between the two simplified chains. The
two are combined by the rectangles where the height and width
capture the simplified vertices in A and B, respectively, and
the number and placement of those rectangles on C ties in the
relationship between the two chains.

For convenience we also define the set of all rectangles
that a cell in C belongs to: Qk,l = {ri,j |ak ∈ A, bl ∈
B and min(SA(ai, δ1)) ≤ ak ≤ max(SA(ai, δ1)) and
min(SB(bj , δ2)) ≤ bl ≤ max(SB(bj , δ2))}.

Let R be a matrix of sets where the matrix is of size m
by n, and R provides information needed to fill out C by
storing a list of rectangles for each cell. Ri,j contains a set
of rectangles (dynamic array) that pertain to the number of
coverings (rectangles) still viable at any (i, j) relating to the
number already calculated for Ci,j . These are computed by the
recurrences in Equations 3 and 4, which are listed along with
the initial conditions for the relations.

The idea is to find the minimum covered xy-monotone
increasing path from (a1, b1) to (am, bn) that corresponds
with C1,1 to Cm,n. This is the minimum path by dynamic
programming with all feasible options explored. If we visited
a cell that was not covered, that would mean one of the
nodes is not covered by a pair in D. By finding a minimum
covered path, one guarantees that every column and every row
is covered by at least one rectangle, which means all of the
nodes of A and B are covered.

The increasing xy-monotone path is necessary in the recur-
rence due to the definition of the discrete Fréchet distance.
Without the requirement of a monotonically increasing path
we would be using the weak discrete Fréchet distance – a
version of the Fréchet distance that allows backtracking, or in

terms of the analogy would allow the man or the dog to walk
backwards.

We first characterize the optimal substructure of CPS-3F+

as an optimization problem given our definitions, and then
show this yields the optimal solution for K ′ and thus decides
CPS-3F+.

Theorem 2. Optimal substructure of CPS-3F+:
Let A = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉 be two polygonal
chains, δ1, δ2, δ3 ∈ R+, and let Zi = 〈z1, . . . , zi〉 be any CPS-
3F+ solution such that every zj is a rectangle.

1) If (ak, bl) is covered by zi, where (k, l) ∈ {(m-
1, n), (m,n-1), (m-1, n-1)}, then Zi is a CPS-3F+ so-
lution for Ak, Bl.

2) If (ak, bl) is covered by zi−1, where (k, l) ∈ {(m-
1, n), (m,n-1), (m-1, n-1)}, then Zi−1 is a CPS-3F+

solution for Ak, Bl.
3) If (ak, bl) is not covered by zi or zi−1, where (k, l) ∈
{(m-1, n), (m,n-1), (m-1, n-1)}, then @ a CPS-3F+

solution for Ak, Bl.

Proof: 1) If zi covers (ak, bl) where (k, l) ∈ {(m-
1, n), (m,n-1), (m-1, n-1)}, then zi ∈ Qm,n ∩ Rk,l, and
Ck,l = |Zi|. Suppose Ck,l 6= |Zi|, then for (ak, bl) there are
two possibilities: either Ck,l > |Zi| or Ck,l < |Zi|. Ck,l > |Zi|
implies the solution required another rectangle at the previous
step, but since the recurrence is monotonically increasing this
is impossible. If Ck,l < |Zi|, then given the addition of zi
for (m,n) implies zi /∈ Qm,n ∩Rk,l, but that contradicts our
assumption.

2) If zi−1 covers (ak, bl), where (k, l) ∈ {(m-1, n), (m,n-
1), (m-1, n-1)}, but not (am, bn) then zi /∈ Qm,n ∩Rk,l, and
Ck,l = |Zi−1| = |Zi|-1. If we suppose Ck,l 6= |Zi−1|, then
either Ck,l > |Zi−1| or Ck,l < |Zi−1|. If Ck,l > |Zi−1|, then
Ck,l = |Zi−1|+1 = |Zi|, and since Zi is an optimal solution
we have added another rectangle that must cover (ak, bl) and
(am, bn) in order to be a solution. However, this means ∃
zi ∈ Qm,n∩Rk,l, which contradicts our assumption. Suppose
Ck,l < |Zi−1|, then to cover (am, bn) we must add another
rectangle, but that contradicts Zi being an optimal solution
since we have covered Am, Bn with |Zi|-1 rectangles.

3) Since @ any rectangles zi and zi−1 that cover both
(am, bn) and (ak, bl), where (k, l) ∈ {(m-1, n), (m,n-1), (m-
1, n-1)}, then Qk,l = ∅ or Qm,n = ∅. By definition, if no
rectangles cover the cells, then there is no solution for Ak, Bl

or Am, Bn.

Theorem 3. Constrained chain pair simplification, under the

Page 5 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 6

discrete Fréchet distance, is polynomially solvable, i.e. CPS-
3F+ ∈ P.

Proof: Since we have shown that CPS-3F+ has an optimal
substructure, given A,B,K ′, δ1, δ2, and δ3, we can find an
optimal K ′′ from our dynamic programming algorithm (Al-
gorithm 1). Then we decide CPS-3F+ by comparing whether
K ′ ≤ K ′′.

Corollary 1. Constrained chain pair simplification gives
a factor 2-approximation to the chain pair simplification
problem under the discrete Fréchet distance, i.e., CPS-3F+

provides a 2-approximation of CPS-3F.

Proof: Given two polygonal chains A,B, let K be an
optimal solution from CPS-3F yielding the simplified chains
A′, B′, and assume K ′ is an optimal solution for CPS-3F+

yielding the simplified chains A′′, B′′, i.e. K ′ = mc(A
′′, B′′).

Here, K ≤ K ′ because K is the minimum number of
vertices possible and the moving cost for any pair A′′, B′′ is at
least equal to max(|A′′|, |B′′|), where K ≤ |A′′| or K ≤ |B′′|.

Now, we know that the moving cost for A′, B′ satisfies
mc(A

′, B′) ≥ K ′ since K ′ is an optimal moving cost
for A,B. Thus, a monotonically increasing moving cost
in A′, B′ is at most |A′| + |B′| − t for a t-walk. Now,
K ′ = mc(A

′′, B′′) ≤ mc(A
′, B′) ≤ |A′| + |B′| − t ≤

2max(|A′|, |B′|) = 2K. Thus, K ≤ K ′ ≤ 2K.

3.2 Complexity
The time complexity of the algorithm is largely dependent
on δ1, δ2, and δ3 because they define the size and number
of rectangles. We allow δ1, δ2, and δ3 to be absorbed in the
complexity because their values do not guarantee a specific
number of rectangles to be considered, nor how large a given
rectangle is.

We can easily bound the complexity between O(mn) and
O(m2n2). If the values of δ1, δ2, and δ3 are small then any
cell will only have a small constant number of rectangles to
consider and the algorithm runs in O(mn) time, which is the
case for most protein related data.

However, in the worst case, if δ1, δ2, and δ3 are set larger
than the lengths of the chains causing every Qi,j to contain
all possible rectangles between the two chains, then the
complexity is O(m2n2) given the largest |D| possible is mn.
The optimal solution for CPS-3F+ in this case is K ′ = 1, but
would require O(m2n2) time. δ3 is the largest contributing
variable to the running time because it determines the number
of possible rectangles (size of D).

Filtering steps could be added to watch for large δ values.
With filtering, the time at any step could be kept to a constant
(or logarithmic) value and the time complexity would remain
close to O(mn) or have an extra logarithmic factor dependent
on δ1, δ2, and δ3.

The space complexity also has similar bounds, requiring
a minimum of O(mn) space and a maximum of O(m2n2)
space, if Q is used naı̈vely and built beforehand. The recur-
rences themselves only require two rows of data for either |A|
or |B|, so the space complexity is linear to the size of the
smaller chain (WLOG O(n)). However, this would require

calculating Qi,j at every step for the cell, which as discussed,
could be expensive if the δ values are large.

3.3 Counter Example
We now briefly give an example proving that finding a solution
to CPS-3F does not imply a solution to CPS-3F+, and that
having all solutions of CPS-3F+ does not guarantee that one
of the solutions will have a minimum K for CPS-3F.

The nodes of A and B are listed in Table 1, and Figure 4
shows the resulting polygonal chains in R3. The dotted lines
show the nodes between A and B that are within δ3 of each
other. The settings for both CPS-3F and CPS-3F+, given A,B,
are δ1 = δ2 = δ3 = 1.

A B

a1 = (0, 0.85, 2.4) b1 = (0, 2, 2.5)
(0, 1, 1.5) (0, 2, 1.5)

(0.4, 1, 0.6) (0, 2.5, 1)
(0.9, 1.1, 0) (0, 1.95, 0.5)

(0.6, 0.6, −0.3) (0, 1, 0.5)
(0.5, 0, 0) (0, 0, 0.5)
(1.5, 0, 0) (0.75, 0.15, 1.1)
(2.45, 0, 0) (1, 1, 1.5)
(3, 0.5, 0) (1.3, 0.5, 0.75)
(2.5, 1, 0) (1.6, 0.9, 0)

a11 = (2.5, 2, 0) b11 = (1.5, 1.8, −0.4)

Table 1: The nodes for chains A and B in the counter-example.

This example has only nine pairs of nodes that correlate to
rectangles in the dynamic programming solution (dotted lines).
There are two paths that can be taken which are covered by
rectangles. The minimum moving cost is equal to five and uses
five nodes in the simplified chains, i.e. K = 5, K ′ = 5. The
other path requires six pairs, or rectangles, to be used but only
needs four vertices in each simplified chain, K = 4, K ′ = 6.
Thus, a worse CPS-3F+ solution (higher moving cost) may
yield a better CPS-3F solution (lower number of vertices).

Figure 4: Two polygonal chains A and B. The dotted lines represent
the nodes between A and B that are within δ3 of each other.

In the next section we outline our algorithm and then walk
through it using these example chains to demonstrate some of
the intuition behind the algorithm. This explicitly shows that

Page 6 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 7

two paths are possible, and why we must choose which one
is optimal based on the moving cost.

4 DYNAMIC PROGRAMMING ALGORITHM
In this section we use the recurrences as a basis to find the
optimal solution for a given set of inputs. Once the optimal
solution is calculated we can easily decide CPS-3F+. The
algorithms presented assume many global or class variables
outside of the functions. These variables are explained mo-
mentarily.

Since the recurrences only require the previous row and
column for any decision, the function can be implemented as
a simple iterative algorithm as opposed to a recursive one.
Similar to the edit distance problem between two strings, only
two rows at a time are needed, so the amount of memory can
be reduced by only storing the two rows of C and R that the
algorithm is currently using. This approach gives the optimal
K ′ value, but in order to retrieve the actual K ′ pairs (via
Algorithm 2), all rows of C and R must be stored.

Algorithm 1 assumes that C is an m×n matrix, where m,n
are the sizes of A,B, respectively, and every cell is initialized
to NULL. R is an m × n dynamic 3D jagged array where
every element, Ri,j , is its own array. We assume that Q has
been calculated before this function is called. Q requires all
rectangles to be enumerated, and for lower and upper bounds
for each one to be set. Since this may vary between cells, Q
is also a 3D jagged array like R, and this makes assignments
between the two easier.

For simplicity, to dynamically append to the end of an array
or create a new row we use a generic function ‘ADD’ that
takes the data structure as the first argument, and the value
to append as the second. The method by which it works is
context-sensitive to the type of data structure.

Algorithm 2 defines a recursive function that finds the
rectangles through which the optimal path exists. The ‘Cost’
variable represents the pairs of nodes used in the minimum
moving cost, and thus begins as the optimal K ′ value (Cm,n)
when the function is originally called. ‘i’ and ‘j’ are originally
set to |A| and |B| respectively, and ‘CurrRect’ is set to NULL.
The method assumes a jagged array ‘Path’ of size K ′ that
must exist to store the rectangles of the path. The idea is that
we know our optimal path is of size K ′, and thus we store all
possible paths of that length in our Path variable. ‘CurrRect’
simply refers to the current rectangle that the function is
traversing.

This method does not tell us which rectangles connect
with the rectangles at the next level. Therefore, in an actual
implementation these stored rectangles should also have child
or parent pointers to make it easier to follow the path. The
pointers have been omitted here for algorithm clarity. An
alternative to having pointers is to add an ‘if’ statement to
check if Path[1] has a value and then exit if it does. This
means at least one optimal path has been found (there could
be multiple).

Example Walkthrough
Here, we briefly walk through parts of Algorithm 1 for the
example chains listed in Subsection 3.3. We let δ1 = δ2 =

Algorithm 1 FIND-CPS-3F+ → Computes the optimal mov-
ing cost, K ′, iteratively.

1: procedure FIND-CPS-3F+

2: for i← 1, |A| do
3: for j ← 1, |B| do
4: if i = 1 and j = 1 then
5: C1,1 ← 1
6: R1,1 ← Q1,1

7: else
8: Values, Rectangles ← Array
9: for each (k, l) ∈ {(i-1, j), (i, j-1), (i-1, j-1)} do

10: if k > 0 and l > 0 then
11: for each rect ∈ Rk,l do
12: if (i, j) ∈ rect then
13: ADD(Values, Ck,l)
14: ADD(Rectangles, rect)
15: else
16: ADD(Values, Ck,l + 1)
17: ADD(Rectangles, NULL)
18:
19: Ci,j ← min(Values)
20: for r ← 1, |Values| do
21: if Values[r] = Ci,j then
22: if Rectangles[r] = NULL then
23: ADD(Ri,j , Qi,j \ Ri,j)
24: else
25: ADD(Ri,j , Rectangles[r])
26: return Cm,n

Algorithm 2 GET-PATH-CPS-3F+ → Return all simplified
paths between the chains of optimal moving cost length.

1: procedure GET-PATH-CPS-3F+(i, j, Cost, CurrRect)
2: if CurrRect = NULL then
3: for each rect ∈ Ri,j do
4: ADD(Path[Cost], rect)
5: GET-PATH-CPS-3F+(i, j, Cost, rect)
6: for each (k, l) ∈ {(i-1, j), (i, j-1), (i-1, j-1)} do
7: if k > 0 and l > 0 and Ck,l != NULL then
8: if Ck,l = Ci,j then
9: GET-PATH-CPS-3F+(k, l, Cost, CurrRect)

10: else if Ck,l = Ci,j − 1 then
11: for each rect ∈ Rk,l do
12: if rect /∈ Path[Cost] then
13: if rect /∈ Path[Cost - 1] then
14: ADD(Path[Cost - 1], rect)
15: GET-PATH-CPS-3F+(k, l, Cost - 1, rect)

δ3 = 1 for our given chains A and B. Subsequently, we get
nine pairs in D = {(a2, b2),(a2, b5),(a2, b8),(a3, b5),(a4, b10),
(a6, b6),(a7, b9),(a7, b10),(a10, b10)}, which are each repre-
sented by a rectangle. This example was designed so that each
rectangle only covers its nearest neighbors in the chain. Thus,
for example, (a3, b5) covers all nodes in our A×B grid from
(a2, b4) to (a4, b6).

Page 7 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 8

Protein |B| RMSD dF (A,B) δ1 δ2 δ3 |A′| |B′| K′ dF (A
′, B′) δ3 |A′| |B′| K′ dF (A

′, B′)

Chain (B) [16] [29] [29] [29] [29] [29]
1hfj.c 325 0.27 0.95 4 4 1 109 109 109 0.95 1 109 109 109 0.95
1qd1.b 325 2.81 22.65 4 4 50 109 109 109 24.96 21 117 126 150 20.70
1toh 325 2.91 22.06 4 4 60 109 110 110 23.39 21 149 130 178 20.54

4eca.c 325 1.10 5.55 4 4 17 109 109 109 7.96 6 110 111 111 5.97
1d9q.d 297 2.88 20.87 4 4 43 109 108 109 23.68 20 130 127 166 19.86
4eca.b 325 1.09 5.64 4 4 17 109 109 109 7.51 5 110 111 111 4.89
4eca.d 325 1.45 5.71 4 4 18 109 109 109 7.82 5 111 113 113 4.94

Table 2: Comparison of Algorithm SIMPLIFY [29] and FIND-CPS-3F+ with 107j.a (Chain A) of length 325. δ1 = δ2 = 4, and δ3 set to
the minimal value.

There are only two paths through the rectangles. The
path p1 = 〈r2,2, r3,5, r6,6, r7,9, r10,10〉 and the path p2 =
〈r2,2, r2,5, r2,8, r4,10, r7,10, r10,10〉. When we begin C1,1 = 1
and R1,1 = r2,2. When the path leaves the rectangle r2,2 is
at Ck,3, where k ∈ {1, 2, 3}. For k = 1 the only rectangle to
choose is r2,5, but with k = 2 or k = 3 the corresponding
Rk,3 = {r2,5, r3,5}.

The two paths then diverge and are straightforward until
we evaluate C9,9 when we face the choice of which path is
“better”. Looking at the values of the previous three squares
C8,9, C9,8, and C8,8, the path p1 has fewer rectangles (four)
compared to p2, which has five, and thus we set C9,9 = 4 and
R9,9 = r7,9. The subsequent steps will all be equal, C9,10 =
C10,9 = C10,10 = 5, and R9,10 = R10,9 = R10,10 = r10,10
because the algorithm leaves rectangle r7,9 and is now in the
only rectangle left.

When we get to C11,11 the value remains at five be-
cause we are still covered by r10,10, and thus we re-
turn five as the moving cost. Running Algorithm 2 returns
the pairs of vertices that comprise the path p1, which is
〈(a2, b2),(a3, b5),(a6, b6),(a7, b9),(a10, b10)〉.

5 COMPARISON OF RESULTS

We now present some results comparing our previous heuristic
method SIMPLIFY [29] and the 2-approximation solution
(Algorithm 1, 2) of CPS-3F+. We present the results for chains
with a similar length and then consider dissimilar chains of
various lengths in order to vary the amount of simplification
per chain. The algorithms were implemented in both Python
and C# and more information about the FPACT software is
available in Section 6. On an older 32 bit quad-core machine
the algorithm took anywhere from a few seconds to several
minutes depending on the parameters. The long runs were for
simplifications in which δ1, δ2, and δ3 were all set to large
values (Tables 3 and 4).

We note that in both result sections, the RMSD values were
taken from ProteinDBS, and thus the alignment length, or
coverage, is not the full length of each chain [24]. This is
especially true when discussing chains of different lengths in
5.2. This makes a straightforward comparison between the
chains using both RMSD and the discrete Fréchet distance
difficult. However, the results are mainly to compare CPS-
3F+ to our previous algorithm SIMPLIFY [29], and thus the
coverage is not listed.

5.1 Similar Chain Length Comparisons

Using the same format as our previous results, we set δ1 = δ2
for simplicity and to ensure chains A′, B′ will have similar
reduced lengths since nearly all are the same length initially. δ3
is set to the minimum integer value that reduces the chains via
CPS-3F+ given δ1, δ2. The comparison tables in both cases are
using the protein backbone 107j.a (protein A) and comparing
it with seven other chains from the Protein DataBank: 1hfj.c,
1qd1.b, 1toh, 4eca.c, 1d9q.d, 4eca.b, 4eca.d. These seven
chains were reported to be similar to 107j.a by the ProteinDBS
software [24] (this took a few seconds searching the whole
PDB, which contained over 30,000 protein backbones at that
time). Previously, [16] used a heuristic algorithm based on the
discrete Fréchet distance and showed that three of the seven
chains were not actually similar to 107j.a, and ProteinDBS has
subsequently updated their page to reflect this. 107j.a has 325
nodes along the backbone and all but one of the seven other
chains do as well.

For the CPS-3F+ algorithm, all chains are assumed to
be aligned, and we use the alignments from our previous
algorithm ALIGN [29]. In Table 2 we fixed δ1 = δ2 = 4 since
the distance between two α-carbon atoms in the backbone is
approximately ≈ 3.7 to 3.8 (angstroms). This value ensures
that we will be simplifying the chains by a minimal amount.
We can see that we get an approximate reduced length of 1/3,
which is what we would expect (since this distance will only
use the neighboring nodes). The optimal algorithm allows for
δ3 to be much smaller than the heuristic because it can simplify
the chains with a value often less than dF (A,B), and hence
dF (A

′, B′) is a lower value.
In Table 3 we vary δ1 and δ2 for different amounts of

simplification and again set δ3 to the minimum integer value
that allows for simplification via CPS-3F+. We keep δ1 = δ2
for simplicity and to ensure a similar reduced size for both
chains. Here we have a more dramatic difference in δ3 and in
dF (A

′, B′) because of the greater simplification possibilities
between A,A′ and B,B′ since δ1, δ2 are much larger. This
demonstrates how CPS-3F+ is able to simplify the two chains
simultaneously while highlighting the similarities between the
two chains. This is especially noticeable in that the discrete
Fréchet distance between the simplified chains, dF (A′, B′), is
drastically less than that of the original chains, dF (A,B).

We can see that the optimal results far exceed the heuristic
approximation. If we look at 4eca.c in Table 3, the difference
between the heuristic (11.73) and the optimal (2.90) is dra-

Page 8 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 9

Protein |B| RMSD dF (A,B) δ1 δ2 δ3 |A′| |B′| K′ dF (A
′, B′) δ3 |A′| |B′| K′ dF (A

′, B′)

Chain (B) [16] [29] [29] [29] [29] [29]
1hfj.c 325 0.27 0.95 12 12 4 28 28 28 3.77 1 26 26 26 0.95
1qd1.b 325 2.81 22.65 15 15 33 16 17 17 22.64 12 21 23 24 11.94
1toh 325 2.91 22.06 16 16 44 17 16 17 27.24 13 22 19 22 12.80

4eca.c 325 1.10 5.55 12 12 12 28 28 28 11.73 3 27 27 27 2.90
1d9q.d 297 2.88 20.87 15 15 34 16 21 21 23.65 13 22 24 26 12.99
4eca.b 325 1.09 5.64 12 12 13 28 28 28 12.57 3 26 26 26 2.94
4eca.d 325 1.45 5.71 12 12 14 28 28 28 13.65 3 32 32 32 2.99

Table 3: Comparison of Algorithm SIMPLIFY [29] and FIND-CPS-3F+ with 107j.a (Chain A) of length 325. δ1 = δ2, and δ3 set to the
minimal value.

Protein |B| RMSD dF (A,B) δ1 δ2 δ3 |A′| |B′| K′ dF (A
′, B′) δ3 |A′| |B′| K′ dF (A

′, B′)

Chain (B) [29] [29] [29] [29] [29]
3ntx.a 322 2.14 10.04 10 10 22 35 40 40 16.21 5 39 39 39 4.91
1wls.a 316 2.18 11.97 15 13 32 16 25 25 20.50 6 22 22 22 5.99
2eq5.a 215 2.72 22.35 8 6 39 53 43 53 23.47 19 58 53 66 18.91
2zsk.a 219 2.85 21.92 12 8 30 27 31 31 24.60 17 38 34 43 16.90
1zq1.a 363 3.01 23.38 10 12 40 36 37 37 28.30 19 51 53 56 18.47
3jq0.a 457 11.52 27.36 6 9 52 71 54 71 30.75 26 65 70 80 25.67
2fep.a 273 3.33 24.55 20 17 27 13 13 13 25.00 10 10 11 11 9.94

Table 4: Comparison of Algorithm SIMPLIFY [29] and FIND-CPS-3F+with 107j.a (Chain A) of length 325, and various δ1, δ2, and δ3 set
to simplify both chains to a similar length.

matic. The optimal δ3 for CPS-3F+ is 3 to 4 times smaller
than the heuristic in general, and the discrete Fréchet distance
between A′ and B′ is smaller than the original distance
between A,B.

The heuristic algorithm only allowed for a constant number
of backtracking steps, which resulted in both chains being
simplified to a similar number of vertices. With CPS-3F+, we
can see that the chains can vary greatly in the amount they
simplify in order to have a minimum moving cost.

5.2 Varying Chain Length Comparisons
One aspect of chain pair simplification we have not exploited
is simplifying the chains differently. Here, we look at chains
that vary in length, are not aligned as well with the base chain,
and that subsequently have a large discrete Fréchet distance.
Table 4 shows these results. The values for δ1 and δ2 were
chosen in an attempt to simplify both chains to a similar size
via CPS-3F+. This allows us to pull out the similarities of two
chains that may be vastly different without simplification, yet
still have some subset of nodes that align and compare well.
For visualization purposes, it lets us see the overall subset
similarity structure of the two chains. This method could prove
useful for finding nodes in each chain that match well, i.e. they
have a low moving cost and small discrete Fréchet distance.

The heuristic method SIMPLIFY [29] does not find similar
optimal simplifications and results in a much higher moving
cost and values of δ3. The discrete Fréchet distance, conse-
quently, is also much higher. As in our previous results, for
both SIMPLIFY and CPS-3F+, we pick δ1 and δ2, and then
report the smallest integer value of δ3 that worked for the
respective algorithm.

The disparity between the number of vertices and the
moving cost (K ′) is lessened if the chains are simplified in a
similar fashion. When δ1 and δ2 are large, but δ3 is small, it

allows for these larger “hops” to be made. Thus, the simplified
chains are similar in length, and the moving cost is a closer
approximation to K. Using larger than minimum values for
δ3, we allow for greater flexibility in the simplification and
yield a lower moving cost.

6 THE FRÉCHET-BASED PROTEIN ALIGNMENT
& COMPARISON TOOLKIT

The FPACT libraries were designed for easy access to the algo-
rithms by being modular and protein file format independent.
The toolkit includes methods and classes such as the discrete
Fréchet distance, ALIGN [29], SIMPLIFY [29], versions of
CPS-3F+ optimized for space or time efficiency (Algorithm 1),
the CPS-3F+ backtracking algorithm (Algorithm 2), and some
other utility functions. The libraries will be updated with any
future algorithms or results as well. All libraries are written
and available in both C# or Python with Numpy.

We have also implemented a simple web-based application
that uses these libraries. The web-based application runs within
the Silverlight framework and can be used in any browser
supporting the Silverlight or Moonlight runtime. The software
is available to the public, thus providing the ability to align,
compare, and simplify protein backbones with the discrete
Fréchet distance without directly using the libraries [31].

FPACT, the web application, and relevant documenta-
tion about the research, can be found at the website
http://www.cs.montana.edu/∼timothy.wylie/frechet/.

7 CPS-2H+ IS NP-COMPLETE

We now prove the complexity of CPS-2H+ by a reduction
from 3-SAT. Although they were not dealing with a geometric
problem, the basic idea of this proof comes from [7].

Theorem 4. CPS-2H+ is NP-complete.

Page 9 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 10

Proof: First, CPS-2H+ is in NP since the three distance
conditions and the moving cost can all be verified in polyno-
mial time.

For 3-SAT we are given a set of boolean variables X =
{x1, x2, . . . , xN} and a set of clauses C = {c1, c2, . . . , cM}
where each c = (vi ∨ vj ∨ vk) such that vi, vj , vk ∈ X ∨¬X .
We assert that any clause may not contain both xi and ¬xi
since that clause would be true and can be discarded from our
construction, and that either xi or ¬xi must be in at least one
clause. The problem is whether ϕ = c1 ∧ c2 ∧ · · · ∧ cM in
conjunctive normal form is satisfiable.

Since each clause, ci, has three variables, WLOG we can
enumerate them as cki where k ∈ {0, 1, 2}. We can now create
a point for each numbered variable k in clause ci as pi,k =
(i, i2, k · ε) where k ∈ {0, 1, 2} and 0 < ε < 0.5. Now we
construct two polygonal chains A and B each with (3M+N)
vertices, such that ϕ is satisfiable ⇐⇒ A,B can be simplified
into A′, B′, respectively, and dH(A,A′) ≤ 2ε, dH(B,B′) ≤
2ε, dF (A

′, B′) = 0, |A′| = |B′| = M + N and the moving
cost K ′ = M +N . Given our construction, K ′ is equivalent
to the number of vertices in each chain and the number of
walks in the Fréchet alignment.

To begin we define a sequence of N points qj = (0, j, 10),
where 1 ≤ j ≤ N , as separators. Now for each xi ∈ X ,
we construct two sequences Si and S∗i . Let ci1 , . . . , ciu be
the sequence of clauses that contain xi, and cj1 , . . . , cjv the
clauses containing ¬xi. Si = 〈ci1 , . . . , ciu , cj1 , . . . , cjv 〉 and
S∗i = 〈cj1 , . . . , cjv , ci1 , . . . , ciu〉. Note that a clause ci appears
exactly three times in ∪Nj=1Sj and ∪Nj=1S

∗
j since there are

three literals in each clause, and we enumerate those literals
as cki where k ∈ {0, 1, 2}. Now, for each literal xi ∈ X , we
convert Si, S

∗
i into the sequences Ti, T ∗i where every clause

label is replaced by the point pj,k where k ∈ {0, 1, 2} and
k corresponds to the enumerated ckj in the clause of variable
xi. Since the order of the enumeration of the pj,k points is
arbitrary in a clause, we will assume that they always occur
in order (pj,0, pj,1, pj,2).

Let A = 〈T1, q1, T2, q2, . . . , TN , qN 〉 and B =
〈T ∗1 , q1, T ∗2 , q2, . . . , T ∗N , qN 〉.

We first show the forward direction. Suppose there exists a
sequence of boolean assignments Z = 〈z1, z2, . . . , zN 〉 such
that xi = zi (1 ≤ i ≤ N) satisfies ϕ. If zi = 1, then Ti
and T ∗i simplify to T ′i = pi1 , . . . , piu and T ∗

′

i = pi1 , . . . , piu
respectively. However, if zi = 0 we simplify both to the other
sequence, T ′i = pj1 , . . . , pjv and T ∗

′

i = pj1 , . . . , pjv . To make
dH(A,A′) ≤ 2ε, dH(B,B′) ≤ 2ε, dF (A′, B′) = 0, and
|A′| = |B′| = M + N , K ′ = M + N , we keep exactly
one point among each triple of points pj,k (k ∈ {0, 1, 2}),
and remove the remaining ones. Then, after the deletion,
A′ = 〈T ′1, q1, T ′2, q2, . . . , T ′N , qN 〉 is equivalent to B′ =
〈T ∗′1 , q1, T ∗

′

2 , q2, . . . , T
∗′
N , qN 〉. The reason that dH(A,A′) ≤

2ε and dH(B,B′) ≤ 2ε is because each point selected in pj,k,
k ∈ {0, 1, 2}, is at most a distance of 2ε from the removed
points in the same triple (clause).

We now prove the opposite direction. Suppose that A,B are
simplified into A′′, B′′, respectively, by removing some points
in {pi,j |1 ≤ i ≤ M, 0 ≤ j ≤ 2} such that dH(A,A′′) ≤ 2ε,
dH(B,B′′) ≤ 2ε, dF (A

′′, B′′) = 0, and |A′′| = |B′′| = K ′ =

M +N . We know d(pi,k, pj,l) > 1 and d(qi, qj) ≥ 1 where
i 6= j. The conditions dH(A,A′′) ≤ 2ε and dH(B,B′′) ≤ 2ε
imply that we can only remove points in {pi,j |1 ≤ i ≤M, 0 ≤
j ≤ 2} while leaving at least one point in each triple for
A′′, B′′ for each clause, i.e. one pi,k, 0 ≤ k ≤ 2. Since ci can
not contain both xj and ¬xj , there will be only one point pa,
for some a, on the subchain between qr and qr+1 on A or B.
The condition that dF (A′, B′) = 0 implies that in A′′ and B′′

we must keep the same point among the triple {pi,j |1 ≤ i ≤
M, 0 ≤ j ≤ 2}. Finally, since |A′′| = |B′′| = K ′ =M+N , to
make dF (A′, B′) = 0 we must use all separator points (q’s).

Let T ′′i and T ∗
′′

i be the subchains in A′′ and B′′ obtained
from simplifying Ti and T ∗i in A and B, respectively. If T ′′i
is empty, we can arbitrarily assign a value to xi. However,
if T ′′i is not empty, this implies that T ′′i and T ∗

′′

i have the
same size and dF (T

′′
i , T

∗′′
i) = 0. If T ′′i is not empty and it

is a subsequence of pi1 , . . . , piu , then we assign xi = 1. If
T ′′i is not empty and it is a subsequence of pj1 , . . . , pjv , then
we assign xi = 0. Thus, we can see that ϕ is satisfied by the
assignments to the variables xi ∈ X .

Finally, we note that this reduction is polynomial and takes
linear time based on the length of ϕ.

7.1 Examples

Let X = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}, and ϕ = (x1 ∨
¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨
¬x3 ∨ ¬x4) where the clauses are assumed to be labeled in
order. Thus, N = 4 and M = 4.

Now we construct the sequences. S1 = 〈c1, c2〉, S∗1 =
〈c2, c1〉, S2 = 〈c4, c1, c3〉, S∗2 = 〈c1, c3, c4〉, S3 =
〈c1, c2, c3, c4〉, S∗3 = 〈c2, c3, c4, c1〉, S4 = 〈c3, c2, c4〉, and
S∗4 = 〈c2, c4, c3〉. The conversion to the Ti, T

∗
i sequences

merely replaces the label of the clause cj with the point pj,k
such that k ∈ {0, 1, 2} is the place of variable xi. For read-
ability, we omit the comma in the subscript. T1 = 〈p10, p20〉,
T ∗1 = 〈p20, p10〉, T2 = 〈p40, p11, p30〉, T ∗2 = 〈p11, p30, p40〉,
T3 = 〈p12, p21, p31, p41〉, T ∗3 = 〈p21, p31, p41, p12〉, T4 =
〈p32, p22, p42〉, and T ∗4 = 〈p22, p42, p32〉.

Then we construct A = 〈p10, p20, q1, p40, p11, p30, q2, p12,
p21, p31, p41, q3, p32, p22, p42, q4〉 and B = 〈p20, p10, q1, p11,
p30, p40, q2, p21, p31, p41, p12, q3, p22, p42, p32, q4〉 where all
points qj = (0, j, 10) for j = 1, 2, 3, 4. Note that |A| = |B| =
K ′ = 3M +N = 16.

Suppose we set x1 = 1, x2 = 1, x3 = 0, x4 = 0. Then A′ =
B′ = 〈p10, q1, p40, q2, p31, q3, p22, q4〉 after we remove points
where we already had a point from the triple. Thus, there are
several possible simplified chains, depending on which points
are removed. This gives |A| = |B| = K ′ =M +N = 8. Also
notice that it is not necessary that the separating points and
clauses (pik’s) are visited in order.

Figure 5 shows the points in the construction as well as one
possible simplification. Each pik represents three points that
have z values 0, ε, and 2ε for the clause ci. Notice this does
not visit the nodes in the same order as our example, but is
easier to see the general idea.

Now we show a simple example that is not satisfi-
able. Let ϕ = (x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ ¬x1).

Page 10 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 11

Figure 5: CPS-2H+ reduction example viewed from the positive z
axis. Each pik represents the three points for clause ci which vary
only in z. The line through only the pik points is y = x2 to show
where the clause points are placed.

S1 = 〈c1, c1, c1, c2, c2, c2〉 and S∗1 = 〈c2, c2, c2, c1, c1, c1〉.
Then T1 = 〈p10, p11, p12, p20, p21, p22〉 and T ∗1 =
〈p20, p21, p22, p10, p11, p12〉.

Now A = 〈p10, p11, p12, p20, p21, p22, q1〉 and B =
〈p20, p21, p22, p10, p11, p12, q1〉. We end up with almost iden-
tical chains whether x1 is 0 or 1. Let x1 = 1, then A′ =
〈p10, q1〉 and B′ = 〈p10, q1〉 (any of the p1k’s could have
been chosen). Since none of the points from clause c2 are in
the simplified chains, dH(A,A′) > 2ε and dH(B,B′) > 2ε
and thus it is not a valid CPS-2H+ solution. The same
result happens should x1 = 0. Any solution will require
|A| = |B| = K ′ ≥M +N +1 and thus violate our reduction
condition, meaning ϕ was not satisfiable.

8 CONCLUDING REMARKS

In this paper we have shown that the restricted version
of the chain pair simplification problem under the discrete
Fréchet distance (CPS-3F+) is polynomially solvable. We then
presented algorithms to find K ′, the minimum moving cost
between chains A′ and B′, and a backtracking method to
return the vertices of the simplified chains. Further, we proved
that CPS-3F+ is a 2-approximation for CPS-3F and looked
empirically at the benefits and possible use-cases of CPS-3F+.
Along these lines the FPACT libraries are now available to use
these algorithms as well as some of the past methods based
on the discrete Fréchet distance [31]. We then showed that
the restricted version of the chain pair simplification problem
under the Hausdorff distance (CPS-2H+) is NP-complete.

There are still several issues that need to be addressed to
fully realize the benefits of the discrete Fréchet distance in
comparing polygonal curves, and specifically protein back-
bones:

(1) Is the chain pair simplification problem under the
discrete Fréchet distance (CPS-3F) NP-complete?

(2) The ALIGN [29] running time still needs to be improved
since all comparisons, including CPS-3F+, rely on the two
polygonal chains being aligned. Can the alignment be further
simplified?

(3) More generally, the question of whether it is theoretically
possible to design a practical PTAS (global structure-structure)
alignment algorithm based on the discrete Fréchet distance
needs to be answered.

(4) For protein backbone structures, can we exploit the
physical properties of the chains in order to hasten alignment,

comparison, or simplification, e.g. the fixed distance between
each node (α-carbon atom), and the minimum distance two
atoms can be in relation to each other (they can not touch)?

(5) Dynamic Time Warping (DTW) shares many similarities
with the Fréchet distance and may prove useful in conjunction
with the discrete Fréchet distance. More research needs to be
done exploring this relationship and the applications to protein
alignment and simplification.

(6) There are several possible strategies to keep CPS-
3F+ running in O(mn) time, including filtering redundant
rectangles or applying similar strategies used in DTW such as
the Itakura Parallelogram [15] or the Sakoe-Chiba Band [22].
Can these be identified and integrated into our algorithm?

ACKNOWLEDGMENTS

This research is partially supported by NSF under grant DMS-
0901034 and by NSF of China under project 60928006.

REFERENCES

[1] H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal
shapes (extended abstract). In Proceedings of the 7th Annual Symposium
on Computational Geometry (SoCG’91), pages 186–193, 1991.

[2] H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In
Proceedings of the 8th Annual Symposium on Computational Geometry
(SoCG’92), pages 102–109, 1992.

[3] H. Alt and M. Godau. Computing the Fréchet distance between two
polygonal curves. International Journal of Computational Geometry and
Applications, 5:75–91, 1995.

[4] H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect
to the Fréchet distance. In Proceedings of the 18th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’01), pages 63–74,
2001.

[5] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, C. Wenk. Fréchet Distance
for Curves, Revisited. In Proceedings of the 14th conference on Annual
European Symposium - Volume 14 (ESA’06), pages 52–63, 2006.

[6] S. Bereg, M. Jiang, W. Wang, B. Yang and B. Zhu. Simplifying 3D
polygonal chains under the discrete Fréchet distance. In Proceedings of
the 8th Latin American Theoretical Informatics Symposium (LATIN’08),
LNCS 4957, pages 630–641, 2008.

[7] Z. Chen, B. Fu, and B. Zhu. The Approximability of the Exemplar
Breakpoint Distance Problem. In Proceedings of the 2nd international
conference on Algorithmic Aspects in Information and Management
(AAIM’06), LNCS 4041, pages 291–302, 2006.

[8] R. Cole. Slowing down sorting networks to obtain faster sorting algo-
rithms. Journal of the ACM, 34:200-208, 1987.

[9] L. Conte, B. Ailey, T. Hubbard, S. Brenner, A. Murzin and C. Chothia.
SCOP: a structural classification of protein database. Nucleic Acids
Research, 28:257-259, 2000.

[10] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Tech-
nical Report CD-TR 94/64, Information Systems Department, Technical
University of Vienna, 1994.

[11] M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del
Circolo Mathematico di Palermo, 22:1-74, 1906.

[12] F. Hausdorff. Grundzge der mengenlehre. Von Veit, Leipzig, 1914.
[13] L. Holm and J. Park. DaliLite workbench for protein structure compar-

ison. Bioinformatics, 16:566-567, 2000.
[14] L. Holm and C. Sander. Protein structure comparison by alignment of

distance matrices. Journal of Molecular Biology, 233:123-138, 1993.
[15] F. Itakura. Minimum Prediction Residual Principle Applied to Speech

Recognition. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 23:67-72, 1975.

[16] M. Jiang, Y. Xu and B. Zhu. Protein structure-structure alignment with
discrete Fréchet distance. Journal of Bioinformatics and Computational
Biology, 6:51-64, 2008.

[17] C. Mauzy and M. Hermodson. Structural homology between rbs
repressor and ribose binding protein implies functional similarity, Protein
Science, 1:843-849, 1992.

[18] J. R. Munkres. Topology. Prentice Hall, Incorporated, 2000.

Page 11 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. V, NO. N, MONTH YYYY 12

[19] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48:443-453, 1970.

[20] C. Orengo, A. Michie, S. Jones, D. Jones, M. Swindles and J. Thornton.
CATH—a hierarchic classification of protein domain structures. Structure,
5:1093-1108, 1997.

[21] A. Oritz, C. Strauss and O. Olmea. MAMMOTH (matching molecular
models obtained from theory): an automated method for model compar-
ison. Protein Science, 11:2606-2621, 2002.

[22] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26:43-49, 1978.

[23] I. Shindyalov and P. Bourne. Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Engineering,
11:739-747, 1998.

[24] C.-R. Shyu, P.-H. Chi, G. Scott, and D. Xu. ProteinDBS: a real-time
retrieval system for protein structure comparison. Nucleic Acids Research,
32:W572–575, 2004.

[25] W. Taylor and C. Orengo. Protein structure alignment. Journal of
Molecular Biology, 208:1-22, 1989.

[26] S. Vasilache, N. Mirshahi, S. Ji, J. Mottonen, D. J. Jacobs, and
K. Najarian. A Signal Processing Method to Explore Similarity in Protein
Flexibility. Advances in Bioinformatics, Volume 2010 (2010).

[27] T. K. Vintsyuk. Speech discrimination by dynamic programming.
Cybernetics, 4(1):52-57

[28] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, Freie
Universitaet Berlin, 2002.

[29] T. Wylie, J. Luo and B. Zhu. A Practical Solution for Aligning and Sim-
plifying Pairs of Protein Backbones Under the Discrete Fréchet Distance.
In Proceedings of the 11th International Conference on Computational
Science and Its Applications (ICCSA’11), LNCS 6784, pages 74–83,
2011.

[30] T. Wylie and B. Zhu. A Polynomial Time Solution for Protein Chain
Pair Simplification Under the Discrete Fréchet Distance. In Proceedings
of the 2012 International Symposium on Bioinformatics Research and
Applications (ISBRA’12), LNBI 7292, pages 287–298, 2012.

[31] T. Wylie. FPACT: The Fréchet-based Protein Alignment & Comparison
Toolkit. http://www.cs.montana.edu/∼timothy.wylie/frechet, 2012.

[32] J.-M. Yang and C.-H. Tung. Protein structure database search and
evolutionary classification. Nucleic Acids Research, 34:3646-3659, 2006.

[33] B. Zhu. Protein local structure alignment under the discrete Fréchet
distance. Journal of Computational Biology, 14(10):1343-1351, 2007.

Tim Wylie is a Computer Science doctoral can-
didate at Montana State University. He obtained
B.S. degrees in Mathematics and Computer Sci-
ence in 2004 from Harding University. He earned
an M.S. in Computer Science from the University
of Montana in 2010. He currently works with
Dr. Binhai Zhu in the areas of computational
geometry, algorithms, and bioinformatics.

Binhai Zhu Binhai Zhu is currently a professor in
computer science at Montana State University,
USA. He obtained his Ph.D. in Computer Sci-
ence from McGill University, Canada, in 1994.
He was a post-doctoral research associate at
Los Alamos National Laboratory, USA from 1994
to 1996. From 1996 to 2000, he was an assis-
tant professor at City University of Hong Kong.
He has been at Montana State University since
2000 (associate professor until 2006, professor
since 2006). Professor Zhu’s research interests

are geometric computing, biological/geometric modeling, bioinformatics,
and combinatorial optimization. He has published over 130 papers in
these areas.

Page 12 of 13Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
Summary of Changes for
TCBBSI-2012-08-0204

We thank the reviewers again for their detailed comments. We have taken all
reviewer feedback into consideration and made all appropriate changes. Below
we list the minor revisions requested for the paper.

• We have changed the sentence that was said to be overly strong. It now
reads that the discrete measure may be more appropriate than the con-
tinuous for this application.

• For the concern about the number of points being used to approximate
the continuous version, we have changed the sentence to state that enough
“evenly sampled” points will allow an arbitrarily close approximation.

• We have added a couple of sentences to address our inequalities on page 4
in the moving cost section. This explains why the inequalities hold given
the definitions in the background section.

• For the concerns about the webpage location, we have ensured that a
mirror of this site will remain for the next couple of years. Further, Dr.
Zhu currently has, and will maintain a link to the website should it be
moved to another URL. Thus, any user will always be able to find the
current site through his webpage.

1

Page 13 of 13 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

