Questions

1. **Tight Bound:** Is the inequality

\[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2) \]

a tight bound for curves in \(\mathbb{R}^n\) for \(n > 3\)?

2. **Simultaneous Scale Space:** What happens if multiple agents are diffusing at the same time?

3. **Understanding \(V_q\):** Does there exist a stability result for \(V_q\)?
Part 1
My Inequality

For curves γ_1 and γ_2,

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$
Closed Space Curves

A curve is a continuous map $\gamma_i : \mathbb{S}^1 \rightarrow \mathbb{R}^n$.
Closed Space Curves

A curve is a continuous map $\gamma_i : [0, 1] \to \mathbb{R}^n$, such that $\gamma_i(0) = \gamma_i(1)$.
Closed Space Curves

A curve is a continuous map $\gamma_i : I \to \mathbb{R}^n$, such that $\gamma_i(0) = \gamma_i(1)$.

![Diagram of a closed space curve]
Inscribed Polygons
Closed Space Curves

A curve is a continuous map \(\gamma_i : I \to \mathbb{R}^n \), such that \(\gamma_i(0) = \gamma_i(1) \).

\[
\text{mesh}(P) = \max_{0 \leq i < m} (t_{i+1} - t_i)
\]
Arc Length

\[\ell_i = \ell(\gamma_i) = \int_0^1 \|\gamma_i'(t)\| \, dt \]

\[\ell(P) = \sum_j \ell(e_j) \]
Arc Length

\[\ell_i = \ell(\gamma_i) = \int_0^1 \|\gamma'_i(t)\| \, dt \]

\[\ell(P) = \sum_j \ell(e_j) \]

Lemma

If \(P^k \) is a sequence of polygons inscribed in a smooth closed curve \(\gamma \) such that mesh\((P^k) \) goes to zero, then

\[\ell(\gamma) = \lim_{k \to \infty} \ell(P^k). \]
Curvature

Let $x \in I$.
Let r_x denote the radius of the best approximating circle of $\gamma_i(x)$.
Then, the total curvature is:

$$
\kappa_i = \kappa(\gamma_i) = \int_0^1 \frac{1}{r_x} \, dx.
$$
Turning Angle

\begin{figure}
\centering
\begin{tikzpicture}
 \foreach \n in {1,2,3,4,5,6,7,8,9,10}
 \node[circle, draw] (v\n) at (360/10*\n:2cm) {v\n};
 \foreach \a in {9,10}
 \draw (v\a) -- (v\a + 1);\node[scale=0.7] at (v\a) {v_{\a}};
\end{tikzpicture}
\end{figure}
Curvature

Let \(x \in I \).

Let \(r_x \) denote the radius of the best approximating circle of \(\gamma_i(x) \).

Then, the total curvature is:

\[
\kappa_i = \kappa(\gamma_i) = \int_0^1 \frac{1}{r_x} \, dx.
\]

\[
\kappa(P) = \sum_i \alpha_i.
\]
Curvature

Let $x \in I$.
Let r_x denote the radius of the best approximating circle of $\gamma_i(x)$.
Then, the total curvature is:

$$
\kappa_i = \kappa(\gamma_i) = \int_0^1 \frac{1}{r_x} \, dx.
$$

$$
\kappa(P) = \sum_i \alpha_i.
$$

Lemma

If P^k is a sequence of polygons inscribed in a smooth closed curve γ such that $\text{mesh}(P^k)$ goes to zero, then

$$
\kappa(\gamma) = \lim_{k \to \infty} \kappa(P^k).
$$
The Fréchet Distance

\[\mathcal{F}(\gamma_1, \gamma_2) = \inf_{\alpha: S^1 \to S^1} \max_{t \in S^1} (\gamma(t) - \gamma(\alpha(t))) \]
Man and Dog
The Fréchet Distance

\[\mathcal{F}(\gamma_1, \gamma_2) = \inf_{\alpha: S^1 \to S^1} \max_{t \in S^1} (\gamma(t) - \gamma(\alpha(t)))\]
The Fréchet Distance

\[\mathcal{F}(\gamma_1, \gamma_2) = \inf_{\alpha: S^1 \to S^1} \max_{t \in S^1} (\gamma(t) - \gamma(\alpha(t))) \]

Lemma

If \(P^k \) and \(Q^k \) are sequences of polygons inscribed in smooth closed curves \(\gamma_1 \) and \(\gamma_2 \) such that mesh\((P^k) \) and mesh\((Q^k) \) go to zero, then

\[\mathcal{F}(\gamma_1, \gamma_2) = \lim_{k \to \infty} \mathcal{F}(P^k, Q^k). \]
My Inequality

For curves γ_1 and γ_2,

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot F(\gamma_1, \gamma_2)$$
Two Related Theorems

- [Cha62, F50] For a closed curve contained in a disk of radius r in \mathbb{R}^n,

$$\ell_i \leq r \cdot \kappa_i.$$

- [CSE07] For two closed curves in \mathbb{R}^n,

$$|\ell_1 - \ell_2| \leq \frac{2 \text{vol}(S^{n-1})}{\text{vol}(S^n)} \cdot (\kappa_1 + \kappa_2 - 2\pi) \cdot \mathcal{F}(\gamma_1, \gamma_2).$$
Questions

1. **Tight Bound:** Is the inequality

 \[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2) \]

 a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. **Simultaneous Scale Space:** What happens if multiple agents are diffusing at the same time?

3. **Understanding \(V_q \):** Does there exist a stability result for \(V_q \)?
Part 2
Scale Space
Scale Space

\[H(x, 0) \quad H(x, 100) \quad H(x, 1000) \]
The Gaussian

\[G_1(x, t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t^2}} \]

\[G_n(x, t) = \frac{1}{(\sqrt{2\pi t})^n} e^{-\frac{|x|^2}{2t^2}} \]

This is the *fundamental solution* to the Heat Equation:

\[\frac{\partial u}{\partial t}(x, t) - \Delta u(x, t) = 0. \]
Gaussian Convolution

\[\text{Blur}(y, t, h_0) = \int_{x \in \mathbb{R}^n} G_n(x - y, t) h_0(x) \, dy \]
Homotopy

\[H : \mathbb{M} \times I \rightarrow \mathbb{R} \] is a continuous function such that

\[H(x, 0) = f(x) \]
\[H(x, 1) = g(x) \]
Discrete Homotopy

$H: \text{vert}(K) \times \{0, 1, \ldots, \tau\} \to \mathbb{R}$ is a discrete function such that

$H(x, 0) = f(x)$

$H(x, \tau) = g(x)$
Discrete Homotopy

$H: K \times I_\tau \to \mathbb{R}$ is a discrete function such that

$$H(x, 0) = f(x) \quad \text{and} \quad H(x, \tau) = g(x)$$

and the value at a general point $(x, t) \in M \times I_\tau$ is determined by linear interpolation.
Heat Equation Homotopy

Let $f(x), g(x): \mathbb{R}^2 \to \mathbb{R}$.
Let $h_0(x) = f(x) - g(x)$.
Then:

$$H(y, t) = h_t(y) = \text{Blur}(y, t, h_0) = \int_{x \in \mathbb{R}^n} G_n(x - y, t) h_0(x) \, dy$$

is the solution to the heat equation with initial condition $H(x, 0) = h_0(x)$.
Let \(f(x), g(x) : \mathbb{R}^2 \to \mathbb{R} \).
Let \(h_0(x) = f(x) - g(x) \).
Then:

\[
H(y, t) = h_t(y) = \text{Blur}(y, t, h_0) = \int_{x \in \mathbb{R}^n} G_n(x - y, t) h_0(x) \, dy
\]

is the solution to the heat equation with initial condition \(H(x, 0) = h_0(x) \).

We define the Heat Equation Homotopy as:

\[
H(x, t) := h_t(x) + g(x).
\]
Questions

1. **Tight Bound**: Is the inequality

\[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot F(\gamma_1, \gamma_2) \]

a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. **Simultaneous Scale Space**: What happens if multiple agents are diffusing at the same time?

3. **Understanding \(V_q \)**: Does there exist a stability result for \(V_q \)?
Color Images
Color Images

$t = 0$

$t = 100$

$t = 1000$
A **proportion set** for the RGB image is the set of pixels that have the same ratios of colors. For example, the boundaries in the following images depict where $4*\text{blue} = 3*\text{green}$:

- $t = 0$
- $t = 100$
- $t = 1000$
Questions

1. **Tight Bound:** Is the inequality

 \[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot F(\gamma_1, \gamma_2) \]

 a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. **Simultaneous Scale Space:** What happens if multiple agents are diffusing at the same time?

3. **Understanding \(V_q \):** Does there exist a stability result for \(V_q \)?
Persistence Diagrams

A set of points in \mathbb{R}^2 that describe the changing homology of the sublevel sets of a function.
Stacking the Persistence Diagrams

We stack the diagrams so that $Dgm_p(h_t)$ is drawn at height $z = t$.
Then, we match the diagrams using a linear time algorithm [CSEM].
Vineyards

The path of an off-diagonal point is called a vine. A vine is represented by a function $s: I_T \to \mathbb{R}^3$.

The collection of vines is called a vineyard.

Matching of $\text{Dgm}_p(f)$ and $\text{Dgm}_p(g)$ is obtained by looking at the endpoints of the vines.
Another Representation of a Vineyard

[Movie]
Total Movement in a Vineyard

For a vine s, we can compute the weighted distance traveled by a point in the persistence diagrams. Then, we sum this distance over all vines in the vineyard V.

$$D_s = \int_0^1 \omega_s(t) \cdot \frac{\partial s(t)}{\partial t} \, dt$$

$$V_q(H) = \left(\sum_{s \in V} D_s^q \right)^{1/q}$$
Total Movement in a Vineyard

For a vine \(s \), we can compute the weighted distance traveled by a point in the persistence diagrams. Then, we sum this distance over all vines in the vineyard \(V \).

\[
D_s = \sum_{i \in \{1,2,...,\tau\}} \omega_s(i) \cdot \|s(t_i) - s(t_{i-1})\|_\infty
\]

\[
V_q(H) = \left(\sum_{s \in V} D_s^q \right)^{1/q}
\]
Questions

1. **Tight Bound**: Is the inequality

 \[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot F(\gamma_1, \gamma_2) \]

 a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. **Simultaneous Scale Space**: What happens if multiple agents are diffusing at the same time?

3. **Understanding \(V_q \)**: Does there exist a stability result for \(V_q \)?
Let $A = \text{Dgm}(f)$ and $B = \text{Dgm}(g)$. We find a bijection between A and B by minimizing some quantity, such as:

- Bottleneck Distance
- Wasserstein Distance
Bottleneck Matching

The bottleneck cost of a matching is the maximum L_∞ distance between matched points:

$$W_\infty(P) = \max_{(a,b) \in P} \|a - b\|_\infty.$$

We seek to minimize the bottleneck distance over all perfect matchings:

$$W_\infty(A, B) = \min_P \{ W_\infty(P) \}.$$
Wasserstein Matching

The Wasserstein cost is measures the cumulative distance as follows:

\[
W_q(P) = \left(\sum_{(a, b) \in P} \|a - b\|_\infty^q \right)^{1/q}.
\]

We seek to minimize the Wasserstein distance over all perfect matchings:

\[
W_q(A, B) = \min_P \{ W_q(P) \}.
\]
Related Stability Results

We say that the matching of persistence diagrams is *stable* if the cost of the matching is bounded by some reasonable function of $||f - g||_\infty$.

- [CSEH] The Bottleneck Distance is stable for monotone Functions $f, g : \mathcal{M} \to \mathbb{R}$.
 \[
 W_\infty(A, B) \leq ||f - g||_\infty
 \]

- [CSEHM10] The Wasserstein Distance is stable for tame Lipschitz Functions with bounded degree k total persistence.
 \[
 W_q(A, B) \leq C^{1/q}||f - g||_\infty^{1-k/q}
 \]
Related Stability Results

We say that the matching of persistence diagrams is stable if the cost of the matching is bounded by some reasonable function of $\|f - g\|_\infty$.

- [CSEH] The Bottleneck Distance is stable for monotone Functions $f, g : \mathbb{M} \to \mathbb{R}$.

 $$W_\infty(A, B) \leq \|f - g\|_\infty$$

- [CSEHM10] The Wasserstein Distance is stable for tame Lipschitz Functions with bounded degree k total persistence.

 $$W_q(A, B) \leq C^{1/q}\|f - g\|_\infty^{1-k/q}$$

- Is the Vineyard Metric stable too?

 $$V_q(f, g) \leq ???$$
Preliminary Findings

Let $A = \text{Dgm}(f)$ and $B = \text{Dgm}(g)$.

$$W_1(A, B) \leq V_1(f, g)$$

$$W_\infty(A, B) \leq V_\infty(f, g)$$
Questions

1. Tight Bound: Is the inequality

\[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot F(\gamma_1, \gamma_2) \]

a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?

3. Understanding \(V_q \): Does there exist a stability result for \(V_q \)?
Questions

1. Tight Bound: Is the inequality

\[|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2) \]

a tight bound for curves in \(\mathbb{R}^n \) for \(n > 3 \)?

2. Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?

3. Understanding \(V_q \): Does there exist a stability result for \(V_q \)?
Thank You

- My adviser, Herbert Edelsbrunner
- My committee: Hubert Brey, John Harer, and Carlo Tomasi
- Those who read my prelim document and provided comments, including Michael Kerber and Amit Patel.
- Michelle Phillips (for making the graphics of dog and person)
- Everyone here!
Questions?
References

