Basic Apache Web Services

Getting Apache

Before you can do anything else, you need to install Apache. You can download the
rpms from some of your regular sites, or from http://download.fedora.redhat.com/pub/

Fedora Downloads You can also download the Apache source from: Apache Downloads
Download the archive from a mirror and expand it using the tar command with the gzip

option. This will create a directory named http-.... cd to that directory and perform the
Linux-install-3-step.

1. ./configure
2. make

3. make install

The problem with this method is that things can go in locations that don’t match with the
locations assumed by other Fedora packages. This isn'’t likely to be a big problem, and
you can always install other packages from source, so it is your choice.

Running Apache

Apache services are provided by a daemon. This would normally be accomplished via a
startup file in /etc/rc.d.init.d and the appropriate links in the rc.x directories. This is usually
done automatically by the install process or the rpm’s, so you don’t have to do anything
other than use chkconfig to specify the desired runlevels and/or service to start the
server.

Apache comes with another executable named apachectl which can be used to manage
the daemon. The syntax is apachect/ command where command can be the following:

start Start the Apache daemon.

stop Stops the Apache daemon.

restart Restarts the Apache daemon by sending it a SIGHUP.

fullstatus Displays a full status report.

status Displays a brief status report.

graceful Gracefully restarts the Apache daemon by sending it a SIGUSR1. If the daemon is not ru
configtest Run a configuration file syntax test.

This is considered to be a better solution than the services command because this script
is Apache-aware and handles errors and signals in a more appropriate manner.

http://download.fedora.redhat.com/pub/
http://http://httpd.apache.org/download.cgi

Configuring Apache

The normal Red Hat/Fedora location of the configuration files for Apache is /etc/httpd.
This directory contains a subdirectory named conf that has the specific configuration files,
a directory of configuration files for extensions (conf.d) and there are also links to other
directories that contains logs, the run information and modules. For a simple system, the
default links are probably acceptable and you are interested only in the files in the conf
directory.

The conf directory contains several files, but the only one of immediate consequence is
httpd.conf. This file contains one directive per line, unless a backslash () is the last
character on the line to specify a continuation.

Directive syntax is: Directive It value gt , where value can can be a string, a number, a
URL, a pathname or just about anything else. Each directive has its own set of possible
values. As you can see, the list of Directives is substantial and we will consider only a
small portion. The default file is acceptable for most situations and the changes needed
require a limited set of directives.

The directives can be divided into the following categories:

Directive Class Usage

General Configuration A hodge-podge of things that don’t fit anywhere else
and provide features that set the overall behaviour of
the server.

Block Limit the application of the enclosed directives to a spe-
cific set of entities.

Logging Control the way in which the server logs.

Performance Tuning Determine the parameters the affect the perceived per-
formance of the server.

File Typing Set the ways in which the server handle file content.

Mapping Set the procedures to be used in mapping addresses
and applications.

Scripting Set parameters that control the access to CGl scripts
and their handling, particularly for debugging.

Directory Indexing Determine the handling of the display of directory con-
tents.

Access Control Control the access that the browser has to local re-
sources.

An Example httpd.conf File

Discussing the directives in categorical fashion is less than informative until you know
something about their use. First, look at an

As indicated in the header comments in this file, it is divided into three parts: Global en-
vironment for the server, definition of the default server (non-virtual hosts), and definition
for virtual hosts.

http://httpd.apache.org/docs/mod/core.html#serverpath

Global Environment

Taking the directives from the example file in order, we see the following settings:

The first few directives set some basic functionality for the server:

ServerTokens OS
Sets the type of information that the server will return if asked by a
client. The choices are min for only a name and version number, OS
to include the operating system name and full to include information

about modules.
ServerRoot "/etc/httpd”

The location of the server root directory where the configuration, er-

ror and log files are kept.
PidFile run/httpd.pid
The file where the server pid is stored when it starts.

The next few control the handling of individual connections to the server. This includes
the length of time the connection is allowed to be idle and the resource balance between
opening new connections and keeping connections open.

Timeout 300
The timeout period when receives and sends timeout. For example,

once a transfer had started, the maximum time in seconds that can

expire for the transfer to complete.
KeepAlive Off
Whether persistent connections are allowed. This can be used to

improve performance in responding to repeated requests, but at the

expense of higher overhead. The possible values are Off and On.
MaxKeepAliveRequests 100
The maximum number of requests to allow on a connection before
closing it. Larger numbers improve performance on a connection, but
at the expense of higher memory needs.
KeepAliveTimeout 15

The time a connection can be idle before it is closed.

The next few control the number of child servers that are allowed to run and a limit on
the amount of traffic they can handle. One consideration here is that some pinhead could
decide to open a connection and then ask for pages as fast as possible to disrupt service.
As always, the balance is between response time to the individual user and the overall
response time to all users.

The directives are enclosed in a block directive

< IfModule prefork.c >

< /lfModule >
This causes the included directives to be loaded only if the named module has been

included by compiling it in or by dynamic loading. prefork.c may not be the server MPM
core module you are using but for a default installation, it is likely. You can find out by
executing:

apachectl -1 To get a list of installed modules. See the next section for more on this.

StartServers 8
The number of servers to start when the daemon begins.

MinSpareServers 5
The minimum number of spare servers. If the number of idle servers

falls below this number, the server creates additional servers.
MaxSpareServers 20
The maximum number of spare servers. If the number of idle servers

is above this number, the server destroys some.
MaxClients 150
The maximum number of simultaneous clients allowed. The limit is

256.
MaxRequestsPerChild 1000
The maximum number of requests allowed on a child process before

it is closed.

The next set of directives are the same, but they are inside of a different Interface Module
block: < IfModule worker.c >

The worker module implements a multi-process, multi-threaded server which is more

efficient than the prefork server and would be used if your system has the resources for
it.

The next set of directives control a third multiprocessing module called the perchild mod-
ule. This is a non-functional module at this point and can be ignored.

The next two directives are fundamental server properties:

Listen 80
The port to listen on. This is normally 80 but could be changed for a

variety of reasons. You can also specify an IP address if you have a

multi-homed host.
Include conf.d/*.conf

The configuration files to be loaded. This is relative to the Document
Root defined earlier.

The next section loads the desired modules into the server. There is a lengthy list, where
each has the syntax: LoadModule pathname_of_module The pathname is relative to the

Document Root and they are always shared library files (ending in the .so suffix). These
modules are loaded into the server and constitute a major part of the capabilities.

This section is followed by a couple of module loads that are based on the type of multi-
processing being used. In other words, certain modules are loaded depending on other
modules that have been loaded.

The next directive sets the behavior of the server when a full status request is made by
apachectl. The default is to leave this off, but if you are troubleshooting, you might want
to turn it on.

ExtendedStatus On
Report all information for a full status report.

Main Server Configuration

These directives configure the main server which handles all requests not handled by a
virtual server.

The first set of directives define the running parameters and identification for the server.

User apache
The server runtime user.
Group apache
The server runtime group.
ServerAdmin root@Iocalhost
Email address for reporting server problems.
ServerName localhost
The DNS name of the host the server is running on. The default is

localhost with the 127.0.0.1 address if this is left undefined.
UseCanonicalName Off

Determines how the server creates self-referencing URLs and vari-
ables. If Off, it uses the hostname and port supplied, otherwise it

uses the ServerName directive.
DocumentRoot ”/var/www/html”

The directory which is the root for the served documents tree.

Apache allows for directory-by-directory access control and this requires substantial con-
figuration. This is where you are most likely to have problems in a basic configuration.

The first set of directives are inside of a Directory Block.

<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>

The Directory Block has a name which specifies the directory name relative to the Docu-
ment Root. The directives inside apply to the given directory and all directories below it in
the tree. In this case, the name is the root name, so the directives inside apply to the root
directory and all directories below it. Both of these directives have complex capabilities
that will be discussed later.

Options FollowSymLinks
Options indicates that what follows is an option statement, and Fol-
lowSymLinks specifies that the server is to follow symbolic links if
they exist.

AllowOverride None
AllowOverride specifies how .htaccess files; None means that the
.htaccess files are ignored. All means that all default directives can
be overridden in a .htaccess file.

The next set of directives defines the access properties of the document root.

<Directory /var/www/docroot>

</Directory>

Where /var/www/docroot would be your document root.

Options Indexes FollowSymLinks
Indexes allows the server to display a list of files if there is no in-
dex.html file (or equivalent) in the directory. FollowSymLinks it the

same as it was before.
Allow Override None

Do not allow .htaccess files to override default access control.
Order deny,allow
When evaluating access control, first apply the deny properties and

then the allow properties.
Allow From All

Allow access from any host.

The next set of directives creates a special arrangement for the root directory. It disables
autoindex (because it would allow outsiders to collect valuable information about your
Document Root directory) and to provide a default error page if there is no index.html

page.
<LocationMatch "~/$">

</LocationMatch>

LocationMatch identies a block that is to be applied if a request for a page matches. In
this instance, the match is to the regular expression

~/$

which means a name that contains only a beginning, the Document Root name and and
end.

Options -Indexes
Turn off the ability to see a list of files.

ErrorDocument 403 /error/noindex.html
ErrorDocument indicates what should happen if there is an error. ltis
followed by the error code to return (403 means not found) and then
a URL to display.

The next section defines the properties of the User Directory. The Apache server allows
for a user directory type to be defined, which includes the name type, location and default
access properties. By default, the UserDir capability is disabled to prevent outsiders from
using it to identify the presence of usernames on the system, but most systems want
it enabled. The userdir service is a module, so this set of directives is included in an
IfModule block:

<IfModule mod_userdir.c>

</IfModule>

UserDir disable
Present only to disable UserDir functionality.
UserDir public_html
Enable the use of / username/ naming for user directories.

Access to the user directories is controlled by a block of the form:

<Directory /home/*/www>

</Directory>

This specifies that user directories are of the form /home/username/www. The directives
applied are:

AllowOverride Filelnfo AuthConfig Limit
This specifies that users can override the default access controls with
.htaccess files for document types (Filelnfo), authorization directives

(AuthConfig) and host access (Limit).

Options Multiviews Indexes SymLinkslfOwnerMatch IncludesNoExec
This specifies that multiple views of content are OK (MultiView), di-
rectory listings are allowed (Indexes), symbolic links can be followed
only if the owner of the linked file is the same (SymLinkslfOwner-
Match) and the #exec commands are disabled but server-side in-
cludes are allowed (IncludesNoExec).

If access control is allowed, you need to describe the access control, which is accom-
plished with a Limit block and a LimitExcept block. The difference is that a Limit block
limits access for specific HTTP operations, while a LimitExcept block allows access to
only specific methods. Therefore, LimitExcept blocks are more restrictive and preferred
over Limit blocks.

The following block limits the GET, POST and OPTIONS options by specifying that ac-
cess is allowed only from a single domain. The problem with the Limit block is that it
specifies the restrictions on certain operations, but things not mentioned are allowed.

<Limit GET POST OPTIONS>

Order allow, deny

Allow from all

Deny from ! 153.90.192.0/21
</Directory>

The following provides the same protection, but it denies everything by default, and so is
not susceptible to new, unrecognized or unstated methods. Typically, LimitExcept should
be used unless there is some overriding reason.

<LimitExcept GET POST OPTIONS>
Order deny, allow
Deny from all
Allow from 153.90.192.0/21
</Directory>

The remainder of the file has a number of simple directives:

Directorylndex index.html index.html.var homepage.html homepage.htm
The default file to serve if a directory is requested.

AccessFileName .htaccess
Default access control file name.

This file needs some control to insure that outsiders can’t see the content:

<Files ~ "~\.ht">
Order allow,deny
Deny from all
</Files>

TypesConfig /etc/mime.types
The location of the MIME types file.

DefaultType text/plain
The default MIME type to use in serving pages.

MIME typing uses information from the files themselves to determine type. The MIME
magic file location is given by:

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic
</IfModule>

HostnamelLookups Off
When logging server activity, turn of the hostname lookup so only IP
addresses are reported.

Logging Error logging is controlled by two directives

ErrorLogs logs/error_log
Error logging is done under the configuration directory in the logs

directory in the file error_log.
logLevel warn
All events of magnitude greater than or equal to this level are re-

ported. The levels are identical to those of syslog.

Access logging is very handy to have and it is controlled by:

CustomLog logs/access_log combined
Access logging is done under the configuration directory in the logs

directory in the file access_log.

The combined name is defined in the file like this:

LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"Y{User-Agent}i\"" combined

You can look this up in the documentation, but it specifies the fields to be output for any
entry in the log file.

ServerSignature On
Cause error pages, ftp directory listings and other displays to have a
server signature.

IndexingOptions controls the way indexes are displayed.

IndexOptions Fancylndexing FoldersFirst VersionSort NameWidth="
Fancylndexing gives a nicer display, FoldersFirst produces the fold-
ers before the files, VersionSort specifies how versions should be
compared and NameWidth=" allows the filenames to be as long as
necessary (an integer value can be used). and other displays to have
a server signature.

Redirection One of the features of Apache that is indispensible is redirection or alias-
ing, which allows you to specify a mapping for a directory name. For example, suppose
you have directory containing icons for use by people building web pages on your system
at /usr/local/www/icons/. But this is somewhat inconvenient to use, and you might change
it to another location. You could solve these problems with:

Alias /icons/ /usr/local/www/icons/

<Directory '"/usr/local/www/icons">
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

/Directory>

A reference to /icons/ is redirected to /usr/local/www/icons/, so access can be gained with
a simple /icon/ pathname rather than the whole string, and the access controls specified.
Also, the target directory can be outside of the directory tree.

Another choice is the AliasMatch directive

AliasMatch regular-expression pathname

which is equivalent to Alias, but makes use of standard regular expressions instead of
simple prefix matching. The supplied regular expression is matched against the URL-
path, and if it matches, the server will substitute any parenthesized matches into the
given string and use it as a filename. For example, to activate the /icons directory, one
might use:

AliasMatch ~/icons(.*) /usr/local/apache/icons/$1

maps any reference with “/icons” at the beginning to the given directory with the paren-
thesized expression substituted for

$1

. For example, /icons/doodlebug.gif maps to /usr/local/apache/icons/doodlebug.gif.

The ScriptAlias directive gives a location for cgi-bin scripts. Having a directory that is given
special permissions may be important to avoid security issues. ScriptAlias operation is
identical to the Alias directive. For example:

ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

The ScriptAliasMatch is identical to AliasMatch, except that it sets a mapping for CGl-bin
scripts.

ScriptAliasMatch ~/cgi-bin(.*) /usr/local/apache/cgi-bin$1

To avoid having users running cgi-bin programs that are unprotected, you might do this:

ScriptAliasMatch /home/(.*)/cgi-bin(.*) /usr/local/apache/$1/cgi-bin/$2

Icons and Descriptions Apache uses icons to represent files and filename extensions
and it allows descriptions to be placed in file listings. Those icons are managed by the
following directives:

AddIconByEncoding (CMP, /icons/compressed.gif) x-compress x-gzip
Specifies that x-compress and x-gzip encoded files should be repre-
sented by /icons/compressed.gif and CMP is the text representation

if the icon_is unavailable.
AddlconByType (TXT, /icons/text.qgif)

Specifies that files of type gif should be represented by /icons/text.gif
and TXT is the text representation if the icon is unavailable.
Defaultlcon /icons/unknown.gif
The default icon for files which do not have an icon set.
AddDescription "GZIP compressed document” .gz
The given message is displayed for files ending with the ”.gz” suffix.
Blah Blah
. The given message is displayed for files ending with the ”.gz” suffix.

¢ and a whole bunch of other stuff.
Blah Blah

. The given message is displayed for files ending with the ”.gz” suffix.
¢ and a whole bunch of other stuff.

MIME Types

Error Responses You can configure the server error responses by creating your own
versions of the error pages. The normal setup looks like this:

Alias /error/ "/var/www/error/"

<IfModule mod_negotiation.c>
<IfModule mod_include.c>
<Directory "/var/www/error">
AllowOverride None
Options IncludesNoExec
AddOutputFilter Includes html
AddHandler type-map var
Order allow,deny
Allow from all
LanguagePriority en es de fr
ForcelLanguagePriority Prefer Fallback
</Directory>
ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var
ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var
ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var

</IfModule>
</IfModule>

It is a nice exercise to try to customize one or more error pages. In order to recognize the
error message codes, look at the documentation for HTTP.

Languages and Character Sets You can specify a languages and character sets for
Apache, but there probably isn’t much need typically. The pertinent directives are:

AddLanguage da .dk
Use the MIME language da if a file has an extension of .dk.

LanguagePriority en da nl et fr
Establish the desired order of languages to use in the case of lan-
guage negotiation.

AddDefaultCharset 1SO-8859-1

Set the default character set.

File Mapping There are a number of special file handling directives.

ReadmeName README.html
Specifies of a special file to be appended to directory listings if it

exists. In other words, it doesn’t get sorted
HeaderName HEADER.html
The name of a file to be prepended to directory listings if it exists. In

other words, it doesn’t

IndexIgnore .?7* * *# HEADER* README* RCS CVS *,v *t
A set of regular expressions describing files that are not to be dis-
played in listings. In this case, files beginning with ”.”, ending in ”” or
"#”, the HEADER and README files, RCS and CVS directories and
version files.

There are as you can imagine, hundreds of additional directives and combinations of
directives, but many of these deal with advanced features. In the following, we will look
at some specific applications of the directives, but you are encouraged to look at the
manuals and the web for more advanced configurations.

