Functional Programming & Lisp Processing with Lisp

CS 305
©Denbigh Starkey
1. Introduction and History 1
2. Lisp data types: atoms and s-expressions 2
3. Lisp data types: lists 3
4. Lisp built-in functions, car, cdr, cons, eq, and atom 5
5. User-defined functions in Lisp 6
6. List notation and definitions 8
7. Another example - revall 10
8. Running a Lisp program using Common Lisp 11
9. Modern Lisp Programming 12
10. Exercises 13

1. Introduction

Lisp (LISt Processor!) was one of the pioneer programming languages, designed at
MIT for Artificial Intelligence applications, and has continued to be one of the most
important languages for Al (although in highly extended forms). It is also,
particularly in its original form, the classic example of a functional programming
language.

The goal of these notes isn’t to teach Lisp as a language, but is to give you a feeling
for the power that can be achieved with a very simple set of programming
constructs. For example many programmers, if asked to describe a single
programming construct that would be in all programming languages, would select
the assignment statement or maybe simple loops, but the original Lisp didn’t
provide either of them.

The main current version of Lisp is Common Lisp, which is a dramatic extension
over the original Lisp, and includes structures like loops and assignment statements.
I'll be using the Common Lisp interpreter, but I'll be restricting my discussions to
Lisp 1.5, the first released version, which is also often called Pure Lisp. In these
notes I'll just call it Lisp.

Lisp was developed by McCarthy et al. at MIT as a language for symbolic processing,
which effectively means for Artificial Intelligence. It is mathematically very pure,
since it is based on Alonzo Church’s Calculus of Lambda Variations, although this is

! For reasons that will become obvious later, many people claim that the acronym should be Lots of Idiotic
Silly Parentheses.

less visible than it used to be. For example, one no longer has to use the keyword
LAMBDA when defining a function, so the lambda form is mainly hidden.

Any Lisp program is itself a Lisp data object, and so a program can take itself as data
and modify itself. I won’t be doing this.

2. Lisp Data Types: Atoms and S-Expressions

Lisp has one data type, called the S-expression, and special versions of this called
atoms and lists. I'll first define atoms, then use these to define S-expressions, and in
the next section I'll use them to define lists.

An atom is any atomic unit. E.g, 33, -22.5,NIL, ni1, and Denbigh are all atoms.
An S-expression is defined recursively with:

1. An atom is an S-expression
2. Ifaand 3 are S-expressions then (a .) is an s-expression.

E.g., the following are S-expressions:

33

Denbigh

Starkey

(Denbigh.starkey)

(Denbigh. (starkey.nil))
(((a.(b.niT)).ni1).(c.nil))

(You might, correctly, be getting the impression that nil is an important atom in
Lisp. We'll see why in the next section when we get to lists.)

Internally a non-atomic S-expression (« .) is represented as:

ai

and so, for example, (((a.(b.ni1)).ni1).(c . ni1)) will be represented as:

—>

|
I
a b

Note the shorthand that I have used for nil in this picture where, instead of putting a
pointer to nil I have just put a diagonal line in that part of the S-expression.

One more example, and then I'll move on to lists. The internal representation of
((a.b).((c.d).(Ce.P)))is

> | T | T | T
| '
—T—» b e
\ 4
v —> d
a
v
C

As a piece of history, which I'll get back to later, when Lisp was implemented on the
IBM 7090 that system had an address register and a decrement register, which were
used to store the pointers to the two parts of a non-atomic s-expression. So with a
general s-expression (a. 3), the pointer to a was the contents of the address register
(CAR was the assembly instruction) and the pointer to 3 was the contents of the
decrement register (CDR). These, as we'll see later, became two of the five function
names in Lisp.

3. Lisp Data Types: Lists

A list is the most common data type in Lisp, but it is just a shorthand for a certain
form of s-expression. The list with n elements:

(e1 e2 ... en)

is a shorthand for:

(ex1 . (e2 ... Cen . nil)...))

where there are n right parentheses at the end. E.g., the following pairs are
equivalent:

(ab o (a.(b.(c.ni1)))
E§(a b)) © ((%a.(b.ni1)).ni1).(c.ni1))
ni

The first one is a vanilla list of three elements (note the three right parentheses at
the end of the s-expression).

The second one can be broken down to see what is going on.

(a) ((a.(b.niT1)) is the list of two elements (a b).

(b) Any one element list («) is (a.nil), so ((a b)) is the list containing one
element, the list (a b), soitis (((a.(b.ni1)).ni1), substituting in the
expression from (a) for a.

(c) Finally at the highest level we have a two element list consisting of the
elements ((a b)) and c.

The third one is the special case of the empty list. It is the atom nil, although it can
also be represented as an empty pair of parens, Q).

The internal representation of the first example is just:

L TP T Y

The internal representation of the second, (((a b)) c) was given in the previous
section. Repeating it here for simplicity, make sure that you understand it.

> <
o —

4. Lisp Built-In Functions, car, cdr, cons, eq, and atom

Lisp only had five built-in functions, and everything else had to be built on top of
them. Two (car and cdr?) give access to the two halves of a non-atomic S-
expression, cons constructs more complex S-expressions from simple ones, eq is a
predicate (i.e., returns true or false) which checks to see whether or not two atoms
are equal, and atom is a predicate that determines whether its argument is atomic or
non-atomic. In this section I'll use Lisp pseudocode (also called the Lisp
metalanguage) to describe these functions, later I'll convert to real Lisp notation.
However, looking ahead briefly, a call like cons[a; (b.c)] to create (a. (b.c)) will
actually be written (cons ‘a ‘(b.c)) or (cons (quote a) (quote (b.c))).So,a
bit more formally:

{a if s=(ap)
car[s] = .
undef otherwise
cdris] - {/5 i s=(@f)
undef otherwise

cons[s; t] =(s.t)

T if s=tand s,t both atomic
eq[s; t] = ynil if s=t and s,t both atomic

undef otherwise

T if sis atomic

atom|s] = {

nil if s is nonatomic

% The closest that I can get is that cdr rhymes with gooder.

5

Note the names car and cdr for the first and last halves of an S-expression, which
came from the registers on the 7090 as I discussed earlier. Modern Lisps tend to
supply aliases like head and tai1 for these two functions.

One minor point before I give examples of these is that F is represented in Lisp with
the atom nil.

Some examples:

car[((a.b).(c.(d.e)))] = (a.b)

cdr(Ca.b).(c.(d.e)))] = (c.(d.e))

car[(a b)] = car[(a.(b.(c.ni1))) = a

cdr[(a b)] = cdr[(a.(b.(c.ni1))) = (b.(c.niT)) = (b ©)

eqla; a] =T
eqla; b] = nil

car[Denbigh] is undefined

cdr[Denbigh] is undefined

eql(a.b); (a.b)]isundefined (although it will usually be T,
but don’t rely on this)

One important thing to extract from this is that if we take the car of a non-empty list
then we get the first element of the list, and if we take the cdr we will get the rest of
the list. A couple more examples of each of these:

car[(Ca b) c (d e))] = (a b)
cdr[((a b) c (d e))] = (c (d e))
car[(Q] = car[nil] = undefined
cdr[(Q] = cdr[nil] = undefined

Also, if we cons something onto a list we will add it on as a new element at the front
of the list. E.g.:

cons[a; (b ¢ d)] = cons[a; (

c.(d.nil)))]
a.(b (C (d.ni1))))
abcd

b.
c

Q.,.\,.\r\

cons((a b); (c d] = ((a b))

5. User-Defined Functions in Lisp

There are two ways to define functions in Lisp, composition and conditional
statements.

Composition: Say that we want to write a function, which we’ll call cadr, to find the
second element of a list 1 that contains at least two elements. Well cdr[1] returns a
list containing everything except the first element, so car[cdr[1]] returns the first
element of that, which is the second element of the original list. So we just need to
define:

cadr[1] = car[cdr[1]]

Lisp systems predefine a lot of the common combinations of car and cdr, using a
string of a’s and d’s between c and r. So, for example, caddar[1] would be
car[cdr[cdr[car[1]1]1]1], which is the third element of the list that is the first
element of 1. For example, caddar[((a b c d) (e f) g)]isc.

Conditional expressions: The pseudocode conditional expression has the form:

[pr » en;
p2 - €2,

pn -' Erl]

where each of the p; is a predicate (evaluates to T or NIL) and each of the e; is any
expression, including conditional expressions. The interpretation of the conditional
expression is that we work down the predicates, evaluating them until we find one,
say p;, that is true, and return e; as the value of the expression. lL.e., this is equivalent
to

if (pu) er;
elsif (p2) ez;

elsif (pn) en;

Now a problem is that if none of the left hand side predicates are true the
conditional expression is undefined. To avoid this, the last left hand side predicate
is always T, so that if all of the previous ones are false the last right hand side
predicate will be returned. So this is like an elseif structure where the final else
clause is required.

It is now time to do some more complex definitions:

Lisp gives us eq, which determines whether or not two atoms are equal, but isn’t
guaranteed to work if one or both of its arguments is non-atomic. We will often
need a more general predicate, equal, which determines whether any pair of s-
expressions are equal. The pseudocode to do this is:

equal[s; t] = [atom[s] - [atom[t] - eq[s, t];
T ->nil]l;
atom[t] - nil;
equa1[%?r[s]; car[t]] - equal[cdr[s]; cdr[t]];
T - nl

Trace through this. It says that is s is an atom then we return the value of the next
two line conditional expression. It says that if t is also an atom then use eq to
determine whether the two atoms are equal. If tisn’t an atom then it can’t be equal
to the atom s. If, however, s wasn’t an atom then if t is an atom we know that they
can’t be equal, so return ni1. If neither are atoms we recursively check to see
whether the two cars are the same. If they are, then equal will be T or ni1 based on
whether the cdrs are the same. Finally, if they aren’t atoms and the cars aren’t the
same, then we hit the T, and return ni1 because s and t can’t be equal. All Lisp
systems provide the predefined function equal, with this definition.

We could now use this definition to define a new function nul11, which determines
whether a list is empty or not. Remembering that the empty list is the atom ni1, we
can just say:

null[1] = equal[l, nil]

or we could define it without using equal, with an efficiency gain, with:

null[1] = [atom[1] - eq[T1, nil];
T - nil]

For a first function definition for lists, I'll use append, which concatenates two list
together. E.g., append[(a b c); (d e)]=(a b c d e). To write this we are going
to need conditional expressions and recursion, and the strategy that we'll use is one
that we’ll use in nearly every list processing function definition:

1. handle a case where a list is empty (we can test for this using null)
2. ifitisn’t empty then use car to get the first element of the list, and then
recursively call the function using the rest of the list, which we get from cdr.

In this case say that we are trying to append two lists, 1 and m. Using this strategy,
and concentrating on 1, then if 1 is the empty list and we append it onto m then the
resultis just m. Iflisn’t empty then use recursion to append the cdr of 1T onto m, and
then put the car of 1 onto the front. In pseudocode this becomes:

append[1; m] = [nul1[1] - m;
T - cons[car[1]; append[cdr[1]; m]]]

A final example: We want to perform a high level reverse of a list: For example,
reverse[((a b) (c de) fg)l=(f (c d e) (a b)), where the four elements
have been reversed.

Using our basic strategy, if the list is empty, then just return the empty list, ni1. Ifit
isn’t empty, then grab the first element with car, reverse the rest (the cdr)
recursively, and then find a way to add the first element on at the back. That last
part is slightly tricky, but if we make a list that contains the first element then we
can use append to join the reverse of the cdr of the list and the list containing the
car. lLe,

reverse[1] = [nul1[1] - nil;
T - append[reverse[cdr[1]]; cons[car[1]; ni1]]]

6. Lisp Notation and Definitions

As I've mentioned several times, I've so far just being using a clean pseudocode to
define everything. A real Lisp program is itself a list, and so it must have a Lisp-like
notation. So I need to make some changes:

8

1. The function call f[x; y; ...] becomes (f x y ...).
2. The conditional statement

[pr » en;
p2 - €2,

Pn = éen]
becomes:

(cond (pl el)
(p2 e2)

(pn en))
3. The function definition f[x; y; ...] = defn becomes

(defun f (x y ...) defn)

Where the defun approach is that used in Common Lisp, not the original Lambda
approach. For example, say that we want to write the definitions of nu113 and
append that we had in the last section. They will become:

(defun null (1)
(cond (Catom 1) (Ceq 1 nil))
(T nil)))

(defun append (1 m)
(cond ((null 1) m)
(T (cons (car 1) (append (cdr 1) m)))))

The definition of equal looks a bit messier because of the embedded conditional
statement, but it is just following the same rules:

(defun equal (s t)
(cond ((atom s) (cond ((Catom t) (eq s t))
(T nil))
(Cequal (car s) (car t))
(equal (cdr s) (cdr t)))
(T ni1)))

A final change that we need to make occurs when we supply a value to test a
function. Until now I've been just putting in the arguments directly, and so with
pseudocode I'd say for example, append[(a b); (c d e)]. If we said

(append (a b) (c d e))

then it would attempt to compute append[a[b]; c[d; e]]. So we need to quote
arguments like this with either the annoying (original) form:

(append (quote (a b)) (quote (c d e)))

3 1’11 use the second definition from that section.

or the shorthand (which everyone uses)

(append ‘(a b) ‘(c d e))

7. Another Example - reversall

Say that we want to write a function to reverse a list at all levels. E.g., we want
reverseall[((a b) ((d e) f) g)]Jtoreturn (g (f (e d)) (c b a))]. I'll
look at three possible ways to do this:

(defun revalll (1)
(cond
((nu11 D D
(Catom (car 1)) (append (revalll (cdr 1))
(cons (car 1) NIL)))
(T (append (revall2 (cdr 1))
(cons (revalll (car 1)) NIL)))

)
)
(defun revall2 (1)
(cond
((nu11 1D 1D
(Catom 1) 1)
(T (append (revall2 (cdr 1))
; (cons (revall2 (car 1)) NIL)))
)

(defun revall3 (1)
(cond
(Catom 1) 1
(T (append (revall3 (cdr 1))
; (cons (revall3 (car 1)) NIL)))
)

In pseudocode revalll is:

revalll[1] = [nul1[1] - 1;
atom[car[1]] - append[revalll[cdr[1]]; cons[car[1]; n%}%%

T - append[revalll[cdr[1]]; cons[revalll[car[1]]; ni j

This is, in some ways, the obvious solution. Working through it,

1. Ifthe list is empty, just return it as its reverse.

2. Ifthelistis, say (a (b ¢) d) then we want to recursively revall1l the cdr to
get (d (c b)) and then append (a) onto the end. We get the list containing a
by consing it to niT.

3. Otherwise, if the car is non-atomic, then we want to recursively revall1lit,
and then append it onto the reverse of the cdr as before.

10

In pseudocode revall2 is:

revall2[1] = [nul1[1] - 1;
atom[1] - 1;
T - append[revall2[cdr[1]]; cons[revall2[car[1]]; nil1]1]1]1]

This is a bit more sophisticated in terms of how it uses the recursion. E.g., if we have
(a (b c) d) as before, then it won’t immediately detect the atomicity of a, but will
append (d (c b)) to the list containing revall1[a]. Then it handles the atomic
non-null atom argument in the next recursive pass.

In pseudocode revall3is:

revalll[1] = [atom[1] - 1;
T - append[revall3[cdr[1]]; cons[revall3[car[1]]; nil1]1]1]1]

This just combines the first two conditions from reval12. If 1 is null then it is the
atom ni1, so the atom test handles both cases.

8. Running a Lisp Program Using Common Lisp

On Unix/Linux systems the Common Lisp compiler is called c1isp. So the simplest
approach is to type c1isp at the prompt, type in a definition, and test it.

To get out of c1isp say (exit) or (quit). None of the obvious words like exit or
quit without parentheses will work.

A much better way to use clisp is to type your function definitions into a file named,
say, mylispfuns.1, and then after calling c1isp say

(load ‘mylispfuns.T)
which reads in the definitions from the file.

E.g., if [have a file reval1.1 which contains:

(defun revalll (1)
(cond
((nu11 1 D
(Catom (car 1)) (append (revalll (cdr 1))
(cons (car 1) NIL)))
(T (append (revall2 (cdr 1))
(cons (revalll (car 1)) NIL)))

)
)
(defun revall2 (1)
(cond
((nu11 1 1D
(Catom 1) 1)
(T (append (revall2 (cdr 1))
; (cons (revall2 (car 1)) NIL)))
)

11

as [discussed in the last section, but omitting reval1l3, then a typical c1isp session
is shown below. I've bolded user input to distinguish it from system output.

% clisp

I T T T B I | 00000 o 0000000 00000 00000
ITITITIT 8 8 8 o 8 8
I \ +'"/ 1 8 8 8 8 8 8
\ -+-' / 8 8 8 00000 80000

- |- 8 8 8 8 8

| 8 o 8 8 o 8 8

—————— +-————- 00000 8000000 0008000 00000 8

Copyright (c) Bruno Haible, Michael stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2001

[1]> (load 'revall.l)
;; Loading file revall.l ...
;; Loading of file revall.1l is finished.

}
[2]> (revalll '(Ca (b c)) d (e)))
((F E) D ((C_B) A))
[3]1> (revall2 '((a (b c)) d (e)))
(CF E) D ((C_B) A))
[4]> (Crevall3 '(Ca (b c)) d (e f)))

*%% - EVAL: the function REVALL3 is undefined
1. Break [5]> (defun revall3 (1)
(cond

(Catom 1) 1)
(T (append (revall3 (cdr 1)) (cons (revall3 (car 1)) ni1)))

))

REVALL3

1. Break [5]> (revall3 '"((a (b c)) d Ce f)))
((F E) D ((C B) A))

1. Break [5]> (quit)

Bye.

%

Here I have successfully loaded revall.1, which gave me the functions reval1l and
revall12, which I tested. Then when I tried to call reval13 it couldn’t (not
surprisingly) find it, so [show that I can directly type in a definition, and then I
successfully test that.

9. Modern Lisp Programming

As I stated at the beginning, the primary goal of these notes hasn’t been to teach
Lisp, particularly in its current forms, but has been to give you a feel for the fact that
not all programming languages need to be based on Algol-like* structures. Pure Lisp
reduces programming to its simplest functional forms, with conditional statements,
composition, and recursion, which together provide a complete programming
environment (i.e., if something is programmable then it can be programmed with
just this minimal set of features). There are some major advantages to programming
in an environment this simple, including the elimination of side effects, and making
it much less difficult to prove the correctness of your programs.

* Which includes Algol’s descendants like C or Java.

12

From a practical standpoint, however, most Lisp programmers come to the language
with previous experience in other languages, and so feel lost without their familiar
tools like while loops, and so use languages like Common Lisp which place these
structures on top of the underlying pure Lisp. You will find, however, that you can
be much more accomplished as a Common Lisp programmer if you understand the
pure Lisp that it is based on.

9. Exercises

1. Give the full s-expression and the internal representation for the list
(C(a b) o) d ((e)) ()

2. Write a Lisp 1.5 program that finds every odd element in a list. You can
assume that the list contains at least one element. Test your program using
clisp or any other Lisp system.

3. Write a Lisp 1.5 program that finds every even element in a list. E.g.,
evens[(a b c d e)]=(b d),evens[(a)] =(Q,evens[(O] = (. Testyour
program using c11isp or any other Lisp system.

4. Write a Lisp 1.5 program that returns the last two elements of a list. You can
assume that the list contains at least two elements. For example, Tast2[(a b
(cd) e)]=Cc d) e),Tast2[((a b) (c d))I=C(Ca b) (c d)). Testyour
program using c11isp or any other Lisp system.

5. Write a Lisp 1.5 program that returns a list containing the first and last
elements of a list. You can assume that the list contains at least two
elements. For example, firstlast[(a b (c d) e)] =(a e), firstlast((a
b) (c d))]1=(b) (c d)). Testyour program using c11isp or any other
Lisp system.

13

