
Engineering Secure Software



The Basics of Software Security

Terminology

Threats

Attacker

Vulnerabilities

Application

Trust Boundary

Attacks

Exploit

Vulnerability: a software defect with security consequences

Threat: a potential danger to the software 

Attack: an attempt to damage or gain access to the system

Exploit: a successful attack

Trust Boundary: where the level of trust changes for data or code

2



The Basics of Software Security

The Superbowl Example

• You are preparing for the Superbowl

• Who is your opponent?

3

− The Over-the-Hill Gang

− The Walking Wounded

− Last Year's Team

− Next Year's Team

− The Best Thing Ever

− Script Kiddies

− Hacktivists

− The Criminal Element

− A Disgruntled Employee

− Corporate Spy

− Black Hat Warrior

Football App Security



The Basics of Software Security

Attackers

• Attackers can be anywhere

• And they may or may not know they 
are attackers

• The number one cause of data 
breaches is "employee error"

• But the malicious or criminally 
motivated elite hacker is still the 
focus

• AKA: A Threat Agent

4

So what is the percentage?

salon.com



The Basics of Software Security

The Superbowl Example

• What are the threats to your team?

5

− The Long Bomb

− Three Yards and a Cloud of Dust

− Run and Gun

− T-Option

− The Nickel Defense

− Spoofing

− Tampering

− Repudiation

− Information Disclosure

− Denial of Service

− Elevation of Privilege

Football App Security



The Basics of Software Security

STRIDE Model

• The STRIDE Model defines 6 general threat types

– Spoofing

– Tampering

– Repudiation

– Information Disclosure

– Denial of Service 

– Elevation of Privilege

6

Give an example of each?



The Basics of Software Security

Threats

• Threats represent a potential danger to the security of one or 
more assets or components

– Threats could be malicious, accidental, due to a natural event, an 
insider, an outsider, … 

– A single software choice can result in many threats.

– Threats exist even if there are no vulnerabilities

• No relaxing

• Threats change with system changes

How can a change in 

software result in either or 

fewer threats?

7



The Basics of Software Security

Types of Threats

• Social threats: people are the primary attack vector

• Operational threats: failures of policy and procedure

• Technological threats: technical issues with the system

• Environmental threats: from natural or physical facility factors

• The threats themselves are the same, but this is a different 
view

– Threats have certain sources (Social, Operational, Technical, 
Environments)

– And certain security impacts (STRIDE)

Which of these is likely to have 

the biggest impact on your 

development?  Most likely to 

result in vulnerabilities?  Hardest 

to contain?

8



The Basics of Software Security

Social Threats

• Intentional or accidental (carelessness or ignorance)

• Failure to restrict information and systems to the minimal set 
of people

• Failure to have adequate staff for security services

• Failure to adequately vet personnel with sensitive positions

• Malicious behavior

9

Would anyone like to offer an example?



The Basics of Software Security

Operational Threats

• Inadequate or improper policies, procedures or internal 
controls

• Inadequate change management or application monitoring

• Inadequate business continuity plans

• Failure to comply with legal or regulatory requirements or 
contractual agreements

10

Why is this stuff in a secure coding course ?

Why is it a threat to not meet 

compliance requirements?



The Basics of Software Security

Technology Threats

• Implementation  failures

• Design failures

• Interoperability issues

• Hardware and software compatibility

• Deployment failures

11



The Basics of Software Security

Environmental Threats

• Backups, data recovery and disaster recovery must 
be given sufficient attention

• The physical location of the systems and data must 
be secured

• Access to physical spaces must be limited and 
monitored

12



The Basics of Software Security

The Superbowl Example

• What are your vulnerabilities?

13

− Sore-armed quarterback

− Injured secondary

− Poor pass defense

− Inaccurate kicker

− Injection weakness

− Security Misconfiguration

− Insecure logs

− Weak Access Control

− Open Redirect

Football App Security



The Basics of Software Security

Vulnerability

• A defect in software or the surrounding processes that could 
result in the compromise of system assets

• Vulnerabilities can be classified as:

– Design vulnerability

– Implementation vulnerability

– Testing vulnerability

– Deployment vulnerability

– Patch and update vulnerability

– Maintenance vulnerability

– Environmental vulnerability

14



The Basics of Software Security

The Superbowl Example

• What type of attacks can you expect?

15

− Sideline buttonhook route

− Crossing route

− Fullback off-tackle

− Bootleg right

− Safety blitz

− Seven-man front

− Missed field goals

− SQL  injection

− Phishing against customer

− Forceful browsing

− Parameter Tampering

− Facility break-in

− SYN Flood 

Football App Security



The Basics of Software Security

Attacks 

• Attacks

– An attempt by someone, known as the attacker, to realize a threat 
against a system  

– The attacker can determine the various threats that exist for a system 

• And select different attacks and attack vectors to try

– Successful attackers are generally clever and knowledgeable

– There are many ways to implement attacks

– An Attack Vector is a specific method of implementing an attack

• Modifying data in a form field to issue an SQL Injection attack

• Tampering with data in a POST request to issue a Cross-site Scripting 
attack

• Entering a very long input to see what happens

16

How does an attacker 

know the Attack 

Surface?



The Basics of Software Security

Some Common Attack Vectors

• Malware: malicious software introduced into the system

• Denial of Service: hindering the proper functioning of the 
system

• Injection: forcing attacker code into the execution stream of 
the application

• Buffer Overflow: overwriting memory areas to create 
unexpected conditions

• Forceful Browsing: accessing areas of the code that should 
not be exposed to the user

• Parameter Tampering: modifying data during communication

17



The Basics of Software Security

The Attack Surface

• All of the threats impinging on a system are called the Attack 
Surface.

• As an architect or developer, you seek to minimize the Attack 
Surface by developing securely

Injection

Default Passwords

18



The Basics of Software Security

Exploits

• When the attacker succeeds in an attack and can harm your 
system 

• The exploit is a series of steps that attackers can use to do 
damage and in some cases, cover their tracks

• Once known, easily communicated through the Internet

• Zero-day attack exploit 

– An exploit against a previous unknown vulnerability that cannot be 
addressed quickly enough to prevent damage 

• Breach: an exploit, especially one that involves the exposure of 
data

19



The Basics of Software Security

Risk

• The potential cost of a threat

• Risk = Prob(Exploit) x Expected Cost

• Direct and indirect damages, reputation loss, etc.

• The exploit causes some or all of those costs to be realized, 
but the potential cost is there because of the threat  

• You don’t have to wait for the exploit to know what the cost 
might be, and you shouldn't

20

What would be the reputation damage to your 

company from an exploit that results in the 

exposure of data?



The Basics of Software Security

DREAD Model

• Where each of the following are evaluated 1 (low) - 5 

– D = Damage Potential

– R = Reproducibility

– E = Exploitability

– A = Affected Users

– D = Discoverability

21

𝑅𝑖𝑠𝑘 = (D + R + E + A + D)/5



The Basics of Software Security

The Superbowl Example

• Evaluate the risk of each attack

22

− Sideline buttonhook route (3.5)

− Crossing route (3.2)

− Fullback off-tackle (2.1)

− Bootleg right (4.1)

− Safety blitz (4.4)

− Seven-man front (1.6)

− Missed field goals (4.8)

− SQL  injection (3.5)

− Phishing against customer (2.2)

− Forceful browsing (2.0)

− Parameter Tampering (3.6)

− Facility break-in (0.6)

− SYN Flood  (1.1)

Football App Security



The Basics of Software Security

Apply Countermeasures

• Do Nothing; accept the risk

• Outsource the risk; transfer it to someone else

• Eliminate the asset

• Reduce the risk

– Mitigate the vulnerability

– Remove the threat

23



The Basics of Software Security

The Superbowl Example

• Reduce the attack surface

24

− Activate a new kicker

− Go with the no-huddle offense

− Use a 3-4 defense

− Quick kick on third down

− Fake field goal

− Use Secure Design methods

− Penetration Testing

− Use Code Reviews

− Centralized input processing

− Use secure communication

Football App Security



The Basics of Software Security

The Trust Boundary

• During the design process, you need to determine:

– What systems are inside Trust Boundary and what must be done with 
these systems to make them secure

– What data is inside the Trust Boundary and how it becomes trusted

– Perimeter security

– Deployment and Post-deployment 

• Can you relax inside the TB?

– Inside attacks

– Something could fail or have a flaw

– The TB assures you that you have done everything you could think of

– It does not assure you that you have done everything

25

What are some things on 

the secure deployment 

checklist?



The Basics of Software Security

The Trust Boundary

• When you have properly designed your system, you can be 
certain that everything inside your TB is secure

• Does that mean everything relaxes in the TB - NO

– Inside attacks

– Don't assume you are safe; something could fail or have a flaw

– The TB assures you that you have done everything you could think of

– It does not assure you that you have done everything

• Malcontents are always busy

• New attacks are found

• Negligence is substantial

• The TB helps you identify where you need to focus and 
where you need to be careful

A new feature requires a server 

inside your pod.  It needs to link 

directly to foreign systems.

Comment.

26



The Basics of Software Security

The Superbowl Example

• Are there Trust Boundaries at the Superbowl?

27

− TB 1: Who gets into the stadium; what can they bring in

− TB 2: Who gets on the field; when; how

− TB 3: Who gets into the broadcast area

− TB 4: What is allowed during the half-time show; 

Do teams have Trust Boundaries?



The Goals of Software 

Security

28



The Goals of Software Security

The Parkerian Hexad

• How do we define what 
security actually means?

• The Parkerian Model uses 
the hexad

• Defining 6 attributes of 
secure systems 

• These are atomic and non-
overlapping

• Every threat/exploit can be 
defined as affecting one or 
more of these attributes

29



The Goals of Software Security

Confidentiality

• To help understand, consider a single credit card number

– Confidentiality: Only the owner of the card can see the credit card 
number (CCN) and CCV, or those to whom the owner gives that 
information

– Possession: No one else has a duplicate card or a copy of the CCN 
and CCV

– Integrity: The CCN and CCV are correct

– Authenticity: The owner of the card provides the CCN and CCV and 
verifies ownership with a photo id.  Identity is validated

– Availability: When a purchase is attempted, the card can be verified by 
the processing center

– Utility: There is sufficient credit for the intended purchase and the card 
is not expired

30



The Goals of Software Security

The Superbowl Example

• Is your game plan secure?

31

− Confidentiality: No unauthorized person sees it

− Possession: The middle linebacker doesn't leave his at Starbucks

− Integrity: No one can modify the game plan 

− Authenticity: Every book is embossed with the picture of the coach

− Availability: The books don't get left at home for the trip

− Utility: The books are not printed as mirror images



The Goals of Software Security

Confidentiality and Possession

• Confidentiality: only authorized entities can access a unit of 
data

• Possession: there are no unauthorized duplicates 

• Threats to Confidentiality and Possession come from

– The application accessing assets

– Inadvertent disclosure of information

– Observing/Monitoring of users

– Processes that copy the data

32



The Goals of Software Security

Integrity and Authenticity

• Integrity: the state of the system is consistent with the 
intended state

• Authenticity: claims of origin or authorship of the information 
are valid

• Threats to Integrity and Authentication come from

– Entering, use or producing false data

– Modify, replace or re-order data

– SSL certificate passwords lostMisrepresent data

– Repudiation (disavowal)

– Misuse of data

33



The Goals of Software Security

Availability and Utility

• Availability: the system provides timely access to information

• Utility: the system and data are useful

• Threats to Availability and Utility come from:

– Destruction 

– Damage 

– Disruption

– Contamination

– Denial, prolonging or delay of access

34



The Goals of Software Security

The Cycle of Pain

Design

Test Deploy

Develop/

Implement

Security

Fixes

Maintenance Update

Security

Incident

35

Why is security a driving 

factor in the Cycle of Pain?



The Goals of Software Security

Exploits and their impact on software development

• The phase-cost relationship for fixes

– Vulnerabilities will occur

– You want to find them early to avoid the exponentially increasing costs 
of finding them later (Gartner Group)

– A secure development lifecycle can achieve this

IBM System Sciences Institute

Why would the cost of fixes 

increase exponentially with 

phase?

36



The Goals of Software Security

Tension between Security and Traditional Software Goals

• Complexity is the enemy of security

• Secure software takes longer to develop

• More security means less user-friendly, less convenience

• More security means more difficult design

37

commons.wikipedia.org



The Software Development Lifecycle

38



The Software Development Lifecycle

Introduction

• The Secure Development Lifecycle is much like the 
traditional Software Development Lifecycle

– It has additional steps related to security

– It is really about enhancing the quality of software development

– It seeks to avoid the cycle of pain by avoiding vulnerabilities

• And increasing the likelihood that all vulnerabilities are found early

39



The Software Development Lifecycle

Phases of the SDL

• An Overview of the Phases

– Education and Awareness

– Project Initiation

– Design 

– Implementation

– Verification

– Release

– Post-release

Training Requirements Design Implementation Verification Release Post-Release

40



The Software Development Lifecycle

Education and Awareness

• Education is the key to a successful SDL

– Security involves every employee

– Every employee should have security awareness training

• Learn the responsibilities of the individual

• Common social and operational threats

• Reporting procedures

– All employees involved in the SDL are required to have:

• Training on the entire SDL

• Specialized training on the parts of the SDL in which they participate

Training Requirements Design Implementation Verification Release Post-Release

41

What percentage of employees claim that they don't 

know much about their companies security goals?



The Software Development Lifecycle

Project Initiation

– Determine the security requirements for the project

• Sensitive data involved

• Legal requirements (COPPA, HIPAA, Sarbanes-Oxley, …)

• Compliance requirements (PCI-DSS, DISA, …)

• Communication between internal networks and the outside world (email, 
customer forums, …)

• Establish quality gates: the minimum acceptable levels of privacy and 
security

– Assign a Security Advisor

• A member of the security team

• Acts as a point of contact between the development and security teams

• Aids the development team in conducting security operations

Training Requirements Design Implementation Verification Release Post-Release

42



The Software Development Lifecycle

Project Initiation

– Plan for scope broadening and feature creep.  Be flexible.

– Be precise in describing security requirements.  Assumptions are the 
enemy of good design

– Pay attention to

• The deployment environments

• Any software or other components this software must work with and any 
security standards adhered to

– Explicit requirements for behavior and constraint

• What should happen

• What cannot happen

43

What would be an example 

of planning for the future?



The Software Development Lifecycle

Project Initiation - Tips

44

Why is the list of Must Nots larger than the list of 

Musts. 

Requirement-PDH-13.1

• Web Form: PDH

• Name: Operation

• Values: Deposit, Withdraw, Transfer, Check Balance

• Must: Allow user to choose one of the options and reset web 

form for specific format (See PDH-1.0)

• Must Not: 

o Allow user to choose any other value

o Allow user operation value to be changed after submission

o User cannot be allowed to choose an operation that is not 

permitted by account authorization



The Software Development Lifecycle

The Superbowl Example

• What would the requirements be?

45

− Red Zone: must score 75% of the time; must not have turnovers

− Possession: must control the ball at least 60% of the time; must not 

control it less than 50%

− Quarterback: must limit sacks to less than 5; must not have any blind 

side sacks

− Must validate inputs; must not have injection attacks

− Must encrypt all communications; must not allow the release of SSL 

certificates

− Must patch security defects; must not install unvalidated patches



The Software Development Lifecycle 

Design

• Best time to identify and avoid vulnerabilities

– Many security vulnerabilities start here

– Defects that originate here are the most difficult to fix because they 
are “baked-in”

– The goal of the Secure Design Process 

• Will focus your attention on prioritized threats

• Will help you create a process that protects the security of the application

Training Requirements Design Implementation Verification Release Post-Release

46

What would be a problematical baked-in 

design?



The Software Development Lifecycle

Design

• Commit to follow design best practices (a later course)

• Perform a risk assessment

– What portions of the design will require Threat Models

– What portions of the design will require Security Reviews

– What portions of the design will require penetration testing

– What are the other security testing requirements

– Helps you decide where you need to invest in security

– Every aspect of the lifecycle is under consideration

 Design a secure process

 Code securely

 Test securely

 Deploy securely

 Maintain the product securely

 Update and patch securely

 Document securely

47



The Software Development Lifecycle

Design

• Perform a risk analysis (not the same as assessment)

– Create Threat Models

• They will help you identify threats to the application

– Analyze the threats

• Determine how the threats could impact the application

• Where is the application likely to be attacked and how

– Evaluate the risk

• risk = probability of exploit  x expected damage

• Knowing the risk for each threat allows the best allocation of mitigation 
effort

– Plan the mitigations

• This covers everything from creating an authentication model to a 
database access structure to the content of cookies

48



The Software Development Lifecycle

The Superbowl Example

• The risk analysis gets you to here in an organized fashion

49

− Sideline buttonhook route (3.5)

− Crossing route (3.2)

− Fullback off-tackle (2.1)

− Bootleg right (4.1)

− Safety blitz (4.4)

− Seven-man front (1.6)

− Missed field goals (4.8)

− SQL  injection (3.5)

− Phishing against customer (2.2)

− Forceful browsing (2.0)

− Parameter Tampering (3.6)

− Facility break-in (0.6)

− SYN Flood  (1.1)

Football App Security



The Software Development Lifecycle

Design

• Create a secure design and coding plan

– It details designs and procedures to be followed with respect to

• How code reviews are to be conducted

• Code to be developed by Super Teams

• Tools to be used

• How changes to design are to be reviews

• How specific coding situations are to be handled

 The authentication model

 The authorization model

 Session management

 Input data handling

 Output data handling

 Database access

 Error handling

 Communication

 Cryptography

 Other security related items

50

Does this sounds like a game plan?



The Software Development Lifecycle

The Superbowl Example

• This is your game plan

– In a new project, you start from zero, otherwise, you work with what 
you have

– Who are our opponents; what are their strengths?

– What we going to do to protect ourselves

– How we will execute each part of the development process

– The roles of the team members

– What tools we have to make the work easier

– The next step – how do we evaluate our plan

51



The Software Development Lifecycle

Design

• Create a Security Test Plan

– There is no other part of the organization that can create security tests 
better than the Development Team in collaboration with the Security 
Team

• Unit tests to be run during Implementation

• Final security tests

• Final review process

• Tools to be used

0. Security Test PT-12-121
1. Use a web proxy and turn on intercept
2. Open the Payment Interface and select a test user
3. Open the Credit Card dialog
4. Click on the current invoice and then click Pay
5. In the web proxy, modify the id to a different value and forward
6. You should get an error return for a type 124 error – all others are incorrect 

returns
7. Repeat for all parameters 

52



The Software Development Lifecycle

Design

• Create a Secure Incident Handling Plan

– Security incidents cannot be handled like normal defects

– Create a Security Response Team

• Security Team

• Development

• Legal and compliance

• Product Management

• Management

– Create a process for handling a security incident

• Define a triage process

• Define information flows

• Establish a final authority

53

www.sabusinessindex.co.za



The Software Development Lifecycle 

Implementation

• Most vulnerabilities originate here

– Coders don’t see the big picture

– Coders may be given too much leeway

• Train your coders to understand security issues

– Alert coders can identify security issues before they get “baked-in

• Coders must be held accountable to the Secure Coding Plan

– Code reviews

– Automated static code analysis

– Unit testing

Training Requirements Design Implementation Verification Release Post-Release

54

What is the number one reason coders 

give for security defects?

robbieabed.com



The Software Development Lifecycle 

Implementation

• Use compiler defenses

– /GS in .Net compilers helps prevent buffer overflows

– /SAFESH in .Net compilers to prevent exception hijacking

• Static code analysis

– Not a guarantee that all vulnerabilities will be found

– They generate many false positives

– Don't work well in mixed language situations

– Not all languages covered

– Obviously can't find defects that occur at run-time or due to 
environmental, social or operational threats

– HP Fortify, Checkmarx, many others

55



The Software Development Lifecycle 

Implementation

• Avoid certain common coding mistakes

– Failure to check input lengths

– Failure to check for integer overflow/underflow

– Failure to test inputs for malicious data

– Allowing user data into executable streams

– Failure to properly handle cryptography

– Using functions with dangerous properties (gets, printf, 
SetSecurityDescriptorDacl)

– Hidden HTML fields

• Assumptions are the bane of security: assume nothing

56

plus.google.com

Can you think of some times where 

assumptions ended badly?



The Software Development Lifecycle 

Implementation - Code Reviews

• The best way to prevent implementation phase errors

– 75% reduction in defects is possible (Software Management, Boehm)

• It achieves accountability plus the “extra set of eyes’ 
advantage

• Typically increases coding time by one-fourth to one-third

• Follow the code review rules

– Train your coders to review properly

– Define and follow a prescribed format

– Use a checklist and a written code review report

– Change coder/reviewer pairs constantly

57



The Software Development Lifecycle 

Verification

• Security testing is very different from functional testing

– Functional tests look for things that the software should do, but 
doesn’t.  

– Security tests look for things the software shouldn’t do, but does

– There are a limited number of ways software can be right, but it the 
ways it can be wrong are many and varied

Training Requirements Design Implementation Verification Release Post-Release

Traditional Defects

Intended Functionality

Unintended Functionality

Actual Functionality

Eclipse Model

58

Must Do Must Not Do



The Software Development Lifecycle 

Verification

• To security test, think like an attacker

– Where is the unintended functionality

– How are things working underneath the visible components

• Security testing must be continuous throughout the lifecycle

– Code churn, new features and bug fixes

– You can't be certain that work will be done well

– Or that the Secure Coding Plan will be followed

– Many good security choices are defeated in the update cycle

59



The Software Development Lifecycle 

Verification – The Final Security Review

• The Final Security Review is that last stage of verification

– Review the current state

• Any known existing vulnerabilities

• Triage and assign for mitigation

– Review Threat Models and compare to current software

• Generate a gap analysis and plan for addressing gaps

– Review the current Attack Surface

• Plan future efforts for reduction

– Verify that all testing has been completed

• Review testing for indications of problems

– Review the Security Incident Handling Plan

– Determine if product can proceed to Release

60



The Software Development Lifecycle 

Release

• Many vulnerabilities result from deployment processes

• Deployment must

– Protect production data

– Remove all testing and deployment access accounts

– Remove all deployment tools

– Modify all support account passwords

– Insure that the installed configuration is secure

• Checklists and flowcharts are a valuable tools

• Have the deployment reviewed before final acceptance

Training Requirements Design Implementation Verification Release Post-Release

61



The Software Development Lifecycle 

Post-Release: Updating and patching

• There will be patches and updates because attackers don’t 
rest

• Customers must understand the need for security patches

– Use detailed advisories

– Make the process simple, timely and effective

– Be prepared to back it out

• Use patch and update verification to prevent spoofing

– Protect the patch and update servers

– Validate all patches and updates before installation

62



The Software Development Lifecycle 

Post-Release: Maintenance

• Security continues with the same importance

– Manage backups and logs just like production data

• Secure storage and encryption

– Control access to all systems, even those assumed to be safe

• Support 

– Support personnel may be the first to see a security vulnerability or 
breach report.  

– Security awareness training is critical

– Knowledge of the Security Incident Response Plan is necessary

– Support personnel must be trained and have resources to help 
customers configure systems securely.

63



The Software Development Lifecycle 

The Microsoft SDL

• As shown, the SDL follows the Microsoft SDL

– It appears to follow the Waterfall development method

– It can be applied to any methodology

– It works much better on a new project

– It is difficult to backport security fixes without breaking existing 
functionality

• Re-engineering for security

– Create Threat Models, analyze risk and prioritize threats

– Combine threats to minimize code churn

– Where possible, combine mitigations with upgrade work

– Create a Security Test Plan to aid in finding existing vulnerabilities

64



The Software Development Lifecycle 

Agile Model: One Time Practices

• One-time practices

– Requirements phase

• Establish security requirements

• Conduct security and privacy risk assessments

– Design phase

• Establish design requirements

• Create Threat Models and perform a risk analysis

• Perform attack surface reduction

• Create the Security Incident Response Plan

– Release phase

• Implement the Security Incident Response Plan

65



The Software Development Lifecycle 

Agile Model: Bucket Practices

• Requirements phase

– Create quality gates 

• Verification phase

– Execute Security Plan testing

– Apply dynamic analysis

– Conduct an attack surface review

66



The Software Development Lifecycle 

Agile Model: Every-sprint Practices

• Design phase

– Create threat models

– Perform risk analyses

– Create remediation plans

• Implementation phase

– Follow the Secure Coding Guidelines 

– Perform a static analysis

• Release phase

– Conduct the Final Security Review

– Assess for release

67



Security Engineering

68



Software Security Engineering

Introduction

• A specialized field that focuses on the security of software 
systems

• SSE attempts to bring four things together

Policy Incentives

Mechanism Assurance

• Policy: what you need to achieve

• Incentives: The reasons that the 

systems need to be secured; and the 

reasons the attackers want to evade 

security

• Mechanism: the tools, components 

processes and procedures that you can 

use to secure a system

• Assurance: the reliability of the system 

and the mechanisms

69



Software Security Engineering

Policy

• Policy is defined by the project requirements

– What needs to be private –

– What needs to be confidential – who has access

– What are the operational requirements for the system

– Legal and compliance requirements for the system

– Who is allowed to access which assets

– Required access procedures

70



Software Security Engineering

Policy

• Incentives are defined by

– The assets of the system:  what is to be protected

• PII, credit card numbers, systems, network access, student grades

– The value of the assets: to the owner and to others

• The cost you if you lose PII

• The value of your sales contacts

• The value of a stolen credit card number or the ransom value of damaging 
information

– The convertibility of the assets: can they be converted to use outside 
of the system

• Can you sell a stolen credit card number?

• Is there any value to a list of user names?  

71



Software Security Engineering

Mechanisms

• Mechanisms are the available defenses for the assets

– Procedures to create more secure code

• Threat Models, Risk Analyses, Secure Coding Guidelines

– Methods to protect data

• Cryptography, compiler security options, Principles of Secure Development

– Tools to test and validate software

• Static Code Analyzers, Dynamic Web Application Scanners, Fuzzing Tools, 
Web Proxies

– Tools to secure perimeters and systems

• Firewalls

• Intrusion Detection Systems

• Network Sniffers

72



Software Security Engineering

Assurance

• Assurance means to pledge or declare a degree of 
confidence. SSE is sometimes called Information Assurance

– This is the part of SSE where the results of the efforts are validated

– How reliable is the security of an application

• What is the probability of an exploit?

• How much interference in use of the software is created by security 
measures?

– The answers are impossible to define exactly, but can be estimated

• By looking at the results of code reviews and testing

• By assessing Post-release security incidents reported

– This is important to validate and improve the secure design process

– And to develop trust

73



Software Security Engineering

Assurance - Example

• What is your level of assurance regarding airport passenger 
security

– What percentage of weapons escape detection (50%)

– What percentage of items confiscated are actually weapons 

• It is vanishingly small

– What is the level of interference with normal use of the system

• Dramatically worse

• How would you decide if the costs are worthwhile?

– What is the cost of a failure?

74



Software Security Engineering

Personal Attributes for Security Engineers

• What attributes are found in successful software security 
engineers

– Knowledge of

• Operating systems (MS Windows, Linux, OSX, …)

• Languages (HTML, JavaScript, Java, C#, C/C++, Python, …)

• Protocols (TCP/IP, HTTP, SSL, …)

• The SDL

• Programming and programming methods

• Networks

• Security tools

• Testing tools

75



Software Security Engineering

Personal Attributes for Security Engineers

– Sufficient knowledge of security to know where to look

– An inquiring mind

– The ability to think like an attacker

– An evil streak

76



Software Security Engineering 

How to Think Like An Attacker

– Think about what the software might do that is unexpected

– Be contrarian; do the opposite of what is expected

– Think about what the developers might have missed

– Think about what is going on underneath the surface

– Think about how you might defend the application and where they 
might be a weakness

– Model the attack surface; plan your tests, execute meticulously and 
take copious notes

– Make no assumptions because you know something about the 
product and the development process.  The attacker won’t.  
Assumptions will destroy you.

77



Software Security Engineering 

The Goals of a Security Engineer

• A Security Engineer hopes to accomplish four things

– Often called the Four Pillars of Software Security

S
e

c
u

re
 D

e
s

ig
n

S
e

c
u

re
 D

e
fa

u
lt

S
e

c
u

re
 I
m

p
le

m
e

n
ta

ti
o

n

S
e

c
u

re
 C

o
m

m
u

n
ic

a
ti

o
n

s

Secure by Design

Secure by Default

Secure by Implementation

Secure in Communications

S
e

c
u

re
 D

e
s

ig
n

S
e

c
u

re
 D

e
fa

u
lt

S
e

c
u

re
 D

e
p

lo
y
m

e
n

t

S
e

c
u

re
 C

o
m

m
u

n
ic

a
ti

o
n

s

78



Software Security Engineering 

The Goals of a Security Engineer

• Secure by Design

– The design of the software is secure

– The design process is secure

• Secure by Default

– Optional features are configured to be secure

– Default settings are the “secure” choice

– Less secure is a user’s choice

79



Software Security Engineering 

The Goals of a Security Engineer

• Secure by Implementation

– Secure coding standards followed

– The design is properly tested

– Installation, provisioning and updates are all done securely

– Maintenance procedures maintain security

• Secure in Communications

– The network is secure

– Communication methods are as secure as possible

– The software accounts for all communication unknowns

80


