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a b s t r a c t

Cognitive radio and Dynamic Spectrum Access (DSA) enable wireless users to share a wide
range of available spectrums. In this paper, we study joint spectrum allocation and sched-
uling problems in cognitive radio wireless networks with the objectives of achieving fair
spectrum sharing. A novel Multi-Channel Contention Graph (MCCG) is proposed to charac-
terize the impact of interference under the protocol model in such networks. Based on the
MCCG, we present an optimal algorithm to compute maximum throughput solutions. As
simply maximizing throughput may result in a severe bias on resource allocation, we take
fairness into consideration by presenting optimal algorithms as well as fast heuristics to
compute fair solutions based on a simplified max–min fairness model and the well-known
proportional fairness model. Numerical results show that the performance given by our
heuristic algorithms is very close to that of the optimal solution, and our proportional fair
algorithms achieve a good tradeoff between throughput and fairness. In addition, we
extend our research to the physical interference model, and propose effective heuristics
for solving the corresponding problems.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Over the past few years, the world has experienced a
very rapid proliferation of wireless devices. The traditional
static spectrum access approach, which assigns a fixed por-
tion of the spectrum to a specific license holder or a wire-
less service for exclusive use, is unable to manage the
spectrum efficiently any longer. On one hand, certain parts
of the spectrum are heavily used, such as the 2.4 GHz band
and the 5 GHz band, which leads to serious interference
and therefore poor network throughput. On the other
hand, a significant amount of spectrums remain under-uti-
. All rights reserved.
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lized or not utilized at all, which has been shown by recent
studies and experiments [2].

The most efficient and direct method to solve the above
problems is to allow wireless users to share a wide range of
available spectrums. Emerging cognitive radio technology
and the Dynamic Spectrum Access (DSA) approach enable
unlicensed wireless users (a.k.a secondary users) to sense
and access the under-utilized spectrum opportunistically
even if it is licensed, as long as the licensed wireless users
(a.k.a primary users) in such a spectrum band are not inter-
fered. A network composed of wireless users with cogni-
tive radios and dynamic spectrum access capabilities is
called a cognitive radio wireless network or a DSA wireless
network [2].

How to efficiently and fairly share the available spec-
trums is a fundamental and challenging problem in cogni-
tive radio wireless networks [2]. In a multihop wireless
network, a wireless user usually refers to a transmitter
and receiver pair (a wireless link) [11]. The spectrum shar-
ing problem usually involves two coupled problems: the
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spectrum allocation problem and the scheduling problem.
The spectrum allocation problem seeks a solution which
allocates available spectrum bands to the users for packet
transmissions. The scheduling problem looks for a solution
which determines when these users can access the allo-
cated spectrum bands. The objective is to achieve a good
tradeoff between throughput and fairness while ensuring
interference-free transmission at any time. In this paper,
we present optimal algorithms as well as fast heuristic
algorithms to solve the joint spectrum allocation and
scheduling problems in multihop cognitive radio wireless
networks. Specifically, our contributions are summarized
as follows:

1. We propose a novel Multi-Channel Contention Graph
(MCCG) to precisely characterize the impact of interfer-
ence in a cognitive radio wireless network.

2. We study the joint spectrum allocation and scheduling
problems, which have never been seriously addressed
before in the context of multihop cognitive radio wire-
less networks. We present optimal algorithms as well
as fast heuristic algorithms to solve these problems
and evaluate their performance by extensive
simulations.

3. We take account of both the protocol and the physical
interference models [7], making our solutions more
comprehensive and more suitable for practical scenar-
ios. If each wireless user is assumed to transmit at a
fixed power level, the protocol model can be used to
address interference. However, if users have the power
control capability, the physical interference model
should be considered.

The rest of this paper is organized as follows. We dis-
cuss related work in Section 2. The system model is de-
scribed in Section 3. We define the problems to be
studied in Section 4. The proposed spectrum allocation
and scheduling algorithms are presented in Section 5. We
present numerical results in Section 6 and conclude the pa-
per in Section 7.
2. Related work

The cognitive radio wireless networks have recently at-
tracted lots of research attention. The most related work is
[26], in which Zheng et al. developed a graph-theoretic
model to characterize the spectrum access problem and
devised a set of heuristics to find high throughput and fair
solutions. In [24], the concept of a time-spectrum block
was introduced to model spectrum reservation, and proto-
cols were presented to allocate such blocks. A centralized
spectrum allocation protocol called Dynamic Spectrum Ac-
cess Protocol (DSAP) was proposed in [5]. In DSAP, spec-
trum management is conducted in a central entity called
DSAP server which can obtain a global view of network
by exchanging information with users. In [6], a distributed
spectrum allocation scheme based on local bargaining was
proposed for cognitive radio wireless ad hoc networks. In
[25], the authors derived optimal and suboptimal distrib-
uted strategies for the secondary users to decide which
channels to sense and access with the objective of through-
put maximization under a framework of Partially Observa-
ble Markov Decision Process (POMDP).

Cross-layer schemes have also been proposed for cogni-
tive radio wireless networks. In [20], Wang et al. consid-
ered the joint design of dynamic spectrum access and
adaptive power management. They proposed a power-sav-
ing multi-channel MAC protocol (PSM-MMAC), which is
capable of reducing the collision probability and the wait-
ing time in the awake state of a node. The authors of [11]
proposed the Asynchronous Distributed Pricing (ADP)
scheme to solve a joint spectrum allocation and power
assignment problem. In [23], a novel layered graph was
proposed to model spectrum access opportunities, which
was used to develop joint spectrum allocation and routing
algorithms. In [21], two design methodologies were ex-
plored: a decoupled (layered) design and a collaborative
(cross-layer) design. The authors implemented the idea of
collaborative design by proposing joint routing, scheduling
and spectrum allocation algorithms. A Mixed Integer Non-
Linear Programming based algorithm was presented to
solve a joint spectrum allocation, scheduling and routing
problem in [10]. In addition, the authors of [22] presented
distributed algorithms for joint spectrum allocation, power
control, routing, and congestion control.

Maximum throughput and fair resource allocation
(channel assignment, scheduling) has also been studied
for traditional multihop wireless mesh networks in
[1,18,19]. The differences between this work and previous
works are summarized as follows: First of all, resource
allocation in a cognitive radio wireless network is quite dif-
ferent from that in traditional multihop wireless networks
such as 802.11-based wireless mesh networks due to its
special features such as dynamic channel availability,
channel heterogeneity and so on (refer to [2] for details).
Second, fairness is a major concern of this work. However,
the schemes proposed in [10,20,21,23,25] achieve different
optimization goals such as minimizing power consump-
tion, maximizing throughput and minimizing bandwidth
usage. Third, this paper focuses on the joint spectrum allo-
cation and scheduling problems. However, scheduling has
not been well addressed by [5,6,11,21–23,25,26]. Fourth,
we propose algorithms to optimally solve the formulated
problems. However, only heuristic algorithms were pro-
posed in [5,6,10,11,20,21,23,26], which cannot provide
any performance guarantees. In addition, we consider both
the protocol and physical interference models. However, in
most of previous works on spectrum allocation
[5,6,21,23,24,26], only the protocol interference model
has been considered.
3. System model

We consider a multihop cognitive radio wireless net-
work composed of static secondary users, each of which re-
fers to a transmitter and receiver pair (i.e., a wireless link).
The network can be either a traditional single radio wire-
less network or an emerging multi-radio wireless network
[16] in which each node is equipped with multiple trans-
ceivers. The available spectrums are divided into a set of
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orthogonal spectrum bands, which are also called channels.
We assume that a user can dynamically access a channel to
deliver its packets, but can only work on one of the avail-
able channels at one time. Any proposed spectrum sensing
schemes [2] can be used to detect the locally available
channels. Half-duplex operation is assumed to prevent
self-interference, i.e., one transceiver can only transmit or
receive at one time. Moreover, we only consider unicast
communication, i.e., a single transmission is intended for
exactly one receiver. In addition, any two transmissions
with a common intended receiver are not allowed to be
made simultaneously since collisions will corrupt the
packet receptions. We say a user (link) is incident to an-
other user if they share a common transceiver. We also
say a user is incident to itself (this is a technical agreement
which will make future description easier).

We address wireless interference based on both the
protocol model and the physical model [7]. In a multi-
channel network, interference should be defined on user-
channel pairs. In the protocol model, it is assumed that
each transmitter transmits at a fixed transmission power.
So there is a fixed transmission range and a fixed interfer-
ence range (which is typically 2–3 times of the transmis-
sion range [16]) associated with each user. These two
ranges may vary with the channels [26]. Two user-channel
pairs ði; jÞ and ðk;hÞ are said to interfere with each other if
(1) user i is incident to user k, or (2) j ¼ h and
dðTðiÞ;RðkÞÞ 6 Ij

i or dðTðkÞ;RðiÞÞ 6 Ih
k , where TðiÞ and RðiÞ

represent the transmitter and the receiver of user i respec-
tively, dð�Þ gives the Euclidean distance between two
nodes, and Ij

i denotes the interference range of user i on
channel j. Condition (2) implicitly covers the constraints
enforced by half-duplex operation, unicast communication
and collision. However, if user i is incident to user k and
even if j 6¼ h, we say user-channel pairs ði; jÞ and ðk;hÞ
interfere with each other, since two incident users cannot
work on different channels at the same time. This case is
not covered by condition (2) and is the reason for having
condition (1). If two user-channel pairs interfere with each
other, they cannot be active simultaneously, otherwise the
corresponding transmissions will fail.

Let sj be the set of concurrent user-channel pairs with
the same channel j and user-channel pair ði; jÞ 2 sj, then
transmissions on user i over channel j can be successful if

Gj
TðiÞRðiÞPi

N0 þ
P
ðk;jÞ2sjnfði;jÞgG

j
TðkÞRðiÞPk

P b; ð1Þ

where Gj
TðiÞRðiÞ is the channel gain for the transmitter and

the receiver of user i on channel j, which depends on path
loss, channel fading and shadowing; Pi is the power level at
the transmitter of user i; N0 is the thermal noise power at
the receiver of user i which is normally a constant. The left
hand side of the inequality is called the Signal to Interfer-
ence and Noise Ratio (SINR) at the receiver of user i and b
is a given threshold determined by certain physical layer
Quality of Service (QoS) requirements such as Bit Error Rate
(BER). This is introduced in [7] as the physical model for
concurrent wireless transmissions. Here, we assume that
each user transmits at a fixed rate on a specific channel
even if it can adjust its transmission power.
Similar as in [5], a spectrum server is assumed to man-
age the spectrum allocation and scheduling in the net-
work. It can collect information (including traffic
demand and channel availability information) from all
users periodically. Based on the collected information,
the server computes a spectrum allocation and scheduling
solution and broadcasts it to all the users at the beginning
of each scheduling period. All the users will then access
the spectrum according to the received solution. The con-
trol messages may also be exchanged over a common con-
trol channel using an extra control radio (no need to be a
cognitive radio) if they are available for each node. In this
case, the cognitive radios are only used for data transmis-
sion which can be conducted concurrently with the con-
trol information exchange. The server recomputes the
scheduling and channel allocation solution whenever it
finds out that the channel availability or traffic demands
change.

4. Problem definition

In this section, we will describe the necessary notations
and formally define the optimization problems to be
studied.

Suppose that we are given a set of N users indexed from
1 to N and a set of C channels indexed from 1 to C. Then we
can identify the set of possible user-channel pairs, denoted
as A. Here, a user-channel pair ði; jÞ is in A if and only if
channel j is available to user i. The total number of user-
channel pairs is bounded by N � C. We are also given a vec-
tor d ¼ ½d1; d2; . . . ; dN�, specifying the traffic demand of each
user, which is determined by a routing algorithm in the
network layer. However, routing is out of scope of this
paper.

We introduce the notion transmission mode to assist the
computation. A transmission mode is composed of a subset
of user-channel pairs which can be active concurrently.
Whether concurrent transmissions are allowed or not can
be determined based on the interference models described
in the last section. Since every element of a transmission
mode is a user-channel pair, once a transmission mode is
identified, a spectrum allocation is automatically deter-
mined for the set of users contained in those user-channel
pairs. We employ a T �M matrix C to represent the set of
transmission modes, where M is the total number of possi-
ble user-channel pairs, and T is the number of transmission
modes. Each row of the matrix corresponds to a transmis-
sion mode and each column corresponds to a specific user-
channel pair in A. If transmission mode t includes user-
channel pair ði; jÞ, then Ct

ij ¼ 1. Otherwise, Ct
ij ¼ 0. For ease

of presentation, we always append a special all-zero row at
the end of C which represents a transmission mode that
does not contain any user-channel pair.

The average data rate of user i can be computed asPC
j¼1

P
t:Ct

ij
¼1ptc

j
i, where pt is the fraction of time that trans-

mission mode t is activated and cj
i is the capacity of user

(link) i on channel j which is usually a constant. In a sched-
uling-based wireless system, there will be a specific trans-
mission mode activated for each time slot. Suppose that all
possible transmission modes are given. The scheduling
problem is to determine the frame length and the number
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of active time slots of each transmission mode in one
frame. If the value of pt is computed for each transmission
mode, a frame length can be easily determined by finding
the smallest positive integer L such that pt � L is an integer
for each transmission mode.

In this way, the joint spectrum allocation and schedul-
ing problem is transformed into a problem of finding all
possible transmission modes and the active time fraction
for each transmission mode. In our optimization problems,
we seek a rate allocation vector r ¼ ½r1; r2; . . . ; ri; . . . ; rN�
which specifies the rate ri allocated to each user i, all pos-
sible transmission modes along with a transmission sche-
dule vector p ¼ ½p1; p2; . . . ; pt ; . . . ; pT � which specifies the
active time fraction pt for each transmission mode t. A rate
allocation vector and a transmission schedule vector are
said to be feasible if the rate allocated to each user is no
more than the average link data rate which can be
achieved by the corresponding transmission schedule
vector.

Now we are ready to define the joint spectrum alloca-
tion and scheduling problems.

Definition 1 (MASS). The MAximum throughput Spec-
trum allocation and Scheduling (MASS) problem seeks a
feasible rate allocation vector r ¼ ½r1; r2; . . . ; rN�, all trans-
mission modes along with a feasible transmission schedule
vector such that the throughput

PN
i¼1ri is maximized.

It has been shown that simply maximizing throughput
may seriously starve some users in the network [9]. So fair-
ness must be carefully addressed. The traffic demands for
users may be quite different. Hence, addressing fairness
simply based on the value of rate allocated to each user
without taking into account its traffic demand is not a good
idea. We define a new variable called Demand Satisfaction
Factor (DSF). The DSF of a user is defined as the ratio of the
rate allocated to that user over its traffic demand, which
indicates how much a traffic demand is satisfied according
to a rate allocation vector. Therefore, we will have a DSF
vector a ¼ ½a1; a2; . . . ; ai; . . . ; aN� corresponding to each rate
allocation vector r ¼ ½r1; r2; . . . ; ri; . . . ; rN�, where ai ¼ ri=di,
1 6 i 6 N. The fair spectrum allocation and scheduling
problems are defined as follows.

Definition 2 (MMASS). A feasible rate allocation vector
r ¼ ½r1; r2; . . . ; rN� (a ¼ ½a1; a2; . . . ; aN �) is said to be a feasible
max–min fair rate allocation vector if for any other feasible
rate allocation vector r0 ¼ ½r01; r02; . . . ; r0N � (a0 ¼ ½a01; a02; . . . ; a0N �),
minfaij1 6 i 6 NgP minfa0ij1 6 i >6 Ng, where a and a0 are
the DSF vectors corresponding to r and r0 respectively. The
Max–min fair MAximum throughput Spectrum allocation
and Scheduling (MMASS) problem seeks a feasible max–min
fair rate allocation vector r ¼ ½r1; r2; . . . ; rN �, all transmission
modes along with a feasible transmission schedule vector
such that the throughput

PN
i¼1ri is maximized.

Definition 3 (PASS). The Proportional fAir Spectrum allo-
cation and Scheduling (PASS) problem seeks a feasible rate
allocation vector r ¼ ½r1; r2; . . . ; rN� (a ¼ ½a1; a2; . . . ; aN�), all
transmission modes along with a feasible transmission
schedule vector such that the utility function

PN
i¼1 logðaiÞ

is maximized, where a is the DSF vector corresponding to r.
So far, we have only defined the joint spectrum alloca-
tion and scheduling problems under the protocol interfer-
ence model. The corresponding optimization problems
under the physical interference model are almost the same
as their counterparts under the protocol model except that
a feasible power assignment needs to be determined for
each transmission mode. By feasible, we mean that on each
channel, the SINR constraint (constraint (1)) must be satis-
fied at each receiver and the power level assigned to each
user must be in the range of ½0; Pmax�. Due to the space limit
and redundancy, we omit the corresponding problem
definitions.
5. Proposed spectrum allocation and scheduling
algorithms

In this section, we will first introduce a novel graph
model, Multi-Channel Contention Graph (MCCG), to char-
acterize the impact of interference under the protocol
model. Based on it, we will present algorithms to solve
the problems defined in Section 4. Then we will discuss
the extension to the physical interference model.

5.1. Multi-channel contention Graph (MCCG)

In an MCCG GCðVC ; ECÞ, every vertex corresponds to a
user-channel pair in A. There is an undirected edge con-
necting two nodes in VC if their corresponding user-chan-
nel pairs interfere with each other, which can be
determined based on conditions described in Section 3.
Note that if two users i, k are incident to each other, then
there will be undirected edges between every two user-
channel pairs which contain i and k, respectively because
they always interfere with each other no matter which
channels are considered.

Next, we use a simple example to illustrate how to
construct an MCCG. In this example, we have five users
(transmitter–receiver pairs), a; b; c; d; e, and two channels,
channel 1 and channel 2, available to each user, which
are shown in Fig. 1a. In the figure, we have
dðA; BÞ ¼ dðB; CÞ ¼ dðC;DÞ ¼ dðD; EÞ ¼ dðF;GÞ ¼ dðD; FÞ ¼ d
ðE;GÞ ¼ R ¼ 0:5I, where R and I are the transmission and
interference range of each user respectively. We can ob-
tain the corresponding MCCG which is shown in Fig. 1b.
In the figure, each vertex corresponds to a user-channel
pair, for example, vertex ða;2Þ corresponds to user-chan-
nel pair ða;2Þ. Here, we can see that there are edges be-
tween nodes ða;1Þ and ðb;1Þ, ða;1Þ and ðb;2Þ, ða;2Þ and
ðb;1Þ, and ða;2Þ and ðb;2Þ, because user a is incident to
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user b. Moreover, there is an edge between node ða;1Þ and
ða;2Þ because any user can only work on one channel at
one time.
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The importance of the MCCG lies in the fact that a
transmission mode corresponds to an independent set
in the MCCG. Since our objective is to improve through-
put and fairness, we only need to consider the subset of
transmission modes corresponding to Maximal Indepen-
dent Sets (MISs) of GC . The MCCG turns out to be a very
useful tool for spectrum allocation in cognitive radio net-
works with multiple channels. For example, it can be
used to find all possible transmission modes for our joint
spectrum allocation and scheduling problems. In addi-
tion, the Max-Sum-Bandwidth (MSB) spectrum allocation
problem studied in [26] can be transformed to the max-
imum weight independent set problem on the MCCG,
which can be efficiently solved by some approximation
algorithms in the literature [8]. Note that the MCCG is
an extension of the well-known contention graph
proposed in [15] for single-channel wireless networks
and it is completely different from the other graph mod-
els introduced for multi-channel wireless networks
[23,26].
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5.2. Proposed algorithms for the protocol model

Our algorithms are essentially two-step methods: in the
first step, construct the MCCG and identify transmission
modes; in the second step, formulate the problems defined
in Section 4 as Linear Programming (LP) or Convex Pro-
gramming (CP) problems, and solve them using existing
algorithms [3,4].

If a set of transmission modes is given, the MASS prob-
lem and the MMASS problem can be formulated as LPs, and
the PASS problem can be formulated as a CP, which will be
shown later. If the given set includes all possible transmis-
sion modes, then by solving those LPs and CP, we can ob-
tain optimal solutions. Otherwise, if the given set only
include a subset of all transmission modes, then we will
end up with approximate solutions. In the rest of this sec-
tion, we will first present algorithms to find a set of trans-
mission modes and then present LP and CP formulations
for the three optimization problems.

As discussed before, a transmission mode actually cor-
responds to an independent set in the MCCG and only
those MISs are needed to be taken into consideration. So,
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if we can identify all possible MISs in the MCCG, then we
can obtain optimal solutions. The algorithm in [14] and
several other existing algorithms can actually find all MISs
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in a graph very efficiently. Therefore, our optimal algorithm
for the MASS problem is to apply the algorithm in [14] to
find all MISs in the MCCG firstly and then solve the corre-
sponding LP. Similarly, we can have the optimal algorithms
for the MMASS and PASS problems.

However, it is well known that the number of all MISs in
a graph may grow exponentially with the graph size. If we
take all MISs as the inputs for the LPs and the CP, it may
take exponentially long time to solve them. Therefore, we
propose a polynomial time heuristic to compute a good
subset of MISs (transmission modes) in a given MCCG.
Intuitively, a good subset needs to have good diversity, be-
cause if only a small subset of user-channel pairs is in-
cluded, it may lead to biased solutions in the second
step. Furthermore, the user-channel pair whose transmis-
sion capacity is relatively large and whose corresponding
user has relatively high traffic demand should be given
higher priority. Our algorithm is formally presented as
Algorithm 1.
Algorithm 1. Computing
transmission mode
subset
Ste
Step 1
 T :¼ ;; i :¼ 1;

X½v� :¼ 0; forall v 2 VC
p 2
 while (i <¼ q)

forall v 2 VC

S :¼ ;; Add v to S;
X½v� :¼ X½v� þ 1;
do Add node u 6¼ v to S,
s.t. u has maximum weight
wðuÞ ¼ ðdpðuÞcuÞ=ðX½u� þ 1Þ among
all nodes which is not identi-
cal or incident to any other
existing node in S;
X½u� :¼ X½u� þ 1;

until S becomes an MIS;
if ðS 62TÞ

T :¼T [ fSg;
endif

endforall
i :¼ iþ 1;

endwhile
Step 3
 output T;
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Fig. 6. Scenario 9: protocol model with N ¼ 30, C ¼ 12 and di ¼ ½12;24�.
In Algorithm 1, set S is used to record an MIS computed
during the execution of the algorithm. T is output as the
subset of all transmission modes and is guaranteed to cov-
er every node in GC at least once due to Step 2. Array X is
used to maintain a counter which counts how many times
a node has been included in some MISs of T so far. The
weight of each node v in GC is given as wðvÞ ¼ ðdpðvÞcvÞ
=ðX½v� þ 1Þ, where pðvÞ gives the corresponding user of
node v (note that every node in GC corresponds to a user-
channel pair) and dpðvÞ gives its traffic demand. cv is the
capacity of the user-channel pair corresponding to v. The
weight function wð�Þ implements the idea that we prefer
to select the user-channel pair whose transmission capac-
ity is relatively large and whose corresponding user have
relatively high traffic demand. Moreover, based on the
weight function, if the number of times a user-channel pair
is covered is relatively small, it will get more chances to be
selected. In this way, a good selection diversity can be
achieved. In the algorithm, q is a tunable parameter. We
observe that the larger the value of q is, the more MISs will
be added into T, which will lead to better solutions but
longer computation time. Obviously, Algorithm 1 is a poly-
nomial time algorithm. Its running time is dominated by
Step 2, which can be accomplished in Oðq2M þ qM3Þ time,
where M is the total number of possible user-channel pairs
which is bounded by N � C.

After obtaining a set of transmission modes, we can
solve the optimization problems defined above by solving
an LP or a CP, which are presented as follows. In the follow-
ing formulations, we have the aforementioned rate alloca-
tion variables ri or ai to represent the rate or the DSF of
user i respectively, and the scheduling variables pt . The fea-
sibility of rate allocation and scheduling described in Sec-
tion 4 are guaranteed by constraint (3) or (8) which are
actually equivalent. The summation of all scheduling vari-
ables should be equal to 1, which is ensured by constraint
(4). Only non-negative values are allowed for all those vari-
ables and the value of ai must be in ½0;1�, which are en-
forced by constraints (5), (6) and (11). User-channel pair
capacity (cj

i) and traffic demand of each user (di) are given
as inputs.

LP1: MASS

max
XN

i¼1

ri ð2Þ

subject to:

ri 6
XC

j¼1

X

t:Ct
ij
¼1

ptc
j
i; 1 6 i 6 N; ð3Þ

XT

t¼1

pt ¼ 1; ð4Þ

pt P 0; 1 6 t 6 T; ð5Þ
0 6 ri 6 di; 1 6 i 6 N: ð6Þ

LP2: Max–min d

max d ð7Þ

subject to:
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aidi 6
XC

j¼1

X

t:Ct
ij
¼1

ptc
j
i; 1 6 i 6 N; ð8Þ

XT

t¼1

pt ¼ 1;

pt P 0; 1 6 t 6 T;

d 6 ai 6 1; 1 6 i 6 N: ð9Þ

LP3ðdÞ: MMASS

max
XN

i¼1

ri

subject to:

ri 6
XC

j¼1

X

t:Ct
ij
¼1

ptc
j
i; 1 6 i 6 N;

XT

t¼1

pt ¼ 1;

pt P 0; 1 6 t 6 T;

ddi 6 ri 6 di; 1 6 i 6 N:

ð10Þ

The MASS problem can be solved by solving LP1 in
which the objective function is set to maximize the
throughput. The maximum throughput solution can serve
as a benchmark to evaluate the fair solutions provided by
solving the corresponding MMASS and PASS problems. In
order to solve the MMASS problem, we need to solve two
LPs sequentially. First, we solve LP2 and obtain a max–
min DSF value d. Because of constraint (9) and the objec-
tive function of LP2, we can guarantee that for any feasible
DSF vector a0, minfa0ij1 6 i 6 Ng 6 d. Next, we feed d to LP3
as a parameter. Constraint (10) in LP3 guarantees that in
the computed r ¼ ½r1; r2; . . . ; rN� and its corresponding DFS
vector a ¼ ½a1; a2; . . . ; aN�, we have minfaij1 6 i
6 NgP d P minfa0ij1 6 i 6 Ng. The objective of LP3 is to
maximize the throughput. Therefore, solving LP2 and
LP3ðdÞ together can provide a max–min fair maximum
throughput solution.
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Fig. 7. Physical model with N ¼ 10
The PASS problem can be formulated as a CP because it
has the similar linear constraints as the MASS problem and
the MMASS problem, and its objective is to maximize a
concave utility function.

CP: PASS

max
XN

i¼1

logðaiÞ

subject to:

aidi 6
XC

j¼1

X

t:Ct
ij¼1

ptc
j
i; 1 6 i 6 N;

XT

t¼1

pt ¼ 1;

pt P 0; 1 6 t 6 T;

0 6 ai 6 1; 1 6 i 6 N:

ð11Þ

Our two-step algorithms are summarized as follows: Step
1, construct the MCCG and apply the algorithms proposed
in [14] or our Algorithm 1 to find all or a subset of trans-
mission modes (which lead to optimal and suboptimal
solutions, respectively); Step 2, solve LP1 for the MASS
problem, solve LP2/LP3ðdÞ for the MMASS problem, or
solve CP1 for the PASS problem. Note that the LP for MASS
problem only include ðN þ TÞ variables and ð2N þ T þ 1Þ
constraints, where N and T are the number of users and
the number of transmission modes respectively. The LPs
for the MMASS problem and the CP for the PASS problem
have the similar complexities. So normally, they can all
be efficiently solved by the existing algorithms.

Our two-step algorithms are suitable for cognitive radio
wireless networks, in which the available channels to each
user may vary frequently. Every time when an existing
channel becomes no longer available to a user or a new
channel becomes available to a user, we do not have to
go through the whole two-step procedure to compute a
completely new solution. We can simply eliminate those
transmission modes including the user-channel pair which
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, C ¼ 6 and di ¼ ½10:8;25:2�.
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Fig. 8. Scenario 12: physical model with N ¼ 30, C ¼ 12 and
di ¼ ½10:8;25:2�.
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is no longer available from the current transmission mode
set, or add one or more transmission modes including the
newly available user-channel pairs to the existing set. Then
we solve the corresponding LP or CP. In other words, we do
not have to re-run Algorithm 1 to find a new set of trans-
mission modes every time when the channel availability
changes. In this way, we can obtain a new solution based
on the updated channel availability in a time-efficient
fashion. Of course, if substantial changes occur in the sys-
tem after a certain period of time, in order to guarantee
high performance, the whole two-step algorithm should
be re-executed to compute a completely new solution.

5.3. Proposed algorithms for the physical model

If we assume that every node has the power control
capability, the physical model should be used to address
interference. In this case, we are unable to model the im-
pact of interference using the MCCG because the one-to-
one interference relationships among user-channel pairs
are unavailable in the physical model. Therefore, the algo-
rithms in [14] or our Algorithm 1 cannot be applied to find
a set of transmission modes.

To our best knowledge, there is no algorithm in the lit-
erature which can identify all transmission modes under
the physical model. However, a good subset of transmis-
sion modes can be identified efficiently by revising our
Algorithm 1. Here, every time when we try to decide if a
specific user-channel pair ði; jÞ (note that a node v in Algo-
rithm 1 corresponds to a user-channel pair) can be selected
to set S in Step 2 of Algorithm 1, instead of checking if it
conflicts with another node in GC which has already been
selected to S, we verify the feasibility by solving LP4ði; EjÞ.
However, the user of a user-pair in the current S is incident
to user i, we can conclude that ði; jÞ cannot be selected to S
and no LP needs to be solved.

LP4ði; EjÞ:

min
X

l2Ej

S
fig

Pl ð12Þ

subject to:

Gj
TðlÞRðlÞPl � b

X

h2Ej

S
fignflg

Gj
TðhÞRðlÞPh � bN0 P 0 8l 2 Ej

[
fig;

ð13Þ
0 6 Pl 6 Pmax 8l 2 Ej

[
fig: ð14Þ

In LP4ði; EjÞ, Pl is the variable which specifies the power le-
vel for user l on channel j. Ej denotes the current set of
user-channels in S containing the same channel j. Again,
Tð�Þ and Rð�Þ give the transmitter and the receiver of a given
user respectively. If a feasible solution can be obtained by
solving LP4ði; EjÞ, then we can conclude that user-channel
pair ði; jÞ can be added to the current set S. This is because
that in a feasible solution, the SINR constraint defined in
the physical model is guaranteed to be satisfied for each
user according to constraint (13) and the computed power
level of each user is ensured to be in the range ½0; Pmax�
according to constraint (14). Eventually, the solution given
by LP4ðh; EjÞ can be used as the power assignment for the
corresponding transmission mode. Even though we only
need to obtain a feasible power assignment or to test if
there exists a feasible solution, it is always good to mini-
mize the total power consumption which is achieved by
the objective function (12). In addition, the same weight
function in Algorithm 1 can be used to determine which
user-channel pair has the highest priority to be selected.

After identifying a set of transmission modes, we can
then compute the rate allocation and scheduling solution
by solving LP1, LP2=LP3ðdÞ or CP1.

6. Numerical results

In our simulation, we considered multihop cognitive
radio wireless networks with stationary nodes randomly
located in a region. We randomly chose N users (links)
from a network in each run. For the protocol model, the
transmission range and corresponding interference range
of each user were set to 250 m and 500 m [16] for all chan-
nels, respectively. For the physical model, we set the ther-
mal noise power N0 ¼ �90 dB m, the SINR threshold
b ¼ 10 dB and the maximum transmission power
Pmax ¼ 300 mW [17]. The channel gain, Gj

uv was simply
set to 1=dðu; vÞ4 for all channels, where dðu; vÞ is the Euclid-
ean distance between transmitter u and receiver v. All LPs
were solved by using CPLEX 9.0 [13]. We implemented the
barrier method introduced in [4] to solve all CPs by setting
the related parameters as follows: � ¼ 10�3, l ¼ 120 and
tð0Þ ¼ 2.

Intuitively, the following parameters may have signifi-
cant impacts on system performance: the number of users
(N), the total number of channels (C), the number of chan-
nels available to each user (Ci

A), the capacity of user-chan-
nel pair (cj

i), the traffic demand on each user (di) and the
tunable parameter in Algorithm 1 (q). We studied their im-
pacts by setting these parameters to different values in dif-
ferent simulation scenarios. The DSF of each user (ai), the
throughput (

PN
i¼1ri) and the value of the utility function

(
PN

i¼1 logðaiÞ) were employed as performance metrics. In
addition, the users were sorted in the non-descending or-
der of their DSF values.
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The simulation results are presented in Figs. 2–10. In
all the figures, MASS, MMASS and PASS represent our
algorithms for the MASS problem, the MMASS problem
and the PASS problem respectively. We present network
throughput and utility function results in Figs. 9 and 10
for all simulation scenarios. In the first nine scenarios,
we evaluated our algorithms proposed for the protocol
model. In scenario 1, we conducted simulations on the
network given in Fig. 1a. In that example, N ¼ 5, C ¼ 2
and C1

A ¼ C2
A ¼ 2. Moreover, we set cj

i ¼ 24 Mbps,
8ði; jÞ 2A. The traffic demand for each user di was set
to a random number uniformly distributed in
[12,24] Mbps. The results are presented in Fig. 2. We
actually run both our optimal algorithms, and heuristic
algorithms by setting q to 1 and 2. However, we do not
present results of heuristic algorithms because they are
exactly the same as the optimal solutions. In scenarios
2–4, we performed simulation runs on a network with
10 nodes randomly distributed in a 500 m� 500 m area.
10 users were randomly selected. The other parameters
were set as follows: C ¼ 6, Ci

A ¼ 4;1 6 i 6 10. In addition,
di was set to a random number uniformly distributed in
½0:3 � 24;0:7 � 24�Mbps (i.e., ½7:2;16:8�) and cj

i was ran-
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domly chosen from f24;36gMbps. Note that these two
rate values are typical data rates specified by IEEE802:11a
[12]. We also executed both our optimal and heuristic
algorithms by setting q to 1 and 2. The corresponding re-
sults are presented in Fig. 3. We conducted another set of
simulation runs (scenarios 5–7) on the same network
with the same settings except that the traffic demand
for each user di was increased to a random number uni-
formly distributed in [12,24] Mbps. We presented the cor-
responding results in Fig. 4. In scenario 8, we tested our
heuristic algorithms (q ¼ 2) on a larger network with 30
nodes randomly distributed in a 1000 m� 1000 m area.
Accordingly, 30 users were randomly selected. In addi-
tion, we had C ¼ 12, Ci

A ¼ 8;1 6 i 6 30. The other settings
are the same as those in scenario 2. The only difference
between scenario 9 and scenario 8 is that the traffic
demand for each user di was set to a random number
uniformly distributed in [12,24] Mbps instead of
½7:2;16:8�Mbps. The corresponding results are presented
in Figs. 5,6. In the last three scenarios, scenarios 10–12,
we evaluated the heuristic algorithms proposed for the
physical model. In these scenarios, all user-channel pairs
were assumed to have a capacity of 36 Mbps and the traf-
fic demand for each user di was set to a random number
uniformly distributed in ½0:3 � 36;0:7 � 36�Mbps (i.e.,
½10:8;25:2�). The results are presented in Figs. 7,8. The
other settings of these three scenarios are the same as
those in scenarios 3, 4 and 8 respectively.

From Figs. 3, 4 and 9, we can see that the performance
achieved by our heuristic algorithms (with q ¼ 2) is almost
the same as that of the optimal solutions with regards to
both throughput and fairness. In addition, adding more
transmission modes for consideration by increasing
parameter q from 1 to 2 does not provide a noticeable
throughput improvement no matter which algorithm is
used.

As expected, we observe that the MASS algorithms per-
form best in terms of throughput but suffer from a severe
unfairness on rate allocation among users in all simulation
scenarios. For example, in scenario 5 (Fig. 4a), the traffic
demands of about half of users are not satisfied at all
(a ¼ 0). However, all the other users obtain very high DSF
values. Fig. 10 shows that the values of utility function gi-
ven by the MASS algorithm are always very small, which
also illustrates its unfairness on rate allocation. The
MMASS algorithms give the max–min DSF values which
can be clearly observed from the results of all scenarios.
Compared to the MASS algorithms, the PASS algorithms of-
fer very close throughput in all scenarios (Fig. 9). The aver-
age throughput given by the PASS algorithms is 96.3% of
the maximum achievable throughput. Moreover, they al-
ways give the best utility function values (Fig. 10), which
indicates their efficiency in fairness.
7. Conclusions

In this paper, we have studied the joint spectrum alloca-
tion and scheduling in cognitive radio wireless networks.
Specifically, under the protocol interference model, we
proposed a novel Multi-Channel Contention Graph (MCCG)
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to characterize the impact of interference. We have for-
mally defined the MASS problem, the MMASS problem,
and the PASS problem. For each problem, we presented
an optimal algorithm and a fast heuristic algorithm based
on the MCCG. In addition, we proposed fast and effective
heuristics to solve those problems under the physical
interference model. Our numerical results have shown that
the performance given by our heuristic algorithms is very
close to that of the optimal solutions. Furthermore, a good
tradeoff between throughput and fairness can be achieved
by our PASS algorithms.
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