
Review of Parsing Text Input in C++

1

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

1Parsing

Parsing ASCII Text

Caveats
The discussion of parsing that follows focuses entirely on the use of the standard stream
classes when parsing text input. The stream hierarchy is large, and only a small subset of
its functionality is presented.

Generally, C++ approaches are preferred to C approaches. Thus, for example, there is no
discussion of the use of null-terminated char arrays to store character strings. Instead,
the standard string type is used throughout.

These notes are not intended to be a comprehensive tutorial. Rather, they provide an
overview of some C++ features that are commonly used in projects typically used in CS
1044 through CS 2604. The reader is advised to consult a good C++ textbook, such as
Deitel and Deitel, or a good C++ reference, such as Stroustrup's The C++ Programming
Language.

I/O involving binary data raises different issues and requires different techniques. A
separate discussion of binary file I/O is available, probably in the immediate vicinity of
these notes.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

2Parsing

Parsing ASCII Text

Streams

The basic data type for I/O in C++ is the stream. C++ incorporates a complex hierarchy
of stream classes. The most basic stream types are:

Standard Input Streams

istream cin built-in input stream variable; by default hooked to keyboard

ostream cout build-in output stream variable; by default hooked to console

File Stream Types

ifstream hooked to desired input file by use of open() member function

ofstream hooked to desired output file similarly

String Stream Types

istringstream hooked via constructor to a string object for input

ostringstream hooked via constructor to a string object for output

Note: cin and cout are predefined variables, not types.

header file: <iostream>

header file: <fstream>

header file: <sstream>

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

3Parsing

Parsing ASCII Text

Conceptual Model of a Stream

A stream provides a connection between the process that initializes it and an object,
such as a file, which may be viewed as a sequence of data. In the simplest view, a stream
object is simply a serialized view of that other object.

To be, or not to be?

That is the question.

input file

executing process

. . .

stream object

. . . oT
b eo

.r
. .

We think of data as flowing in the stream to the process, which can remove data from
the stream as desired. The data in the stream cannot be lost by “flowing past” before
the program has a chance to remove it.

The stream object provides the process with an “interface” to the data.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

4Parsing

Parsing ASCII Text

Associating a File Stream with a File

Two basic methods:

object constructor:

ifstream In(“infoo.txt”);

ofstream Out(“outfoo.txt”);

open():

ifstream In;

In.open(“infoo.txt”);

ofstream Out;

Out.open(“outfoo.txt”);

File must (normally) be in current directory.

If named input file is not found, the stream is
not properly initialized.

If named output file is not found, an empty file
of that name is created.

If named output file is found, it is opened and
its contents deleted (truncated).

When finished with a file, input or output, the
user should invoke the close() member
function to signal that fact to the OS:

Out.close();

That’s right, no file name is used.

Never, ever, call close() on cin or cout.

Review of Parsing Text Input in C++

2

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

5Parsing

Parsing ASCII Text

Basic Stream Input

Because the various stream types are related (via inheritance), there is a common set of
operations for input and output that all support. In the discussion below, In can be any
type of input stream object and Out any type of output stream object.

Input via extraction: In >> TargetVariable;

� >> is the extraction operator

� left hand side must be an input stream variable

� right hand side must be a variable of a built-in type (pending overloading later)

� the operation attempts to extract the first complete “object” from the stream that
matches the target variable in type; some automatic conversions (such as int to
double) are supported

� leading whitespace is automatically ignored (i.e., extracted and discarded)

� in general, the type of the target variable should conform to the type of data that
will occur next in the input stream

� extractions may be chained, as:
In >> var1 >> var2 >> var3 >> . . .

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

6Parsing

Parsing ASCII Text

Basic Input Examples

Suppose the stream In is connected to a source containing the text below. The numbers
are separated by whitespace.

23 42 3.14 . . .

Assume the declarations:

int A, B;

double X;

Executing the statement below on the given stream:

In >> A >> B >> X;

results in A == 23, B == 42, and X == 3.14.

Executing the statement below on the given stream:

In >> X >> A >> B;

results in A == 42, B == 3, and X == 23.0.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

7Parsing

Parsing ASCII Text

Basic Input Examples

Suppose the stream In is connected to a source containing the text below. The numbers
are separated by whitespace.

24.73 . . .

Assume the declarations:

int A, B;

char C;

double X;

Consider executing each statement below on the given stream:

In >> X; // X == 24.73

In >> A; // A == 24

In >> A >> B; // A == 24 and then failure

In >> A >> C >> B; // A == 24, C == '.', B == 73

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

8Parsing

Parsing ASCII Text

Basic Input Examples

Suppose the stream In is connected to a source containing the text below. The numbers
are separated by whitespace.

W42 B73 . . .

Assume the declarations:

int A;

char C, D, E;

string S;

Consider executing each statement below on the given stream:

In >> C >> A; // C == 'W' and A == 42

In >> C >> D >> E; // C == 'W', D == '4', E == '2'

In >> S; // S == "W42"

Review of Parsing Text Input in C++

3

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

9Parsing

Parsing ASCII Text

Basic Stream Output

Output via insertion: Out << SourceVariable;

� << is the insertion operator

� left hand side must be an output stream variable

� right hand side must be a variable of a built-in type (pending overloading later)

� the operation attempts to write to the output stream a sequence of characters (keep
it simple for now) that represents the value of the source variable; some automatic
formatting rules are supported

� whitespace is not automatically inserted between inserted values

� user may also use manipulators to control the formatting precisely

� insertions may be chained, as:
Out << var1 << var2 << var3 << . . .

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

10Parsing

Parsing ASCII Text

Reading Single Characters: get()

Input stream objects have a member function named get() which returns the next
single character in the stream, whether it is whitespace or not.

char someChar;

In.get(someChar);

This call to the get() function will remove the next character from the stream In and
place it in the variable someChar.

If we had a stream containing “A M” (one space between A and M) we could read all
three characters by;

char ch1, ch2, ch3;
In >> ch1; // read ‘A’
In.get(ch2); // read the space
In >> ch3; // read ‘M’

We could also have used the get() function to read all three characters.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

11Parsing

Parsing ASCII Text

Skipping and Discarding Characters: ignore()

There is also a simple way to remove and discard characters from an input stream:

In.ignore(N, ch);

means to skip (read and discard) up to N characters in the input stream, or
until the character ch has been read and discarded, whichever comes first. So:

In.ignore(80, '\n');

says to skip the next 80 input characters or to skip characters until a newline character is
read, whichever comes first.

The ignore function can be used to skip a specific number of characters or
halt whenever a given character occurs:

In.ignore(100, '\t');

means to skip the next 100 input characters, or until a tab character is read,
whichever comes first.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

12Parsing

Parsing ASCII Text

Using ignore()

In.ignore(INT_MAX, '\n'); // Using INT_MAX as the numeric
In.ignore(INT_MAX, '\n'); // limit causes an the ignore to
In.ignore(INT_MAX, '\n'); // continue until a '\n' is found.

In.ignore(9, '\n'); // Skips 9 characters w/o reaching a
// newline.

In >> A;
cout << "A = " << A << endl; // A == 1

Suppose the input stream is connected to the file shown below. The first three lines are just
column labels to make the examples easier to follow. For the remaining lines, a single
space separates numbers on the same line, and the last digit on each line is followed by a
newline.

00000000001111111111
01234567890123456789

147 89 901 888
17 325 7 2234
90 555 314 229

Review of Parsing Text Input in C++

4

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

13Parsing

Parsing ASCII Text

Using ignore()

. . .
In.ignore(INT_MAX, '\n'); // Skips entire line.
In >> A;
cout << "A = " << A << endl; // A == 17

Making the same assumptions as before, and
not showing the code to skip the first three
lines:

00000000001111111111
01234567890123456789

147 89 901 888
17 325 7 2234
90 555 314 229

. . .
In.ignore(100, '9'); // Skips until a '9' is read.
In >> A;
cout << "A = " << A << endl; // A == 901 (2nd '9' here)

In.ignore(1024, '6'); // There's no '6' in the file;
// will skip to EOF.

In >> A; // This will fail. . .
cout << "A = " << A << endl; // A == ??

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

14Parsing

Parsing ASCII Text

Variant Calls to ignore()

The function ignore() provides default values for its two parameters:

In.ignore(NumericLimit, StopCharacter);

By default, the numeric limit is 1 and the stop character is EOF.

This will skip 100 characters unless the EOF is encountered first:

In.ignore(100);

This will skip 1 character unless the EOF is encountered first:

In.ignore();

This will skip to the EOF:

In.ignore(INT_MAX);

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

15Parsing

Parsing ASCII Text

setw():

� sets the field width (number of spaces in which the value is displayed).
� setw() takes one parameter, which must be an integer.
� The setw() setting applies to the next single value output only.
� may be used with numeric values, character values, and strings
� by default, output is right-justified (shoved to the right) in the field

header file: <iomanip>

Setting the Field Width for Output

. . .
int A = 10, B = 20, C = 30;
Out << setw(10) << A << setw(10) << B << C;

0000000000111111111122222222223333333333
0123456789012345678901234567890123456789

10 2030

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

16Parsing

Parsing ASCII Text

Padding Output
� By default the pad character for justified output is the space (blank) character.
� This can be changed by using the fill() manipulator:

Left Justification
� The default justification in output fields is to the right, with padding occurring

first (on the left).
� To reverse the default justification to the left:

Padding and Justification Manipulators

Out << setfill(‘0’); //pad with zeroes

Out << setw(9) << StudentID; // e.g.: 000123456

Out << setfill(‘ ’); //reset padding to spaces

Out << left; //turn on left justification

// insert left justified output statements here

Out << right; //restore right justification

Review of Parsing Text Input in C++

5

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

17Parsing

Parsing ASCII Text

Examples

int A = 42;
int B = -79;
char C = 'c', D = 'd';

cout << "00000000001111111111" << endl
<< "01234567890123456789" << endl;

cout << setw(10) << A << B << endl;
cout << left << setw(10) << A << setw(10) << B << endl;
cout << right << setw(10) << A << endl;
cout << setw(10) << C << setw(10) << D << endl;
cout << left;
cout << setw(10) << C << setw(10) << D << endl;
cout << right;

00000000001111111111
01234567890123456789

42-79
42 -79

42
c d

c d

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

18Parsing

Parsing ASCII Text

setprecision():

� sets the precision, the number of digits shown after the decimal point.
� setprecision() also takes one parameter, which must be an integer.
� The setprecision() setting applies to all subsequent floating point values,

until another setprecision() is applied.
� often applied to the stream before output if the same setting is desired for all

subsequent decimal output.

header file: <iomanip>

To activate manipulators for floating point output to the stream Out, include:

Out << fixed << showpoint;

Omitting this will cause setprecision() to fail, and will cause integer values to be
printed without trailing zeroes regardless of setprecision().

Setting the Precision of Decimal Output

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

19Parsing

Parsing ASCII Text

header file: <iomanip>It is possible to specify the numeric base for integer output:

Out << hex << 43; // prints: 2B (43 in base 16)

There are three base manipulators:

dec selects base 10
oct selects base 8
hex selects base 16

Each of these manipulators sets the state of the stream, that is, they remain in effect until
changed by insertion of another base manipulator:

Out << hex << 43 // prints: 2B

<< 19 // 13

<< oct << 19; // 23

Setting the Base of Integer Output

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

20Parsing

Parsing ASCII Text

When you attempt to extract a value from the input stream, the stream variable returns an
indication of success (true) or failure (false). You can use that to check for when you’ve
reached the end of the file from which you’re reading data, or if the input operation has
failed for some other reason.

A while loop may be used to extract data from the input stream, stopping automatically
when an input failure occurs.

Note well: a preliminary or priming read is used before the while loop. Failure to do that
will almost certainly lead to incorrect performance (see slide 14).

Now is the¶

time for¶

all good men¶

to come to the¶

aid of their party!¶§

¶ represents the return char
§ represents the end of file char

Reading to Input Failure

Review of Parsing Text Input in C++

6

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

21Parsing

Parsing ASCII Text

#include <fstream>
using namespace std;

void main() {
int anInt;
ifstream inStream;
ofstream outStream;
inStream.open(“infile.dat”);
outStream.open(“outfile.dat”);

inStream >> anInt; // priming read before loop

while (inStream) { // check for read failure
outStream << anInt << endl; // print value
inStream >> anInt; // read next value at end of

} // the loop body

inStream.close();
outStream.close();

}

It is important to understand the logic of this program. Reading to input failure is
often necessary and alternative logical designs are likely to be incorrect.

Failure-Controlled Input Example

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

22Parsing

Parsing ASCII Text

The program given on the previous slide will produce the output file shown below
from the input file shown below:

171 32 41 17§

infile.dat

171¶

32¶

41¶

17¶§

outfile.dat

. . . and it will produce the output file shown below from the input file shown below:

infile.dat

171 32 Fred 17§

outfile.dat

171¶

32¶§

At this point, an integer is expected, and the
next data is not a valid digit or ‘+’ or ‘-’. An
input failure occurs and the stream fails.

Failure-Controlled Input Example

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

23Parsing

Parsing ASCII Text

#include <fstream>
using namespace std;

void main() {
int anInt;
ifstream inStream;
ofstream outStream;
inStream.open(“infile.dat”);
outStream.open(“outfile.dat”);
// no priming read before loop
while (inStream) { // check for read failure

inStream >> anInt; // read next value at start
// of the loop body

outStream << anInt << endl; // print value
}
inStream.close();
outStream.close();

}

171 32 41 17§

171¶

32¶

41¶

17¶

17¶§

This program will not produce correct output. Logically, the
problem is that the last input operation is not followed
immediately by a test for success/failure.

Incorrect Failure-Controlled Input

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

24Parsing

Parsing ASCII Text

The end of a file is marked by a special character, called the end-of-file or EOF marker.

eof() is a boolean stream member function that returns true if the last input operation
attempted to read the end-of-file mark, and returns false otherwise.

The loop test in the program on the previous slide could be modified as follows to use
eof():

inStream >> anInt;

while (!inStream.eof()) { // check for eof()
outStream << anInt; // print value
inStream >> anInt; // read next value

}

This while loop will terminate when eof() returns false.

In general, reading until input failure is safer than the technique illustrated here.
The code shown above will not terminate gracefully if an input failure occurs in the
middle of the input file.

Detecting end-of-file: eof()

Review of Parsing Text Input in C++

7

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

25Parsing

Parsing ASCII Text

peek() provides a way to examine the next character in the input stream, without
removing it from the stream.

For example, the following code skips whitespace characters in the input stream:

char ch;

ch = inFile.peek(); // peek at first character

// while the first character is a space, tab or newline

while ((ch == ' ' || ch == '\t' || ch == '\n') && (inFile)) {

inFile.get(ch); // remove it from the stream

ch = inFile.peek(); // peek at the (new) first char

}

Look-ahead parsing: peek()

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

26Parsing

Parsing ASCII Text

putback() provides a way to return the last character read to the input stream.

For example, the following code also skips whitespace characters in the input
stream:

char ch;

inFile.get(ch); // remove first character from stream

// while you just got a space, tab or newline

while ((ch == ' ' || ch == '\t' || ch == '\n') && (inFile)) {

inFile.get(ch); // remove next character from stream

}

inFile.putback(ch); // last character read was

// not whitespace, so put it back

Changing your mind: putback()

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

27Parsing

Parsing ASCII Text

Checking for Stream Failure: fail()

fail() provides a way to check the status of the last operation on the input stream.

fail() returns true if the last operation failed and returns false if the operation was
successful.

#include <fstream>
using namespace std;

void main() {
ifstream inStream(“infile.dat”);

if (inStream.fail()) { // !In will also work
cout << “File Not Found”;
return;

}

// . . . now do interesting stuff . . .
}

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

28Parsing

Parsing ASCII Text

Recovering from Stream Failure: clear()

clear() provides a way to restore a failed stream to use.
. . .

const int MAXDATA = 100;
string Name;
int Idx = 0, tmpInt;
int Data[MAXDATA];
ifstream In(“infile.dat”);

In >> tmpInt;
while (In) {

Data[Idx] = tmpInt;
In >> Data[Idx];
Idx++;

}
In.clear();
In >> Name;
In.ignore(INT_MAX, '\n');

. . .

If an input stream goes into a fail state, it remains in that state unless it is explicitly reset.
Even closing and re-opening the file will not work.

42 13 27 9 3 foo

8 129 89 bar

infile.dat

Here we have input lines that
begin with a variable number of
integer values, followed by a
character string… the problem is
to read all the integers w/o
knowing how many there are and
then recover to read the string.

This could also be achieved by
using peek() and isdigit().

Review of Parsing Text Input in C++

8

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

29Parsing

Parsing ASCII Text

Working with Character Strings

The C++ language provides three ways to deal with sequences of characters:

� string literals (constants) such as: “Hello, world”
� C-style arrays of char such as: char myCharArray[100];
� string objects such as: string myStringObject;

From a modern perspective, the addition of the string type to the C++ language
renders the use of char arrays for variable character data obsolete.

String objects are simpler to use because they adjust to the size of the data stored and
eliminate the problems associated with the array dimension.

String objects provide a robust library of member functions to manipulate character data.

String objects are type-safe, and may be used for the return value from a function, unlike
an array.

The following notes discuss parsing with string objects. For a more general overview of
string objects, see the Chapter 12 on String Objects in the CS 1044 notes (online).

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

30Parsing

Parsing ASCII Text

String Objects

string type may be declared and optionally initialized as:

string Greetings;
string Greetings2(“Hello, world!”); // constructor syntax
string Greetings3 = “Hello, world!”; // initialization syntax

string objects may be assigned using =, and compared using ==, >, <, etc.

string objects do NOT store their data as a C-style null-terminated char array.

The limit on the number of characters a string object can store can be found using the
member function capacity():

cout << Greetings2.capacity() << endl;

However, the capacity will increase automatically as needed:

Greetings2 = "Everything should be made as simple as possible";
cout << Greetings2.capacity() << endl;

header file: <string>

Prints 31

Prints 63

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

31Parsing

Parsing ASCII Text

String Output

A string variable may be printed by inserting it to an output stream, just as with any
simple variable:

cout << Greetings3 << endl;

Just as with string literals, no whitespace padding is provided automatically, so:

cout << Greetings3 << “It’s a wonderful day!”;

would print:

Hello, world!It’s a wonderful day!

as opposed to:

cout << Greetings3 << “ ” << “It’s a wonderful day!”;

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

32Parsing

Parsing ASCII Text

Manipulating String Output

setw() may be used, along with the justification and padding manipulators, to control
the formatting of string output:

string S = "Flintstone, Fred";

cout << "0000000000111111111122222222223333333333" << endl
<< "0123456789012345678901234567890123456789" << endl;

cout << setw(40) << S << endl;
cout << left;
cout << setw(40) << S << endl;
cout << right << setfill('*');
cout << setw(40) << S << endl;

0000000000111111111122222222223333333333
0123456789012345678901234567890123456789

Flintstone, Fred
Flintstone, Fred
************************Flintstone, Fred

Review of Parsing Text Input in C++

9

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

33Parsing

Parsing ASCII Text

String Input: extraction

The stream extraction operator may be used to read characters into a string variable:

string Greetings;
In >> Greetings;

The extraction statement reads a whitespace-terminated string into the target string
(Greetings in this case), ignoring any leading whitespace and not removing the
terminating whitespace character, or it in the target string.

The amount of storage allocated for the variable Greetings will be adjusted as
necessary to hold the number of characters read. (There is a limit on the number of
characters a string variable can hold, but that limit is so large it is of no concern.)

Of course, it is often desirable to have more control over where the extraction stops.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

34Parsing

Parsing ASCII Text

Delimited Input: getline()

The getline() standard library function provides a simple way to read character input
into a string variable, controlling the “stop” character.

Suppose we have the following input file:

Fred Flintstone Laborer 13301
Barney Rubble Laborer 43583

There is a single tab after the employee name, another single tab after the job title, and a
newline after the ID number.

Assuming iFile is connected to the input file above, the statements

string String1;

getline(iFile, String1);

would result in String1 having the value:

“Fred Flintstone Laborer 13301”

String1.dat

Whereas, the statement

iFile >> String1;

would have stored “Fred” in String1.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

35Parsing

Parsing ASCII Text

Delimited Input: getline()

As used on the previous slide, getline() takes two parameters. The first specifies
an input stream and the second a string variable.

Called in this manner, getline() reads from the current position in the input
stream until a newline character is found.

Leading whitespace is included in the target string.

The newline character is removed from the input stream, but not included in the target
string.

It is also possible to call getline() with three parameters. The first two are as
described above. The third parameter is a char, which specifies the “stop” character;
i.e., the character at which getline() will stop reading from the input stream.

By selecting an appropriate stop character, the getline()function can be used to
read text that is formatted using known delimiters. The example program on the
following slides illustrates how this can be done with the input file specified
previously.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

36Parsing

Parsing ASCII Text

Delimited Input Example
#include <fstream> // file streams
#include <iostream> // standard streams

#include <string> // string variable support
using namespace std; // using standard library

void main() {

string EmployeeName, JobTitle; // strings for name and title
int EmployeeID; // int for id number

string fName = "String1.dat";

ifstream iFile(fName.c_str());

if (iFile.fail()) {
cout << "File not found: " << fName << endl;;

return;

}
// Priming read:

getline(iFile, EmployeeName, '\t'); // read to first tab
getline(iFile, JobTitle, '\t'); // read to next tab

iFile >> EmployeeID; // extract id number

iFile.ignore(80, '\n'); // skip to start of next line

See later slide for better
error handling.

Member function c_str() returns a C-style string,
which is what open() requires.

Review of Parsing Text Input in C++

10

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

37Parsing

Parsing ASCII Text

Delimited Input Example

while (iFile) { // read to failure

cout << "Next employee: " << endl; // print record header

cout << EmployeeName << endl // name on one line

<< JobTitle << " " // title and id number

<< EmployeeID << endl << endl; // on another line

getline(iFile, EmployeeName, '\t'); // repeat priming read

getline(iFile, JobTitle, '\t'); // logic

iFile >> EmployeeID;

iFile.ignore(80, '\n');

}

iFile.close(); // close input file

}

This program takes advantage of the formatting of the input file to treat each input line
as a collection of logically distinct entities (a name, a job title, and an id number). That
is generally more useful than simply grabbing a whole line of input at once.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

38Parsing

Parsing ASCII Text

Improved Error Handling

// . . .

string fName = "String1.dat";

ifstream iFile(fName.c_str());

while (iFile.fail()) {

iFile.clear();

cout << "File not found: " << fName << endl;

cout << "Please enter new name: ";

getline(cin, fName);

cin.ignore(1, '\n');

iFile.open(fName.c_str());

}

// . . .

The way the previous program responds to a missing input file can be improved:

Clear the input stream following failure.

Prompt user for new file
name.

Read the file name (until a newline is found).
Now it gets ugly. The user has to press Return
twice. Once to flush the keyboard buffer and
once to satisfy getline(). That leaves an extra
newline in the input stream.

Get rid of the second newline.

Try to open input file again.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

39Parsing

Parsing ASCII Text

Input StringStream Objects

C++ also provides input streams that may be hooked to string objects:

string Greetings(“Hello, world!”);
istringstream In(Greetings);

istringstream objects may be used to parse the contents of string objects in much
the same way that ifstream objects may be used with files:

In >> Word1 >> Word2;
cout << setw(3) << Word1.length() << ":" << Word1 << endl

<< setw(3) << Word2.length() << ":" << Word2 << endl;

will print:

That’s the same behavior as if we were extracting from an istream or an ifstream.

There are times when it’s easiest to grab an entire block of characters into a string
object and then parse them with an istringstream; for one thing this allows you to
back up as far as you like in the string.

header file: <sstream>

6:Hello,
6:world!

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

40Parsing

Parsing ASCII Text

StringStream Example
#include <fstream> // file streams
#include <iostream> // standard streams

#include <sstream> // string stream support
#include <string> // string variable support

using namespace std; // using standard library

void main() {

string FullLine;
string EmployeeName, JobTitle; // strings for name and title

int EmployeeID; // int for id number

string fName = "String.dat";

ifstream iFile(fName.c_str());
while (iFile.fail()) {

iFile.clear();

cout << "File not found: " << fName << endl;
cout << "Please enter new name: ";

getline(cin, fName);
cin.ignore(1, '\n');

iFile.open(fName.c_str());

}

Review of Parsing Text Input in C++

11

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

41Parsing

Parsing ASCII Text

StringStream Example

getline(iFile, FullLine); // read first line into a string

while (iFile) {

istringstream In(FullLine);

getline(In, EmployeeName, '\t');

getline(In, JobTitle, '\t');

In >> EmployeeID;

cout << "Next employee: " << endl;
cout << EmployeeName << endl

<< JobTitle << " "

<< EmployeeID << endl << endl;

getline(iFile, FullLine);
}

iFile.close();
}

Associate an istringstream with FullLine.

Parse FullLine for the Name, Title and ID. Note
that the operations are identical to those for an
ifstream.

What’s the advantage? Not much, here.

However, with this approach the contents of
FullLine could be searched and/or modified
with the usual string functions, in addition to
being parsed.

At the least, stringstreams are a handy tool.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

42Parsing

Parsing ASCII Text

Output StringStream Objects

C++ also provides output streams that may be hooked to string objects:

string Greetings;
ostringstream Out(Greetings);

ostringstream objects may be used to write the contents of string objects in much
the same way that ofstream objects may be used with files:

cout << "Please enter your name: ";
string UserName;

cin >> UserName; // assume user enters Fred
Out << "Hello, " << UserName << endl;

Greetings will now contain: "Hello, Fred"

Moreover, you can even use output manipulators with ostringstream objects.

ostringstream objects are primarily useful for assembling complex output before
committing it to file or the screen.

header file: <sstream>

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

43Parsing

Parsing ASCII Text

Parsing Tab-separated Input

Consider the problem of parsing a script file which contains lines of the
following form:

<command> <tab> <tab-separated parameters> <newline>

For example:
; Parser test input 01
;
reverse parse this line
;
sort gamma alpha delta
;
add 17 43 29
exit

The lines beginning with semicolons are comment lines which should be
ignored, but we'll ignore that issue for now and focus on the actual command
lines.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

44Parsing

Parsing ASCII Text

The Issues

Given the line

reverse parse this line

the program should identify the command "reverse" and then take the appropriate
action with the remainder of the line, which should result in something like:

"parse this line" reversed is: esrap siht enil

There are two parsing issues here:

- How do we deal with identifying the command?
- How do we break the line up into logical tokens?

The first issue may be handled flexibly by making use of strings,
stringstreams, and an enumerated type.

Review of Parsing Text Input in C++

12

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

45Parsing

Parsing ASCII Text

Top-Level Organization

Here's one approach:

void main() {

string inputFileName = "script.txt";
ifstream iFile(inputFileName.c_str());

if (iFile.fail()) {
cout << "File not found: " << inputFileName << endl;
return;

}

string Next = Parser(iFile); // get first line of input

while (iFile) { // quit on stream failure

if (ProcessCmd(Next) == EXIT) return; // process this command line

Next = Parser(iFile); // try for another line
}

iFile.close();
}

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

46Parsing

Parsing ASCII Text

Getting the Next Input Line

This will return the next non-empty line, if any, of the input file as a string:

string Parser(istream& In) {

string nextLine;
getline(In, nextLine, '\n'); // eat a line

while (In && (nextLine.length() == 0)){ // don't accept an empty one
getline(In, nextLine, '\n');

}

return nextLine;
}

Note that this does not take the comment lines into account.

Since main() makes no provision for dealing with comments, this must be
extended to also reject comment lines.

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

47Parsing

Parsing ASCII Text

Identifying the Command

The current command line can be parsed with a stringstream:

Command ProcessCmd(string cmdLine) {

string cmdString;
istringstream In(cmdLine); // attach a stream to the string

getline(In, cmdString, '\t'); // read the command string

Command thisCmd = Classify(cmdString); // map it to an enumerated value

switch (thisCmd) { // so it can be sorted out
case ADD: handleAdd(In); // with a switch statement

break; // and the stream can then
case REVERSE: handleReverse(In); // be passed on to the

break; // appropriate handler
case SORT: handleSort(In);

break;
};
return thisCmd;

}

enum Command {ADD, REVERSE, SORT, EXIT, UNKNOWN};

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

48Parsing

Parsing ASCII Text

Mapping a String to a Command

The mapping can be done with a simple sequence of if statements:

Command Classify(string cmdString) {

if (cmdString == "add") return ADD;
if (cmdString == "reverse") return REVERSE;
if (cmdString == "sort") return SORT;
if (cmdString == "exit") return EXIT;
return UNKNOWN;

}

A few points:

- The comparisons are case-sensitive (that can be changed).
- This is easily extended to handle different or additional commands.
- A default value is needed in case no matching command can be found.

Review of Parsing Text Input in C++

13

Computer Science Dept Va Tech January 2001 ©2000-2001 McQuain WD

49Parsing

Parsing ASCII Text

Handling a Command

The reverse command is handled easily with stream and string members:

void handleReverse(istream& In) {

string Next;
getline(In, Next, '\t'); // The istringstream is read just the

// same as any other stream
while (In) {

for (int Idx = Next.length() - 1; Idx >= 0; Idx--) {
cout << Next.at(Idx);

}
cout << '\t';

getline(In, Next, '\t'); // This fails at the end of the string,
// terminating the loop.

}
cout << endl;

}

