
A Diagram for Object-Oriented Programs

Ward Cunningham
Kent Beck

Computer Research Laboratory
Tektronix, Inc.

Abstract

We introduce a notation for diagramming the
message sending dialogue that lakes place between
objects participating in an object- oriented
computation. Our representation takes a global point
of view which emphasizes the collaboration between
objects implementing the behavior of individuals.
We illustrate the diagram's usage with examples
drawn from the Smalltalk-80 TM virtual image. We
also describe a mechanism for automatic construction
of diagrams from Smalltalk code.

1. Introduction

The Smantalk-80 virtual image [Goldberg 83] has
many examples of expertly organized programs,
many of which play an important role in the
Smalltalk-80 system. These are worthy objects of
study for at least two reasons. First, they often
provide exquisite examples of the style and idiom
unique to object-oriented programming. As valuable
as a concise definition of object-oriented
programming might be, it could not replace the
corpus of code in the virtual image for illuminating
the range of application of the object-oriented style.
Students of object-oriented programming should be
grateful that the implementors of SmaUtalk pushed
the object metaphor to the limit, building their system
out of nothing but objects. Their result offers a guide
to the "objectification" of even the most elusive
algorithms. One learns by doing and one does
Smalltalk by browsing the work of other

Permission to copy without fee all or part o f this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific ix.rmimion.

© 1986 ACM 0-89791-204-7/86/0900-0361 75¢

programmers. Second, many Smalltalk objects are
directly reusable--an even more compelling reason
to study their behavior. To the degree that one's
application mimics Smalltalk's own implementation,
one will find useful objects in the image,
preprogrammed, waiting to be used. Smalltalk's
reputation as a user-interface-prototyping
environment stems from its wealth of reusable
user-interface components.

We sought a way of presenting the computations
employed in Smalltalk's modular user interface. We
developed a representation, a diagram, that
emphasised the object nature of the interface
components. The essence of an object-oriented
computation is the dialog carried out by the objects
involved. With this in mind, we consciously omitted
from the diagram indications of state or sequence. So
reduced, a single diagram shows the cascade of
messages that result, for example, from a user
interaction. The diagrams are not unique to
user-interface codes, though, they are unique to
object-oriented computations. We have since applied
the diagramming technique to many of the more
esoteric examples from the Smalltalk-80 image. The
result has solidified our own understanding of
object-oriented programming, and enabled us to
teach others more clearly about Smalltalk-80.

In this paper we will introduce the notations of our
diagramming technique and apply them to several
examples from the Smalltalk-80 image. I ater
examples are drawn from behaviors in the image that
are often misunderstood. We hope in this way to
make a convincing demonstration of the diagrams'
usefulness. Also, the reader can expect to see
glimpses of the unique suitability of objects in
implementing user-interfaces. We close with a
discussion of an automatic technique for the
construction and formatting of publication quality
diagrams.

Small ta lk-80 is a n 'ademark o f the Xerox Corp. PostScript is
a t rademark o f Adobe Sys tems, Inc.

S ~ 1986 OOPSLA '86 Proceedings 361

2. The Diagram

We begin with objects. Objects accept responsibility
for their own behavior. As a convenience, the code
that implements this behavior is collected into a
common place for all objects of the same class.
Further, objects of one class might vary in behavior
only slightly from those of another class. A new class
is said to refine another if it implements ouly the
variant behavior while relying on the other class for
the remainder.

We represent an object as a box (See figure la.) A
message sent to an object excites behavior specific to
that object. We draw a message-send as a directed are
landing within the receiving object. If more than one
object participates in a computation then there will be
more than one box in the diagram (See figure lb.)
When one object invokes a computation in another
object through a message send, we show that send as
an arc originating in the sending object and landing in
the receiving object. With the message goes a
transfer of control. That is, the computation of the
sender is suspended until the computation of the
receiver is completed. Control returns backward
along a message arc along with the answer to the
message, if any. So far this mimics the usual
semantics of procedure call. Note that we draw a
particular message are only once, even if the message
is sent repeatedly, in a loop or otherwise.

(la)

ii

(lb)

~:i "

Figure 1. a) An object receiving a message, b) An
object sending a message to another object.

An object will exhibit behavior appropriate for the
specific message it receives. The various
computations are implemented by distinct methods,
each labeled with a method selector. We place the
selector of methods invoked by messages at the
receiving end of a message arc (See figure 2a.) It is
important to note that the method invoked by a
message will depend on the selector and the receiving
object. The same selector might select different
methods when received by different objects. In
Figure 2b, for example, we cannot tell whether the
two methods labeled "gamma" are the same. We need
to know more about the objects involved.

(2a)
.<:..............................~....................,.~.

i alph "~
b e t a !i

(2b)

:'" gain " m ~

g ilnlll, 'l

Figure 2. a) One method for "alpha" invokes another
for "beta". b) One method for "gamma" invokes
another for "gamma".

We identify an object in a diagram by its class. Recall
that all members of a class share the same methods.
The methods of the objects in Figure 3 are all exactly
determined because we know the selector and the
receiver's class for all of the messages. Recall also
that objects of one class might inherit methods from
another class. When methods are inherited from
other classes (when a class does not implement a
method, but one of its superclasses does) we divide
the receiver into layers representing the classes
involved and locate the method selector in the
appropriate layer. Figure 3b shows two objects of
two different classes (Senator and Plebe) each
refining a third class (Citizen). The method for
"gamma" invoked by each is in fact the same method,
the one both inherit from Citizen. Of course, the
same method won't necessarily execute in the same
way in both cases; it is being executed on behalf of
distinctly different objects. Figure 3c shows a
revised Plebe. This time Plebes provide their own
method for "gamma" which overrides the default
implementation inherited by all Citizens.

We draw message arcs so that they always enter an
object from above. When an are travels across a
layer of methods before finding its selector in a
deeper layer, this suggests an opportunity to override
that has not been exploited. The top layer will be that
of the object's own class. Deeper layers will be
superclasses. The bottom layer (if shown) will be the
root of the hierarchy- class Object.

Note the contradictory use of the "elevation"
methaphor by the terms "override" and "superclass".
Which way is up? Some observers have complained
that it is non-intuitive to place subclasses above
superclasses in our characterizations of objects. We
judge overriding the more important concept and like
to think of method-lookup searching deeper for an
implementation if none is provided by the surface
class. Besides, we tried drawing the diagrams
upside-down. They looked lifeless with their arcs
limply dangling between method selectors.

362 OOPSLA '86 Proceedings September 1986

Senator

Oa) (3b) Oc)

.~i Senator, ~ Senator i~. g ~ ~

i ! a l p h a , , . J I Citizen t ~ g ~ (' J 1 Citizen '

.................. 7 ~ f ~ : ~ - - I " ~ ! : ~ " : ' { " ~ ' ~ ! ~ , % Plebe '~""~'"~gamma ...

Figure 3. a) A Senator's method for "alpha" invokes a Plebe's method for "beta". b) A
Senator's method for "gamma" invokes a Plebe's method for "gamma", in this case the
same method inherited by all Citizens. c) A variant of b) where a Plebe overrides the
inherited implementation of "gamma".

Consider an example drawn from the Smalltalk-80
image. The class Collection includes refmements for
many commonly used aggregate data structures-
arrays, sets, linked lists and the like. An
OrderedCollection, for example, implements a
flexibly sized array. An OrderedCollection responds
to the message "add: anElement" by adding
anElement at the next available location within itself.
A slightly simplified diagram of this operation
appears in Figure 4a. We can see that the add method
makes use of two more elementary methods, size and
at:put:. The diagram doesn't exactly explain why, but
one could guess that size is used to determine where
to put the new element and at:put: is used to put it
there. Contrast this to the implementation of add: for
Sets in figure 4b. This time the index is found by
hashing the new element. Note that computing a hash
function is the responsibility of the new element, not
of the Set. All objects can hash themselves. Points,
for example, compute their hash from their component
x and y coordinates as illustrated in figure 4c.

We have now seen two examples of recursive
behavior. In figure 3b the "gamma" method for one
Citizen invoked itself for another. This style of
recursion is common in Smalltalk especially when the
objects are organized into a tree or list. In figure 4a
we see a distinctly different kind of self reference.
One method (add:) invokes others (size and at:put:)
on behalf of the same object. This is done by
addressing messages to "self'. This is an idiom in
SmaUtalk since it is the mechanism by which complex
methods are decomposed into simpler ones. Figure 5
illustrates some particularly interesting variations on
this theme. The method "addAll:" works by adding
each element of another Collection, one at a time.
The algorithm works for all refinements that
implement an appropriate method for "add:". We
draw messages to self as arcs arching up and back
down through the refining layers of an object,
emphasizing the ref'mement's opportunity to
override.

il SeL~ a?d~. ~.~....,..,.....i / Point 3
Collection i a t : pu t :~ Collection 1 ;I:Put: ~ [I has

hash Integer ~ hash :i

Figure 4. a) Adding to an OrderedCollection. b) Adding to a Set. c) Hashing a Point.

Sep(ember 1986 OOPSLA '86 Proceedin0s 363

Smalltalk-80 provides a mechanism for a refinement
to directly address methods of its superclasses. By
addressing a message to "super" an overriding
method can employ the method it is overriding as
part of its implementation. We show a typical
application in figure 5b. Note the absence of arch in
this message arc. This visual distinction helps to
make clear the difference in the way the method is
found by the interpreter during a call to super, in
contrast to the mechanism used in calls to self or
other objects.

o_.("I set I I I add: I S ~in''a' I >.,..
I co,oo,ioo .ddA"." I 7" Collection i~ initialize t

"...,~ ~ ~,-~_..~

Figure 5. a) Adding all of one Collection to another.
b) An initialization method invokes a similar method
in a superclass.

3. Advanced examples

For more challenging examples we turn to the
Smalltalk-80 user-interface. Smalltalk applications
present themselves as windows on a bit-mapped
display. A windaw may be divided into a number of
panes, each displaying a different aspeCt of the
application. By convention, keystrokes and mouse
buttons are interpreted in the context of the pane
touched by the cursor. Objects of class View and
Controller accept responsibility for displaying output
and interpreting input, respectively. A pair of
objects, a View and a Controller, is allocated to each
pane and another pair to the window as a whole. All
of these are organized into a tree where the root
represents the whole window, and the leaves

represent individual panes. Finally, an object called
the model, accessible to all of the Views and
Controllers, represents the state and behavior of the
application.

A window displays itself by recursively traversing its
Views. Each View displays its border, its own
contents, and any Views it might contain (see Figure
6a.) In practice, an application would employ
refinements of View specialized for the needs of each
particular pane. For example, a pane displaying a list
might use a ListView that overrides displayView with
the method for displaying lists. The actual contents
of the list would be accquired from the model as
shown in figure 6b. Note that the task of displaying a
window has been decomposed using three separate
programming techniques. First, several objects
collaborate in the task. Second, the task is broken
into parts for each object. Third, specialized objects
can override any one of the parts. All of these
techniques are visible in figure 6.

As a user interacts with an application's window,
changes made to the model from one pane may
require updates in others. The general mechanism for
this is outlined in figure 7. A Controller recognizes
user inputs as part of its controlActivity. When an
input activity is complete, the Controller notifies the
model that it has been changed. In response, the
model notifies all of its registered dependents (Views
always register themselves as a dependent of their
model) of the need to update. The process of
updating is leR to the Views.

All Controllers cooperate to insure that the most
appropriate Controller interprets the user's input at
any given time. A Controller that wants control
(because its View contains the current cursor point)
gets control with the message "staRUp". Figure 8
shows how this message eventually invokes the

, Controller's controlActivity. The controlLoop does

(6a) ,,~._.~ (6b) - ~

I
,.] . \ di.,,,.V,ew Li.,View J I di.;,a,View I

View i pay k I :~ it..._&,,:J ~

1 displaySubViews ~ ~ ~ ~./ ' ~

~" ... 1 +~'t Model ~¢cala r ~ s t

View ay

Figure 6. a) A View displays itself and its subviews, b) A specialized View displays a
list accquired from its model.

364 OOPSLA '66 Proceedings Sep~mber 1986

(7)

Controller

~gure7. Views are advised of a change by a model.

the controlActivity repeatedly as long as the
Controller remains active. In figure 8 we see the
default implementation of convolActivity searching
among its sub-Controllers for the appropriate
controller for the moment. Refinements of
Controller differ primarily in their implementation
of controlActivity. Like the example of figure 6, this
is simply a recursive traversal of the tree of panes.
Both examples pass control to a critical method which
can be overriden to implement specialized behaviors.
Both will still inherit the behavior required to
participate in the collaborative implementation of a
user interface.

Comparing these diagrams with the Smalltalk-80
virtual image will reveal that we have bent the truth
on many occasions. Yet, we argue, we have remained
faithful to the style of the actual code. Our focus has
been on the relationship between objects participating
in a computation - a relationship that can be difficult
to see when exploring objects one at a time. This is,
in fact, the essence of object-oriented programming.

4. Creating Diagrams

Our notation emphasises the cooperation of objects
participating in a computation. We freely omit

portions of the computation judged unimportant.
Such judgement comes easily enough when drawing a
diagram by hand or with a general purpose drafting
program as in figures 1 through 8. Our strategy for
automating the drafting process had to admit
intentional and asthetic considerations. Furthermore,
we reasoned that only in the debugger [Goldberg 84],
or more correctly, the simulation capability of the
debugger, do the raw materials of the diagrams come
together in one place. That is, to collect the
information required for constructing diagrams we
must do at least as much work as the debugger does
when it steps a computation. The observation was
fortuitous in that the debugger also had a
user-interface that allowed one to step around
computations judged uninteresting.

The Smalltalk-80 debugger is shown in figure 9a. It
lists the activation records on the run-time stack,
shows the source code of the selected activation, and
provides two inspectors, one on the current object,
the other on arguments and temporary variables.
The debugger's menu has two commands to advance
the computation, step and send. Step continues
computing until the impending message returns a
value. Send retains control so the user can watch the
execution of the invoked method.

Figure 8. Control leads to contmlActivity. The default controlActivity recursively
passes control to a sub-Controller.

September lee6 OOPSLA '86 Proceedings 365

(ga)

Halt en¢ountered.J

Array(SequenceableCollect;on)))do: OrderedCollect|on))addAIILast:
O rderedCollec rich)) a ddAll:
+ddAILlst: anOrderedlCollection

"Add each element of anOrderedCollectl0n
at the en(:l Of ;he receiver Answer
anOrderedCoFlection."
anOrderedCollection

do: [:each J self addLast: each].
f anOrderedCo;lection

self I
; firstln 1
tasttnc|

We chose an extension of the debugger as our
drafting user interface. The modified debugger is
shown in figure 9b. The additional pane on the right
is a special purpose diagram editor. The objects in
the diagram can be moved around by dragging them
with the mouse. Information is added to the diagram
by menu commands step and send, which duplicate
the ordinary debugger commands except that they
record the message in the diagram. Objects and
selectors are added to the diagram on demand.
Objects require an initial placement by the user;
selectors are positioned automatically.

(9b)
Hilt en¢ountima. I

~k-r;ray(SequenceabiiCoilectl+n)))+doi - _

OrderedCoUectlon))lddAIILallt:
OrderedCollec tlon) >a ddAIl:
eddAIILut: e n O r ~ t i m l

"Add each element of enOrderedCollectlon
at the end of the receiver. Answer
anOrderedCollectlen."

anOrderedCollectlon
do: [:each, ,el f .ddLast: each]. Array I ~

tanOr4eredCollectlon 8equenclable0ollectlon.

"+'+_h_ I l._..+_h_l " ' I lastlncJ .

Figure 9. a) The Smalltalk debugger, b) The debu~zer with attached diagram editor.

commands can be used to locate the desired context
without modifying the diagream. Other mouse
operations are used to adjust the objects in the
diagram until it is visually balanced and clearly
conveys the computation.

To create a diagram one uses the step and send menu
commands from the diagram pane to record the
messages judged important. The original debugger

A prepared diagram can be saved as a bitmap or as a
high-resolution image encoded as PostScript ~
[Adobe 85] function calls. The PostScript page
description language provides a flexible way of
specifying the contents of a typeset page. We wrote
PostScript functions for each graphical element: arc,
box, selector and class. A diagram is compactly
encoded as a sequence of calls on these functions.
Figures 10a and 10b contrast the bimlap and
PostScript output.

(;ca) U0b)

OrderedGol lec t lon I addlill: addAlll./as~ddLast: I

Array I ~ I

SequenceableC~)lle~on

Figure 10. a) The bitmap output of the diagram editor, b) The same diagram with
Postscript output.

We were struck by the dynamics of the diagrams as
they developed on-screen, in the debugger. The
objects in the diagram provided a helpful spatial
reference to the objects involved in the computation.
In this regard our work is similar to Brad Meyers
visualizations in Incense [Meyers 85]. We found that
by highlighting the currently executing object we
were able to trace much more complicated
computations than with the unmodified debugger.
The facility proved helpful in locating a long standing
bug in Smalltalk's coordinate transformation code.
(The bug involved the inappropriate division of
responsibilities between panes of a window.)
Without the diagram, we had had trouble keeping
track of which pane in the computations had done
what when. Unlike the debugger's runtime stack
display, which reflects only the current state of the
computation, the extended debugger's diagram
accumulated information throughout the debugging
session.

As we pointed out early on, our notation does not
explicitly represent the sequence of a computation.
However, since the debugger obviously follows a
sequence, and our diagrams accumulate in the
debugger, our notation represents sequence when
viewed over time. Inspired by related work in
program animation by Ralph London and Rob
Duisberg [London 85], we tried recording the
dynamic behavior of a diagram as constructed. We
hoped that this, played back at high speed, would add
further insight into a computation. Playback
involved first displaying the objects in the diagram,
then, for each recorded message, drawing or
redrawing the message arc and the receiving selector.
Replaying diagrams has yet to substantially improve
our understanding of a computation, probably
because we have yet to view an animation that we
haven't just finished recording. Replaying is
sufficiently promising that we intend to try it in an
instructional context using projection display
equipment.

5. Condusion

We have presented a way of diagramming
object-oriented computations. Objects in a diagram
are represented by boxes, labeled by the object's
class and possibly its superclasses. The classes are
listed with the most concrete class at the top, giving a
natural interpretation to the term "overriding".
Messages are represented by directed ares from the
sending object to the receiving object. Selector
names at either end of an arc identify the sending and
receiving methods. Furthermore, selector placement
within an object indicates the class in which it is
defined.

We have used these diagrams to teach beginning and
advanced object-oriented programming to more than
one hundred students. We feel that their use enhances
our students' ability to understand some of the more
esoteric examples in the Smalltalk-80 image. Those
programs which rely on a dialog of several objects
are much easier to understand with diagrams than just
by examining source code. The user interface code,
recognized to be some of the most difficult to
understand, is particularly amenable to a
diagrammatic treatment.

We have also extended the Smalltalk-80 system to
automatically collect information
for diagrams, and we have provided an editing and
formating facility for the result. We implemented
this as an extension to an existing utility, the
debugger, to provide a familiar user interface. We
have in the process enhanced the utility of the
debugger.

In conclusion, we feel that the use of diagrams such as
these can help teach the concepts and practice of
object-oriented programming to naive users. In
addition, we feel they can give more experienced
programmers insight into how a complicated
object-oriented system, such as the Smalltalk-80
virtual image, divides the responsibility of a
computation. This insight is critical in a system like
Smalltalk which relies on reuse to enhance
programmer productivity.

References

[Adobe 85] Adobe Systems Incorporated. PostScript
Language Reference Manual. Addison-Wesley,
1985.

[Goldberg 83] Goldberg, A. J., Robson, D.
Smalltalk-80 : The language and its Implementation.
Addison-Wesley, 1983.

[Goldbexg 84] Goldberg, A.J. Smalltalk-80: The
Interactive Programming Environment.
Addison-Wesley, 1984.

[London 85] London, R. L., Duisberg, R. A.
Animating Programs Using Smalltalk. IEEE
Computer 18(8):61-71, Aug 1985.

[Myers 85] Myers, B. A. Incense: A System for
Displaying Data Structures. Computer Graphics:
SIGGRAPH "85 Conference Proceedings, pp
115-125. ACM, July 1985.

SefXember 1986 OOPSLA '86 Proceedings 367

