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Abstract 

We introduce a notation for diagramming the 
message sending dialogue that lakes place between 
objects participating in an object- oriented 
computation. Our representation takes a global point 
of view which emphasizes the collaboration between 
objects implementing the behavior of individuals. 
We illustrate the diagram's usage with examples 
drawn from the Smalltalk-80 TM virtual image. We 
also describe a mechanism for automatic construction 
of diagrams from Smalltalk code. 

1. Introduction 

The Smantalk-80 virtual image [Goldberg 83] has 
many examples of expertly organized programs, 
many of which play an important role in the 
Smalltalk-80 system. These are worthy objects of 
study for at least two reasons. First, they often 
provide exquisite examples of the style and idiom 
unique to object-oriented programming. As valuable 
as a concise definition of object-oriented 
programming might be, it could not replace the 
corpus of code in the virtual image for illuminating 
the range of application of the object-oriented style. 
Students of object-oriented programming should be 
grateful that the implementors of SmaUtalk pushed 
the object metaphor to the limit, building their system 
out of nothing but objects. Their result offers a guide 
to the "objectification" of even the most elusive 
algorithms. One learns by doing and one does 
Smalltalk by browsing the work of other 
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programmers. Second, many Smalltalk objects are 
directly reusable--an even more compelling reason 
to study their behavior. To the degree that one's 
application mimics Smalltalk's own implementation, 
one will find useful objects in the image, 
preprogrammed, waiting to be used. Smalltalk's 
reputation as a user-interface-prototyping 
environment stems from its wealth of reusable 
user-interface components. 

We sought a way of presenting the computations 
employed in Smalltalk's modular user interface. We 
developed a representation, a diagram, that 
emphasised the object nature of the interface 
components. The essence of an object-oriented 
computation is the dialog carried out by the objects 
involved. With this in mind, we consciously omitted 
from the diagram indications of state or sequence. So 
reduced, a single diagram shows the cascade of 
messages that result, for example, from a user 
interaction. The diagrams are not unique to 
user-interface codes, though, they are unique to 
object-oriented computations. We have since applied 
the diagramming technique to many of the more 
esoteric examples from the Smalltalk-80 image. The 
result has solidified our own understanding of 
object-oriented programming, and enabled us to 
teach others more clearly about Smalltalk-80. 

In this paper we will introduce the notations of our 
diagramming technique and apply them to several 
examples from the Smalltalk-80 image. I ater 
examples are drawn from behaviors in the image that 
are often misunderstood. We hope in this way to 
make a convincing demonstration of the diagrams' 
usefulness. Also, the reader can expect to see 
glimpses of the unique suitability of objects in 
implementing user-interfaces. We close with a 
discussion of an automatic technique for the 
construction and formatting of publication quality 
diagrams. 

Small ta lk-80 is a n 'ademark o f  the Xerox Corp. PostScript is 
a t rademark o f  Adobe  Sys tems,  Inc. 
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2. The Diagram 

We begin with objects. Objects accept responsibility 
for their own behavior. As a convenience, the code 
that implements this behavior is collected into a 
common place for all objects of the same class. 
Further, objects of one class might vary in behavior 
only slightly from those of another class. A new class 
is said to refine another if it implements ouly the 
variant behavior while relying on the other class for 
the remainder. 

We represent an object as a box (See figure la.) A 
message sent to an object excites behavior specific to 
that object. We draw a message-send as a directed are 
landing within the receiving object. If more than one 
object participates in a computation then there will be 
more than one box in the diagram (See figure lb.) 
When one object invokes a computation in another 
object through a message send, we show that send as 
an arc originating in the sending object and landing in 
the receiving object. With the message goes a 
transfer of control. That is, the computation of the 
sender is suspended until the computation of the 
receiver is completed. Control returns backward 
along a message arc along with the answer to the 
message, if any. So far this mimics the usual 
semantics of procedure call. Note that we draw a 
particular message are only once, even if the message 
is sent repeatedly, in a loop or otherwise. 

(la) 
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Figure 1. a) An object receiving a message, b) An 
object sending a message to another object. 

An object will exhibit behavior appropriate for the 
specific message it receives. The various 
computations are implemented by distinct methods, 
each labeled with a method selector. We place the 
selector of methods invoked by messages at the 
receiving end of a message arc (See figure 2a.) It is 
important to note that the method invoked by a 
message will depend on the selector and the receiving 
object. The same selector might select different 
methods when received by different objects. In 
Figure 2b, for example, we cannot tell whether the 
two methods labeled "gamma" are the same. We need 
to know more about the objects involved. 
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Figure 2. a) One method for "alpha" invokes another 
for "beta". b) One method for "gamma" invokes 
another for "gamma". 

We identify an object in a diagram by its class. Recall 
that all members of a class share the same methods. 
The methods of the objects in Figure 3 are all exactly 
determined because we know the selector and the 
receiver's class for all of the messages. Recall also 
that objects of one class might inherit methods from 
another class. When methods are inherited from 
other classes (when a class does not implement a 
method, but one of its superclasses does) we divide 
the receiver into layers representing the classes 
involved and locate the method selector in the 
appropriate layer. Figure 3b shows two objects of 
two different classes (Senator and Plebe) each 
refining a third class (Citizen). The method for 
"gamma" invoked by each is in fact the same method, 
the one both inherit from Citizen. Of course, the 
same method won't necessarily execute in the same 
way in both cases; it is being executed on behalf of 
distinctly different objects. Figure 3c shows a 
revised Plebe. This time Plebes provide their own 
method for "gamma" which overrides the default 
implementation inherited by all Citizens. 

We draw message arcs so that they always enter an 
object from above. When an are travels across a 
layer of methods before finding its selector in a 
deeper layer, this suggests an opportunity to override 
that has not been exploited. The top layer will be that 
of the object's own class. Deeper layers will be 
superclasses. The bottom layer (if shown) will be the 
root of the hierarchy- class Object. 

Note the contradictory use of the "elevation" 
methaphor by the terms "override" and "superclass". 
Which way is up? Some observers have complained 
that it is non-intuitive to place subclasses above 
superclasses in our characterizations of objects. We 
judge overriding the more important concept and like 
to think of method-lookup searching deeper for an 
implementation if none is provided by the surface 
class. Besides, we tried drawing the diagrams 
upside-down. They looked lifeless with their arcs 
limply dangling between method selectors. 
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Figure 3. a) A Senator's method for "alpha" invokes a Plebe's method for "beta". b) A 
Senator's method for "gamma" invokes a Plebe's method for "gamma", in this case the 
same method inherited by all Citizens. c) A variant of b) where a Plebe overrides the 
inherited implementation of "gamma". 

Consider an example drawn from the Smalltalk-80 
image. The class Collection includes refmements for 
many commonly used aggregate data structures- 
arrays, sets, linked lists and the like. An 
OrderedCollection, for example, implements a 
flexibly sized array. An OrderedCollection responds 
to the message "add: anElement" by adding 
anElement at the next available location within itself. 
A slightly simplified diagram of this operation 
appears in Figure 4a. We can see that the add method 
makes use of two more elementary methods, size and 
at:put:. The diagram doesn't exactly explain why, but 
one could guess that size is used to determine where 
to put the new element and at:put: is used to put it 
there. Contrast this to the implementation of add: for 
Sets in figure 4b. This time the index is found by 
hashing the new element. Note that computing a hash 
function is the responsibility of the new element, not 
of the Set. All objects can hash themselves. Points, 
for example, compute their hash from their component 
x and y coordinates as illustrated in figure 4c. 

We have now seen two examples of recursive 
behavior. In figure 3b the "gamma" method for one 
Citizen invoked itself for another. This style of 
recursion is common in Smalltalk especially when the 
objects are organized into a tree or list. In figure 4a 
we see a distinctly different kind of self reference. 
One method (add:) invokes others (size and at:put:) 
on behalf of the same object. This is done by 
addressing messages to "self'. This is an idiom in 
SmaUtalk since it is the mechanism by which complex 
methods are decomposed into simpler ones. Figure 5 
illustrates some particularly interesting variations on 
this theme. The method "addAll:" works by adding 
each element of another Collection, one at a time. 
The algorithm works for all refinements that 
implement an appropriate method for "add:". We 
draw messages to self as arcs arching up and back 
down through the refining layers of an object, 
emphasizing the ref'mement's opportunity to 
override. 

il . . . . . . . . .  SeL~ a?d~. ~.~....,..,.....i / Point ..... . ................................. 3 
Collection i a t : pu t :~  Collection 1 ..................... ;I:Put: ~ [ I has ..... 

hash Integer ~ hash :i ........ 

Figure 4. a) Adding to an OrderedCollection. b) Adding to a Set. c) Hashing a Point. 
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Smalltalk-80 provides a mechanism for a refinement 
to directly address methods of its superclasses. By 
addressing a message to "super" an overriding 
method can employ the method it is overriding as 
part of its implementation. We show a typical 
application in figure 5b. Note the absence of arch in 
this message arc. This visual distinction helps to 
make clear the difference in the way the method is 
found by the interpreter during a call to super, in 
contrast to the mechanism used in calls to self or 
other objects. 

o_.("I .... set I I I add: I S .... ~in''a' I ........................ >.,.. 
I co,oo,ioo  .ddA"." I 7" Collection i~ initialize t 

"...,~ ............................. ~ ~, ......... ...-~_..~ 

Figure 5. a) Adding all of one Collection to another. 
b) An initialization method invokes a similar method 
in a superclass. 

3. Advanced examples 

For more challenging examples we turn to the 
Smalltalk-80 user-interface. Smalltalk applications 
present themselves as windows on a bit-mapped 
display. A windaw may be divided into a number of 
panes, each displaying a different aspeCt of the 
application. By convention, keystrokes and mouse 
buttons are interpreted in the context of the pane 
touched by the cursor. Objects of class View and 
Controller accept responsibility for displaying output 
and interpreting input, respectively. A pair of 
objects, a View and a Controller, is allocated to each 
pane and another pair to the window as a whole. All 
of these are organized into a tree where the root 
represents the whole window, and the leaves 

represent individual panes. Finally, an object called 
the model, accessible to all of the Views and 
Controllers, represents the state and behavior of the 
application. 

A window displays itself by recursively traversing its 
Views. Each View displays its border, its own 
contents, and any Views it might contain (see Figure 
6a.) In practice, an application would employ 
refinements of View specialized for the needs of each 
particular pane. For example, a pane displaying a list 
might use a ListView that overrides displayView with 
the method for displaying lists. The actual contents 
of the list would be accquired from the model as 
shown in figure 6b. Note that the task of displaying a 
window has been decomposed using three separate 
programming techniques. First, several objects 
collaborate in the task. Second, the task is broken 
into parts for each object. Third, specialized objects 
can override any one of the parts. All of these 
techniques are visible in figure 6. 

As a user interacts with an application's window, 
changes made to the model from one pane may 
require updates in others. The general mechanism for 
this is outlined in figure 7. A Controller recognizes 
user inputs as part of its controlActivity. When an 
input activity is complete, the Controller notifies the 
model that it has been changed. In response, the 
model notifies all of its registered dependents (Views 
always register themselves as a dependent of their 
model) of the need to update. The process of 
updating is leR to the Views. 

All Controllers cooperate to insure that the most 
appropriate Controller interprets the user's input at 
any given time. A Controller that wants control 
(because its View contains the current cursor point) 
gets control with the message "staRUp". Figure 8 
shows how this message eventually invokes the 

, Controller's controlActivity. The controlLoop does 

(6a) ,,~._.~ (6b) - ~  

I 
,. ] .  \ di.,,,.V,ew Li.,View J I di.;,a,View I 

View i pay k I :~ it..._&,,:J ....... ~ ....... 

1 displaySubViews ~ ~ ~ .................. ~./ ' ~  

~" ............................................... 1 +~'t Model ~¢cala r ~ s t  
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Figure 6. a) A View displays itself and its subviews, b) A specialized View displays a 
list accquired from its model. 
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(7) 

Controller 

~gure7. Views are advised of a change by a model. 

the controlActivity repeatedly as long as the 
Controller remains active. In figure 8 we see the 
default implementation of convolActivity searching 
among its sub-Controllers for the appropriate 
controller for the moment. Refinements of 
Controller differ primarily in their implementation 
of controlActivity. Like the example of figure 6, this 
is simply a recursive traversal of the tree of panes. 
Both examples pass control to a critical method which 
can be overriden to implement specialized behaviors. 
Both will still inherit the behavior required to 
participate in the collaborative implementation of a 
user interface. 

Comparing these diagrams with the Smalltalk-80 
virtual image will reveal that we have bent the truth 
on many occasions. Yet, we argue, we have remained 
faithful to the style of the actual code. Our focus has 
been on the relationship between objects participating 
in a computation - a relationship that can be difficult 
to see when exploring objects one at a time. This is, 
in fact, the essence of object-oriented programming. 

4. Creating Diagrams 

Our notation emphasises the cooperation of objects 
participating in a computation. We freely omit 

portions of the computation judged unimportant. 
Such judgement comes easily enough when drawing a 
diagram by hand or with a general purpose drafting 
program as in figures 1 through 8. Our strategy for 
automating the drafting process had to admit 
intentional and asthetic considerations. Furthermore, 
we reasoned that only in the debugger [Goldberg 84], 
or more correctly, the simulation capability of the 
debugger, do the raw materials of the diagrams come 
together in one place. That is, to collect the 
information required for constructing diagrams we 
must do at least as much work as the debugger does 
when it steps a computation. The observation was 
fortuitous in that the debugger also had a 
user-interface that allowed one to step around 
computations judged uninteresting. 

The Smalltalk-80 debugger is shown in figure 9a. It 
lists the activation records on the run-time stack, 
shows the source code of the selected activation, and 
provides two inspectors, one on the current object, 
the other on arguments and temporary variables. 
The debugger's menu has two commands to advance 
the computation, step and send. Step continues 
computing until the impending message returns a 
value. Send retains control so the user can watch the 
execution of the invoked method. 

Figure 8. Control leads to contmlActivity. The default controlActivity recursively 
passes control to a sub-Controller. 
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We chose an extension of the debugger as our 
drafting user interface. The modified debugger is 
shown in figure 9b. The additional pane on the right 
is a special purpose diagram editor. The objects in 
the diagram can be moved around by dragging them 
with the mouse. Information is added to the diagram 
by menu commands step and send, which duplicate 
the ordinary debugger commands except that they 
record the message in the diagram. Objects and 
selectors are added to the diagram on demand. 
Objects require an initial placement by the user; 
selectors are positioned automatically. 

(9b) 
Hilt en¢ountima. I 

~k-r;ray(SequenceabiiCoilectl+n)))+doi - _ 

OrderedCoUectlon))lddAIILallt: 
OrderedCollec tlon) >a ddAIl: 
eddAIILut: e n O r ~ t i m l  

"Add each element of enOrderedCollectlon 
at  the end of the receiver. Answer 
anOrderedCollectlen." 

anOrderedCollectlon 
do: [ :each,  ,el f  .ddLast: each]. Array I ~  
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"+'+_h_ I l._..+_h_l " ' I lastlncJ . 

Figure 9. a) The Smalltalk debugger, b) The debu~zer with attached diagram editor. 

commands can be used to locate the desired context 
without modifying the diagream. Other mouse 
operations are used to adjust the objects in the 
diagram until it is visually balanced and clearly 
conveys the computation. 

To create a diagram one uses the step and send menu 
commands from the diagram pane to record the 
messages judged important. The original debugger 

A prepared diagram can be saved as a bitmap or as a 
high-resolution image encoded as PostScript ~ 
[Adobe 85] function calls. The PostScript page 
description language provides a flexible way of 
specifying the contents of a typeset page. We wrote 
PostScript functions for each graphical element: arc, 
box, selector and class. A diagram is compactly 
encoded as a sequence of calls on these functions. 
Figures 10a and 10b contrast the bimlap and 
PostScript output. 

(;ca) U0b) 

OrderedGol lec t lon  I addlill: addAlll./as~ddLast: I 

Array  I ~ I 

SequenceableC~)lle~on 

Figure 10. a) The bitmap output of the diagram editor, b) The same diagram with 
Postscript output. 



We were struck by the dynamics of the diagrams as 
they developed on-screen, in the debugger. The 
objects in the diagram provided a helpful spatial 
reference to the objects involved in the computation. 
In this regard our work is similar to Brad Meyers 
visualizations in Incense [Meyers 85]. We found that 
by highlighting the currently executing object we 
were able to trace much more complicated 
computations than with the unmodified debugger. 
The facility proved helpful in locating a long standing 
bug in Smalltalk's coordinate transformation code. 
(The bug involved the inappropriate division of 
responsibilities between panes of a window.) 
Without the diagram, we had had trouble keeping 
track of which pane in the computations had done 
what when. Unlike the debugger's runtime stack 
display, which reflects only the current state of the 
computation, the extended debugger's diagram 
accumulated information throughout the debugging 
session. 

As we pointed out early on, our notation does not 
explicitly represent the sequence of a computation. 
However, since the debugger obviously follows a 
sequence, and our diagrams accumulate in the 
debugger, our notation represents sequence when 
viewed over time. Inspired by related work in 
program animation by Ralph London and Rob 
Duisberg [London 85], we tried recording the 
dynamic behavior of a diagram as constructed. We 
hoped that this, played back at high speed, would add 
further insight into a computation. Playback 
involved first displaying the objects in the diagram, 
then, for each recorded message, drawing or 
redrawing the message arc and the receiving selector. 
Replaying diagrams has yet to substantially improve 
our understanding of a computation, probably 
because we have yet to view an animation that we 
haven't just finished recording. Replaying is 
sufficiently promising that we intend to try it in an 
instructional context using projection display 
equipment. 

5. Condusion 

We have presented a way of diagramming 
object-oriented computations. Objects in a diagram 
are represented by boxes, labeled by the object's 
class and possibly its superclasses. The classes are 
listed with the most concrete class at the top, giving a 
natural interpretation to the term "overriding". 
Messages are represented by directed ares from the 
sending object to the receiving object. Selector 
names at either end of an arc identify the sending and 
receiving methods. Furthermore, selector placement 
within an object indicates the class in which it is 
defined. 

We have used these diagrams to teach beginning and 
advanced object-oriented programming to more than 
one hundred students. We feel that their use enhances 
our students' ability to understand some of the more 
esoteric examples in the Smalltalk-80 image. Those 
programs which rely on a dialog of several objects 
are much easier to understand with diagrams than just 
by examining source code. The user interface code, 
recognized to be some of the most difficult to 
understand, is particularly amenable to a 
diagrammatic treatment. 

We have also extended the Smalltalk-80 system to 
automatically collect information 
for diagrams, and we have provided an editing and 
formating facility for the result. We implemented 
this as an extension to an existing utility, the 
debugger, to provide a familiar user interface. We 
have in the process enhanced the utility of the 
debugger. 

In conclusion, we feel that the use of diagrams such as 
these can help teach the concepts and practice of 
object-oriented programming to naive users. In 
addition, we feel they can give more experienced 
programmers insight into how a complicated 
object-oriented system, such as the Smalltalk-80 
virtual image, divides the responsibility of a 
computation. This insight is critical in a system like 
Smalltalk which relies on reuse to enhance 
programmer productivity. 
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