Hash Functions cont.

Last time: proved that expected search time for a uniform hash h was $\Theta(1 + \alpha)$ where $\alpha = \frac{\#\text{ of elem.}}{\text{size of table}}$.

Division Method

$\text{hash fn: } h : U \to \{0, 1, \ldots, m-1\}$

$h(k) = k \mod m$

key

pos. integer

table size
m should not be a power of 2.

pick m away from powers of 2. (primes can be good)

Multiplication Method

Choose $0 < A < 1$.

$$h(k) = \sum_{m} (kA \mod 1)$$

$$= kA - \lfloor kA \rfloor$$

advantage: m can be anything.
- can be implemented
just using 'bit' operations

\[m = 2^5 \]

\[T \times A \]

\[f = h(k) \]

(remember for CS 350!)
Graphs

A graph $G = (V, E)$ consists of a finite set of vertices V and a finite set of edges E.

Edges can be either directed or undirected.

$$E \subseteq V \times V = \{(u, v) \mid u, v \in V\}$$

"cross product" $A \times B = \{(x, y) \mid x \in A, y \in B\}$

Note: does not rule out "self-edges" (v, v).
Directed

\[u \rightarrow v \]

\((u, v) \in E\]

"an edge from u to v"

Undirected

\[u \quad \longrightarrow \quad v \]

\(E\) is symmetric

\((u, v) \in E \Rightarrow (v, u) \in E\)

Weighted Graphs

A graph is weighted if there is a wt. function
w : E → R.

Example

```
12  → v3  → -6
  ↑   ↓   ↓   ↓
  2   v4   o v5
```

"weighted directed disconnected " graph

Representations of Graphs

1. adjacency matrix
2. adjacency lists
Example

adj. matrix M

$$M(i, j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

M is a $n \times n$ matrix where $n = |V|$.
Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: V4 is marked as a sink.

- Mainly 0's
- "Sparse" matrix

Adjacency List

- $V_1 \rightarrow V_2 \rightarrow V_4$
- $V_2 \rightarrow V_3$
- $V_3 \rightarrow V_2 \rightarrow V_4$
- $V_4 \rightarrow \text{null}$
- $V_5 \rightarrow V_2$
- $V_6 \rightarrow V_5$

Use when graph is sparse
Observe that if M is symmetric (G is undirected) then we only need to store the upper diagonal of M.

Graph Algorithms

- Search it!

- BFS / DFS
 - breadth first search
 - depth first search
Colored Scheme for Vertices

Colors

- white: undiscovered vertices
- grey: visited vertex but can still find new nodes
- black: finished vertex, visited and visited neighbors
Breadth-First Search

- uses a queue data structure

\textbf{BFS} \left(G, s \right)

\textit{Source vertex}

\textbf{Initialization}

for \(u \in V - \left\{ s \right\} \)

\textbf{color} \([u] = \text{white} \);

\textbf{d} \([u] = \infty \); \(j \leftarrow \text{shortest path distance} \);

\textbf{π} \([u] = \text{nil} \); \(i \leftarrow \text{parent of } u \);

\textbf{color} \([s] = \text{gray} \);

\textbf{d} \([s] = 0 \);

\textbf{π} \([s] = \text{nil} \);

\textbf{Q} = \emptyset ; j

\textbf{ENQUEUE} \left(Q, s \right) ;

\textbf{while} \ Q \neq \emptyset

\textbf{u} = \text{DEQUEUE} \left(Q \right) ;

\textbf{for} \ v \ in \ \text{adjacent} \ (u) \n
\textbf{if} \ \text{color} \ [v] = \text{white} \n
\textbf{then} \ \text{color} \ [v] = \text{gray} \;

\textbf{d} \ [v] = \text{d} \ [u] + 1 ;

\textbf{π} \ [v] = u ;

\textbf{ENQUEUE} \left(Q, v \right) ;

\textbf{color} \ [u] = \text{BLACK} ;