
CS460

© 2003 Ray S. Babcock

Metrics

The term metrics refers to any measurement
related to software development.

● Lines of Code
● number of defects
● defects per thousand lines of code
● defects per module
● number of global variables
● hours to complete a project

Any measurable aspect of the software
development project.

CS460

© 2003 Ray S. Babcock

cont.
“Any way of measuring the process is

superior to not measuring it at all.”
(Code Complete, A Practical Handbook of

Software Construction, by Steve
McConnell, Microsoft Press)

It gives you a handle on your software-
development process that you don't have
without it.

To argue against metrics is to argue that it's
better not to know what's really
happening on your project.

CS460

© 2003 Ray S. Babcock

Useful Metrics : Size

● Total lines of code written
● Total comment lines
● Total data declarations
● Total blank lines

CS460

© 2003 Ray S. Babcock

Useful Metrics: Productivity

● Work-hours spent on the project
● Work-hours spent on each routine
● Number of times each routine changed
● Dollars spent on project
● Dollars spent per line of code
● Dollars spent per defect

CS460

© 2003 Ray S. Babcock

Useful Metrics: Defect Tracking
Severity of each defect
Location of each defect
Way in which each defect is corrected
Person responsible for each defect
Number of lines affected by each defect

correction
Work hours spent correcting each defect
Average time required to find a defect
Average time required to fix a defect
Number of attempts made to correct each

defect.
Number of new errors resulting from defect

correction

CS460

© 2003 Ray S. Babcock

Useful Metrics: Overall Quality

● Total number of defects
● Number of defects in each routine
● Average defects per thousand lines of

code
● Mean time between failures
● Compiler-detected errors

CS460

© 2003 Ray S. Babcock

Useful Metrics: Maintainability

Number of parameters passed to each routine
Number of local variables used by each routine
Number of routines called by each routine
Number of decision points in each routine
Control-flow complexity in each routine
Lines of code in each routine
Number of data declarations in each routine
Number of blank lines in each routine
Number of gotos in each routine
Number of input/output statements in each

routine

CS460

© 2003 Ray S. Babcock

Collecting Measurements

Use software tools that are currently
available.

Measurements are useful mainly for
identifying routines that are “outliers”;
abnormal metrics in a routine are a
warning sign that you should re-examine
that routine, checking for unusually low
quality.

Don't start by collecting data on all possible
metrics! you'll bury yourself in data.

CS460

© 2003 Ray S. Babcock

cont.

Standardize the measurements across your
projects, and then refine them and add to
them as your understanding of what you
want to measure improves.

Make sure you're collecting data for a
reason.

“You need to define measurement goals
before you measure.” (NASA Software
Engineering Laboratory, 1989)

CS460

© 2003 Ray S. Babcock

Pressman

“Software metrics let you know when to
laugh and when to cry ” Tom Gilb

“ Not everything that can be counted
counts, and not everything that counts
can be counted ” Albert Einstein

CS460

© 2003 Ray S. Babcock

Software Metrics Etiquette

● Use common sense and organizational
sensitivity when interpreting metrics
data.

● Provide regular feedback to the
individuals and teams who collect
measures and metrics.

● Don't use metrics to appraise individuals.
● Work with practitioners and teams to set

clear goals and metrics that will be used
to achieve them.

● Never use metrics to threaten individuals
or teams.

CS460

© 2003 Ray S. Babcock

Etiquette cont.

● Metrics data that indicate a problem area
should not be considered “negative.”
These data are merely an indicator for
process improvement.

● Don't obsess on a single metric to the
exclusion of other important metrics.

CS460

© 2003 Ray S. Babcock

SSPI
Statistical Software Process
Improvement

● Failure analysis works in the following
manner.

● All errors and defects are categorized by
origin (e.g. flaw in specification, flaw in logic,
nonconformance to standards.)

● The cost to correct each error and defect is
recorded.

● The number of errors and defects in each
category is counted and ranked in
descending order.

● The overall cost of errors and defects in each
category is computed.

CS460

© 2003 Ray S. Babcock

cont.

● Resultant data are analyzed to uncover the
categories that result in highest cost to the
organization.

● Plans are developed to modify the process
with the intent of eliminating (or reducing the
frequency of) the class of errors and defects
that is most costly.

CS460

© 2003 Ray S. Babcock

7.76%

6.05%

20.16%

10.58%

6.96%

25.71%

11.79%

10.99%

Causes of defects and their origin for four software projects

Hardware Inter -
face

Software Inter -
face

Logic Data handling

Standards Specifications User interface Error checking

CS460

© 2003 Ray S. Babcock

Project Metrics

Project metrics and the indicators derived
from them are used by a project manager
and a software team to adapt project
work flow and technical activities.

● Estimation
● Production rates

● pages of documentation
● review hours
● function points
● delivered source lines

CS460

© 2003 Ray S. Babcock

Project Metrics Intent

● Used to minimize the development
schedule by making the adjustments
necessary to avoid delays and mitigate
potential problems and risks.

● Used to assess product quality on an
ongoing basis and, when necessary,
modify the technical approach to improve
quality.

CS460

© 2003 Ray S. Babcock

cont.

● Every project should measure:
● Inputs – measures of the resources (e.g.

people, environment) required to do the work.
● Outputs – measures of the deliverables or

work products created during the software
engineering process.

● Results – measures that indicate the
effectiveness of the deliverables.

CS460

© 2003 Ray S. Babcock

Software Measurement

● Direct Measures
● process

● cost
● effort applied

● product
● loc produced
● execution speed
● memory size
● defects reported over some set period of time

CS460

© 2003 Ray S. Babcock

Software Measurement cont.

● Indirect Measures
● product

● functionality
● quality
● complexity
● efficiency
● reliability
● maintainability
● ...

These indirect measures are harder to
collect.

CS460

© 2003 Ray S. Babcock

Size-Oriented Metrics

● Errors per KLOC (thousand lines of code)
● Defects per KLOC
● $ per LOC
● Page of documentation per KLOC
● Errors per person-month
● LOC per person-month
● $ per page of documentation

CS460

© 2003 Ray S. Babcock

Function Oriented Metrics

● Number of user inputs.
● Number of user outputs.
● Number of user inquiries.
● Number of files.
● Number of external interfaces.

CS460

© 2003 Ray S. Babcock

Complexity Adjustment Values
● Does the system require reliable backup and

recovery
● Are data communications required?
● Are there distributed processing functions?
● Is performance critical?
● Will the system run in an existing, heavily utilized

operational environment?
● Does the system require on-line data entry?
● Does the on-line data entry require the input

transaction to be built over multiple screens or
operations?

● Are the master files updated on-line?
● Are the inputs , outputs, files, or inquiries complex?

CS460

© 2003 Ray S. Babcock

cont.
● Is the internal processing complex?
● Is the code designed to be reusable?
● Are conversion and installation included in the

design?
● Is the system designed for multiple installations in

different organizations?
● Is the application designed to facilitate change and

ease of use by the user?

CS460

© 2003 Ray S. Babcock

... / function point

● Errors per FP
● Defects per FP
● $ per FP
● Pages of documentation per FP
● FP per person-month

CS460

© 2003 Ray S. Babcock

LOC/FP (average)
● Assembly language 320
● C 128
● COBOL 106
● FORTRAN 106
● Pascal 90
● C++ 64
● Ada95 53
● Visual Basic 32
● Smalltalk 22
● Powerbuilder 16
● SQL 12

CS460

© 2003 Ray S. Babcock

Measuring Quality

● Correctness
measure: defects/kloc

● Maintainability
measure: mean-time-to-change (MTTC)

spoilage – the cost to correct defects
● Integrity

threat : probability that an attack of a specific
type will occur within a given time.

security: probability that the attack of a specific
type will be repelled.

integrity = summation[(1-threat) x (1-security)]

CS460

© 2003 Ray S. Babcock

Measuring Quality cont.

● Usability
● the physical and or intellectual skill required

to learn the system.
● the time required to become moderately

efficient in the use of the system
● the net increase in productivity measured

when the system is used by someone who is
moderately efficient

● a subjective assessment of users attitudes
toward the system.

CS460

© 2003 Ray S. Babcock

Defect Removal Efficiency

DRE = E/(E+D)

E = Number of errors found before delivery
D = Number of errors found after delivery

CS460

© 2003 Ray S. Babcock

Establishing A Software Metrics
Program

● Identify your business goals.
● Identify what you want to know or learn.
● Identify your subgoals.
● Identify the entities and attributes related

to yoru subgoals.
● Formalize your measurement goals.
● Identify quantifiable questions and the

related indicators that you will use to help
you achieve your measurement goals.

CS460

© 2003 Ray S. Babcock

cont.

● Identify the data elements that you will
collect to construct the indicators that
help answer your questions.

● Define the measures to be used, and
make these definitions operational.

● Identify the actions that you will take to
implement the measures.

● Prepare a plan for implementing the
measures.

CS460

© 2003 Ray S. Babcock

More lists of quality measures

Correctness – satisfies its specification
Reliability – perform with required precision
Efficiency – Amount of computing

resources required.
Integrity – Extent to which access by

unauthorized persons can be controlled.
Usability – Effort required to learn, operate,

prepare input, and interpret output.
Maintainability – Effort required to locate

and fix an error.

CS460

© 2003 Ray S. Babcock

cont.

Flexibility – Effort required to modify an
operational program.

Testability – Effort required to test a
program and ensure that it performs its
intended function.

Portability – Effort required to transfer the
program from one system to another.

Reusability – Extent to which a program can
be reused in other applications.

Interoperability – Effort required to couple
one system to another.

CS460

© 2003 Ray S. Babcock

McCall checklist
0(low) – 10(high)

● Auditability – ease with which
conformance to standards can be
checked.

● Accuracy – precision of computations
and control.

● Communication commonality – degree to
which standard interfaces, protocols, and
bandwidth are used.

● Completeness – degree to which full
implementation of required function has
been achieved.

CS460

© 2003 Ray S. Babcock

cont.

● Conciseness – compactness of the
program in terms of loc

● Consistency – use of uniform design and
documentation techniques throughout
the software development project.

● Data commonality – use of standard data
structures and types throughout the
program.

● Error tolerance – damage that occurs
when the program encounters an error.

CS460

© 2003 Ray S. Babcock

cont.

● Execution efficiency – the run-time
performance of a program.

● Expandability – the degree to which
architectural, data, or procedural design
can be extended.

● Generality – breadth of potential
application of program components.

● Hardware independence – degree to
which the software is decoupled from the
hardware on which it operates.

CS460

© 2003 Ray S. Babcock

cont.

● Instrumentation – degree to which the
program monitors its own operation and
identifies errors that do occur.

● Modularity – the functional independence
of program components.

● Operability – ease of operation.
● Security – availability of mechanisms that

control or protect programs and data.
● Self-Documentation – degree to which the

source code provides meaningful
documentation.

CS460

© 2003 Ray S. Babcock

cont.

● Simplicity – degree to which a program
can be understood without difficulty.

● Software system independence – degree
to which the program is independent of
nonstandard programming language
features, operating system
characteristics, and other environmental
constraints.

● Traceability – ability to trace a design
representation or actual program
component back to requirements.

CS460

© 2003 Ray S. Babcock

cont.

● Training – degree to which the software
assists in enabling new users to apply
the system.

