
CS351

© 2003 Ray S. Babcock

Five UML Views of a System

DESIGN

PROCESS DEPLOYMENT

IMPLEMENTATION

USE CASE

CS351

© 2003 Ray S. Babcock

UML Views of a System

The architecture of a system is the
fundamental organization of the system
as a whole.

The five UML Views:
● Use Case View: focuses on scenarios
● Design View: focuses on the vocabulary
● Process View: focuses on timing & control
● Implementation View: focuses on physical

system
● Deployment View: focuses on geographic

distribution.

CS351

© 2003 Ray S. Babcock

Unified Process

Key Features
● Use Case Driven
● Architecture-centric
● Iterative and Incremental

Four Phases (span between milestones)
● Inception
● Elaboration
● Construction
● Transition

CS351

© 2003 Ray S. Babcock

Phases & Major Milestones
Inception Elaboration Construction Transition

Life-Cycle
Objectives

Life-Cycle
Architecture

Initial
Operational
Capability

Product
Release

Iteration 1

Iteration 2 Iteration x+1 Iteration y+1

Iteration x Iteration y Iteration z

●
●
●

●
●
●

●
●
●

CS351

© 2003 Ray S. Babcock

Inception

Primary goal is to establish the case for the
viability of the proposed system.

● Define the scope of the system.
● Outline a candidate architecture.
● Identify critical risks and how to address

them.
● Start to make the business case that the

project is worth doing based on initial
estimates of cost, effort, schedule, and
product quality.

CS351

© 2003 Ray S. Babcock

Inception Milestones

Life-Cycle Objectives
● The major stakeholders agree on the scope of

the proposed system.
● The candidate architecture clearly addresses

a set of critical high-level requirements.
● The business case for the project is strong

enough to justify a green light for continued
development.

CS351

© 2003 Ray S. Babcock

Elaboration
Primary goal is to establish the ability to

build the new system given the financial
constraints, schedule constraints, and
other kinds of constraints.

● Capture a healthy majority of the remaining
requirements.

● Expand the candidate architecture into a full
architectural baseline (internal release of the
system focused on describing the
architecture).

● Address the risks on an ongoing basis.
● Finalize the business case, prepare a project

plan.

CS351

© 2003 Ray S. Babcock

Elaboration Milestones

Life-Cycle Architecture
● Most of the functional requirements for the

new system have been captured in the use
case model

● The architectural baseline is a small, skinny
system that will serve as a solid foundation
for ongoing development.

● The business case has received a green light,
and the project team has an initial project
plan that describes how the Construction
phase will proceed.

CS351

© 2003 Ray S. Babcock

Construction

Primary goal is to build the system that is
capable of operating successfully in beta
customer environments.

The major milestone is called the Initial
Operational Capability. More or less fully
operational in beta customer's hands.

CS351

© 2003 Ray S. Babcock

Transition

Primary goal is to roll out the fully
functional system to customers.

The major milestone is called the Product
Release.

CS351

© 2003 Ray S. Babcock

Five Work Flows

Each work flow is a set of activities that
various project workers perform.

● Requirements
● Analysis
● Design
● Implementation
● Test

These five work flows are associated with
six kinds of UML models.

CS351

© 2003 Ray S. Babcock

Six Basic Unified Process Models

Analysis
Model

Design
Model

Use Case
Model

Deployment
Model

Implementation
Model

Test
Model

realized by

specified by

implemented by verified by

distributed by

CS351

© 2003 Ray S. Babcock

Requirements Work Flow

● Aimed at building the Use Case Model.
● Captures the functional requirements of

the system being modeled.
● Serves as the foundation for all other

development work (see previous slide)
● Prototyping activities are a part of the

requirements work flow.

CS351

© 2003 Ray S. Babcock

Analysis Work Flow

● Aimed at building the Analysis Model.
● Helps developers refine and structure the

functional requirements captured in the
use case model.

● Realizations of the use cases that lend
themselves better to design and
implementation.

CS351

© 2003 Ray S. Babcock

Design Work Flow

● Aimed at building the Design Model.
● Describe the physical realizations of the

use cases.
● Describe the physical realizations of the

contents of the analysis model.
● Serves as an abstraction of the

implementation model.
● Also focuses on the Deployment Model

which defines the physical organization
of the system in terms of computational
nodes.

CS351

© 2003 Ray S. Babcock

Implementation Work Flow

● Aimed at building the Implementation Model.
● Describes how the elements of the design

model are packaged into software
components.

● source code files
● dynamic link libraries (dlls)
● enterprise Java Beans (ejbs)

CS351

© 2003 Ray S. Babcock

Test Work Flow

● Aimed at building the Test Model
● Describes how integration and system

tests will exercise executable
components from the implementation
model.

● Describes how the team will perform
tests.

The test model contains test cases often
derived directly from the use cases.

CS351

© 2003 Ray S. Babcock

Identifying Relevant Real-World
Things

An object is simply a real-world thing or
concept.

● An object has identity. Generally takes
the form of a human-readable name.

● An object has state. The various
properties that describe the object
(attributes) and the values of those
attributes at some point in time.

● An object has behavior. Represented by
functions (methods) that use or change
attributes.

CS351

© 2003 Ray S. Babcock

Classes

A class is a collection of objects that have
the same characteristics.

An object that belongs to a particular class
is often referred to as an instance of that
class.

UML's standard notation is a box with three
parts (seen before).

CS351

© 2003 Ray S. Babcock

UML Class Notations

Class

Attributes

Operations

Class

Class

Operations

Class

Attributes

CS351

© 2003 Ray S. Babcock

Class Relationships

Associations
● Structural connection between classes.
● Shown as a line between classes.
● If no arrow, then the association is

bidirectional.
● Can have adornments

● Name: indicating nature of relationship.
● Roles: the faces that classes present to other

classes.
● Multiplicity: How many objects associated with

each class can be present within the association.
Fixed Value (1 or 3) Range of values (3..*)
Many (*) Set of values (2,4,6,8)

CS351

© 2003 Ray S. Babcock

Aggregation

An aggregation is a special kind of
association – a “whole/part” relationship
within which one or smaller clases are
“parts” or a larger “whole”.

UML notation for an aggregation is an open
diamond at one end of the line
connecting the classes. The class next to
the diamond is the “whole” class. The
class at the other end is the “part” class.

CS351

© 2003 Ray S. Babcock

WHOLE
CLASS

PART
CLASS

AGGREGATION

CS351

© 2003 Ray S. Babcock

Generalization

Generalization refers to a relationship
between a general class (the superclass
or parent) and a more specific version of
that class (the subclass or child).

The subclass is a kind of the superclass.

A subclass inherits the attributes and
operations from one super class (single
inheritance) or from more than one
(multiple inheritance).

CS351

© 2003 Ray S. Babcock

Generalization (cont.)

Two important principles of generalization:

● Substitutability states that an object of a
subclass may be substituted anywhere
an object of an associated superclass is
used.

● Polymorphism states that an object of a
subclass can redefine any of the
operations it inherits from its
superclass(es).

CS351

© 2003 Ray S. Babcock

UML Generalization Notation

Parent Class

Child Class

CS351

© 2003 Ray S. Babcock

Association Classes

An association class is a cross between an
association and a class. You use it to
model an association that has interesting
characteristics of its own outside the
classes it connects.

It is handy to break a many-to-many
relationship into a set of one-to-many
relationships.

CS351

© 2003 Ray S. Babcock

UML Association Class Notation

Class 1 Class 2

Association
Class

CS351

© 2003 Ray S. Babcock

Association Class Example
Online Bookstore

Author Book

BookAndAuthor

title:String

role

CS351

© 2003 Ray S. Babcock

Example notes

● Normally there would be a many-many
relationship between Author and Book.

● An Author may have written more than one
Book.

● A Book may have one or more Authors.
● The presence of the BookAndAuthor

association class allows us to pair one
Author with one Book. The role attribute
gives us the option of stating whether the
Author was the primary or supporting
author or something else (editor).

CS351

© 2003 Ray S. Babcock

UML Class Diagram

A class diagram shows classes and the
various relationships in which they are
involved.

Class diagrams are the primary means by
which you show the structure of a system
being developed.

CS351

© 2003 Ray S. Babcock

Class Diagram Example
Online Bookstore

BookAndAuthor
role

Author Book

title:String

Publisher

ReviewReviewer
writes

is rated by

Shipping Info

Order Billing Info

Customer

Customer Review
Editorial Review

Shipper

name

Account
email addres, ID
password

verifyPassword()
1

1
assignRatiing(rating:Int)
computeAvgRating():Double

1

*

CS351

© 2003 Ray S. Babcock

Object Diagrams

Similar to Class diagram with name of the
class to which object belongs after a
colon and contents of top box underlined.

CS351

© 2003 Ray S. Babcock

Sample Object Diagram
Online Bookstore

:BookAndAuthor

role=”supporting author”

:Author
name=”Kendall Scott”

:Book
title=”Uml Distilled”

AW:Publisher
name=”Addison Wesley”

Only 1 of the
four objects has
a name. The
others are
anonymous.

CS351

© 2003 Ray S. Babcock

UML Notes

Class

Text or hyperlink
to another
document

CS351

© 2003 Ray S. Babcock

UML Packages

A grouping of
pieces of a model.

CS351

© 2003 Ray S. Babcock

Capturing Requirements

ACTORS AND USE CASES. An actor
represenents one of two things:

● A role that a user can play with regard to the
system.

● An entity, such as another system or a
database, that resides outside the system.

Actor

CS351

© 2003 Ray S. Babcock

Sample Actors

Customer Shipping System Accountant

CS351

© 2003 Ray S. Babcock

Use Cases

A use case is a sequence of actions that an
actor performs within a system to achieve
a particular goal.

● Search by Author
● Produce Shipping Manifest
● Pring GL Report

CS351

© 2003 Ray S. Babcock

Sample Use Cases

Search By Author

Produce Shipping Manifest

Print GL Report

CS351

© 2003 Ray S. Babcock

UML Use Case Diagrams

Putting actors together with use cases
produces a use case diagram.

● The actor that executes a given use case
usually appears on the lef-hand side.

● The use cases appear in the center.
● Any other actors that are involved in the

given use cases tend to appear on the
right-hand side.

● Arrows show which actors are involved in
which use cases.

CS351

© 2003 Ray S. Babcock

Use Case Diagram

Actor 1

Actor 2

Actor 3

Use Case 1

Use Case 2

Use Case 3

CS351

© 2003 Ray S. Babcock

Sample Use Case Diagram
Online Bookstore

Customer

Create Account

Log In

Write Customer Review

Add Book To Shopping Chart

Check Out

CS351

© 2003 Ray S. Babcock

Flow Of Events

The text of a use case describes possible
paths through the use case.

● Main Flow Of Events
● Exceptional Flow Of Events (Alternate

Course Of Action)

CS351

© 2003 Ray S. Babcock

Sample Flow Of Events
Online Bookstore

Log In
The Customer clicks the Login button on the

Home page. The system displays the Login
page. The customer enters his or her user ID
and password, and then clicks the OK button.
The system validates the login information
against the persistent Account data, and then
returns the Customer to the Home Page.

CS351

© 2003 Ray S. Babcock

Organizing Use Cases

Include
Within an include relationship, one use case

explicitly includes the behavior of another
use case at a specified point within a course
of action.

The included use case doesn't stand alone.

<<include>>

Base Use Case Included Use Case

CS351

© 2003 Ray S. Babcock

Sample Include Relationship
Online Bookstore

Add to Wish List

Check Out

Log In

<<include>>

<<include>>

CS351

© 2003 Ray S. Babcock

Organizing Use Cases (cont.)
Extend

Within an extend relationship, a base use case
Implicitly includes the behavior of another
use case at one or more specified points. The
points are called extension points.

You generally use this construct to factor out
behavior that's optional or that occurs only
under certain conditions.

<<extend>>
(value 1)Base Use Case Extended Use Case

CS351

© 2003 Ray S. Babcock

Sample Extend Relationship
Online Bookstore

Check Order Status
extension points

order ID

Cancel Order
<<extend>>
(order ID)

Customer has the option
of cancelling an order in
conjunction with
checking status of that
order

CS351

© 2003 Ray S. Babcock

Read More

Project-Based Software Engineering by
Evelyn Stiller and Cathie LeBlanc

Advanced Use Case Modeling, Software
Systems by Frank Armour and Granville
Miller

