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Course Description
The OpenGL Application Programming Interface (API) is the most widely supported, cross-platform computer-
graphics interface available to programmers today. Such broad support of OpenGL across different graphics
hardware presents challenges in maximizing performance while still maintaining portability. This course focuses
on teaching tools and techniques for the analysis and development of high-performance interactive graphics-
applications.

The course begins with an introduction to the stages of the OpenGL rendering pipeline, and the performance-
limiting bottlenecks 1 that can affect each stage of the pipeline. Simple, yet effective, techniques for determining
which stage of the pipeline is limiting are presented.

The course continues with a detailed analysis of each stage’s operations, and the options that a programmer
has control over. The interaction of those options with respect to performance is discussed, with an eye towards
highlighting commonalities that aid performance across different platforms is presented along with empirical
results to back up our observations.

A brief departure into topics relating to object-oriented programming paradigms and how one’s coding style
can effect OpenGL’s operation. Some suggestions for managing data in OpenGL with respect to encapsulation
are presented.

Continuing, the course introduces the concept of OpenGL’s validation phase, and how this hidden operation
can rob perfectly legitimate, well-written OpenGL applications of their performance. This discussion culminates
with a discussion of state sorting.

Finally, simple suggestions that are likely to help the performance of OpenGL applications are presented.
These suggestions should be added into the programmer’s tool box, providing simple optimizations that do not
violate Professor Knuth’s old adage of “premature optimization is the root of all evil.”

Course Prerequisites
This course assumes that the attendee has a basic understanding of computer graphics techniques (e.g., depth
buffering, texture mapping, etc.), and of the OpenGL programming interface.

Additionally, a brief understanding of object-oriented programming would aid in the understanding of the
encapsulation discussion, but is by no means required.

1Italicized terms are defined in the glossary section
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Introduction
OpenGL is the most widely accepted cross-platform API for rendering computer-generated images interactively.
Its simplicity as a programming library allows the novice OpenGL application developer to quickly develop ap-
plications capable of rendering complex images containing lighting effects, texture mapping, atmospheric effects,
and anti-aliasing, among other techniques. However, the low-level nature of the OpenGL API also makes it well
suited for the experienced developer to author interactive real-time applications. As with any programming lan-
guage, there’s more than one way to code a solution, however, not all solutions exhibit the same performance.
The same is true of OpenGL applications; perfectly valid OpenGL programs that render the same image may
have drastically different performance characteristics, based only on how the OpenGL calls were made in the
application.

These notes will illustrate some of the conditions that can hamper OpenGL performance in a platform-
independent fashion and present strategies to determine which methods for rendering pixels and geometry are
optimal for particular platforms without reverting to platform-specific extensions.

Many of the techniques discussed in this paper can be explored in the OpenGL Sample Implementation (SI)
[5]. The SI is a software-only rendering implementation of the OpenGL interface. This source base was provided
to OpenGL licensee’s before its open-sourcing, and as such, may provide some insight into the construction of
many of the hardware drivers available today.

To determine what are the fast paths for a particular OpenGL implementation, there is truly only one real way
to determine credible results (if you share the same mistrust of marketing information that we do): develop a short
program that tests the features that you intend to use. Although the techniques discussed in this paper are generic,
every platform will have its own “sweet spot(s)”. As such, OpenGL provides information that can be queried at
runtime, namely the GL VERSION, and GL RENDERER strings, that can help you make determinations as to the
combinations of techniques that will provide the best performance for your particular platform.
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Errors and OpenGL

First and foremost, verify your application doesn’t have any OpenGL errors
Errors can have a drastic impact on the performance of an OpenGL application. OpenGL was designed to maxi-
mize interactive performance, and therefore does not actively report errors that an application might make when
calling into the OpenGL interface. As OpenGL does not return errors after each function call, it falls to the ap-
plication developer to check the OpenGL error state to determine if an error has occurred. It seems that many
OpenGL developers don’t bother to check for errors; this is understandable, however, as most situations that can
cause OpenGL to emit an error will cause a visual difference in the image that is generated. Nonetheless, verifying
the program has no errors is an important first step in tuning its performance.

The OpenGL specification mandates that no input into an OpenGL call should cause a catastrophic error
(e.g., a “core” dump); calls made with invalid data are merely ignored (i.e., no alteration to the framebuffer or
the OpenGL state is made). After the internal OpenGL error state is set to represent the situation that occurred,
the OpenGL call immediately returns. The immediate return is the important point when analyzing OpenGL
performance.

The effect that an error in calling an OpenGL function has on performance is that it artificially makes the
application seem faster than it really is. Since the call that experienced the error never completes, the “work” that
call was intended to do is never completed. For instance, glTexImage2D() is particularly susceptible to errors
(it’s easy to get a token incorrect, or mix the type andformat parameters, when first writing a program) and does
considerable work before its completion. The glTexImage*D() commands first transfer the texture data from
host memory into the OpenGL pixel pipeline, allocate texture memory, convert the host-side data into the internal
format requested, and finally, stores the texture in the allocated texture memory. If an error occurs, none of the
previously mentioned work is completed, and the call seems to complete quite rapidly. If an application loads one
texture per frame, and the glTexImage2D() call has an error each frame, the application will seem to execute
considerably faster than it would without errors.

It is important to note that once an error has occurred, the OpenGL error state will not be updated until the
state has been cleared (by checking for an error).

Just as there’s little reason to optimize an application that crashes, verifying the performance of your OpenGL
application while it has errors may cause you to optimize in the wrong sections of the application, or mislead you
completely. Check for errors early and often in the development of the application; once you’ve determined that
there are no more errors, move onto optimizing the program.

How to determine if you have any errors
Checking for OpenGL errors is simple. A call to glGetError() will return one of OpenGL’s error codes, or
GL NO ERROR. As an implementation may track more than one error (this in not in contradiction to the above
statement about OpenGL only recording the first error; if the implementation is distributed, the specification
permits each “part” of the implementation to maintain error state. Calls to glGetError() return errors in a
random manner from each part in such a case).

A simple C-preprocessor macro can be very helpful in detecting errors for an individual call, such as illustrated
in Example 1
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Example 1 macro for checking an OpenGL call for an error

#define CHECK_OPENGL_ERROR( cmd ) \
cmd; \
{ GLenum error; \

while ( (error = glGetError()) != GL_NO_ERROR) { \
printf( "[%s:%d] ’%s’ failed with error %s\n", __FILE__, \

__LINE__, #cmd, gluErrorString(error) ); \
}

(This assumes an ANSI compliant C-preprocessor. Otherwise, replace the #cmd with "cmd" [including the
quotation marks])

This macro can be placed almost anywhere in an application after the creation of an OpenGL context, with
the exception of between a glBegin()/glEnd() sequence. However, calling glGetError() inside a
glBegin()/glEnd() sequence, will itself generate an error. This presents a problem for error checking:
if a glBegin() is not matched by an glEnd(), calling glGetError() to get the error state causes an error
itself.

Available at the web site listed in the last section of these notes is a Perl script that will rewrite an OpenGL
header file for automating OpenGL error checking. The script handles almost all OpenGL types of errors, and
reports useful information about which OpenGL calls produced errors and where in the application’s source code
the error occurred.

Errors with Feedback and Selection Mode
Feedback mode (enabled by calling glRenderMode(GL FEEDBACK), and selection mode (enabled by calling
glRenderMode(GL SELECT) utilize a slightly different error reporting method than most OpenGL functions.
For both modes, a user-allocated memory buffer is required. The most common error for either mode is that
this buffer is too small and a buffer overflow condition occurs. In such a case, no error is reported when calling
glGetError(), rather, the return value from the next glRenderMode() is a negative number. In normal
operation, glRenderMode() returns the number of “slots” in the buffer that were filled.

Errors relating to vertex and fragment programs
With OpenGL version 1.4, two new extensions were introduced, GL ARB vertex program and
GL ARB fragment program. These extensions are not part of the core OpenGL language, however, it’s likely
that modern graphics accelerators will support these extensions.

Vertex and fragment programs, as described by these extensions, can be thought of as compiled assembly
language programs. The specific assembly language instructions are detailed in the extension specifications avail-
able at http://oss.sgi.com/projects/ogl-sample/registry/index.html. The compilation
of the program occurs within your application when the function glProgramStringARB() is executed; no
external compiler is required. This compilation phase could fail, and at that time, OpenGL will set the cur-
rent error to GL INVALID OPERATION. Additional information about the error can be obtained by calling
glGetIntegerv()with an argument of GL PROGRAM ERROR POSITION ARB that will return the byte off-
set from the beginning of the program where the error occurred. Additionally, glGetString() can be called
with GL PROGRAM ERROR STRING ARB that will return an implementation-dependent error description. This
string can be overwritten for each error, and may not be cleared if the error state is modified by other OpenGL
operations, so both error state values should be checked simultaneously if an error occurred.

Compilation of a program is only half of the setup to use vertex and fragment programs with OpenGL. In
order to “load” the program into OpenGL, the program must be bound with the glBindProgramARB() call.
If the specified program id is not valid, this call will generate a
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GL INVALID OPERATION error. If glBindProgramARB() fails, but the error condition is not checked, then
the next glBegin() (or any call that might utilize glBegin(), like glDrawArrays()), andglRasterPos()
will generate a GL INVALID OPERATION error. (Some current OpenGL implementations silently allow render-
ing with invalid vertex and fragment programs, so it’s important to verify the success of glProgramStringARB()
and glBindProgramARB().)

Various other errors associated with setting program parameters (using either the
glProgramLocalParameter*ARB(), or glProgramEnvParameter*ARB() calls) can occur, as well
as GL OUT OF MEMORY errors if a program is larger than can be executed by the underlying hardware.
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Application Performance Bottlenecks

Determine which part of the OpenGL pipeline is the performance limiting factor
Regardless of how well written an application is, one section will always execute more slowly than any of the
rest of the program. This slowest section may be the part of the program parsing an input file, computing a
complex mathematical formula, or rendering graphics. The slowest part of an application is often called the
“bottleneck.” Every application has a bottleneck. The question regarding bottlenecks is always whether they
impact performance enough that they need to be tuned and their performance improved.

Since applications always have bottlenecks, tuning the section that is the slowest currently will generally cause
the bottleneck to migrate to a different part of the application. This is to be expected; what is important is that
after addressing the performance of the chosen bottleneck, is the application meeting the performance metrics that
is it required to meet?

Overview of OpenGL Rendering Pipeline
The OpenGL rendering pipeline is the process that receives geometric and imaging primitives from the application
and rasterizes them to the framebuffer. The pipeline can basically be split into two sections: transformation phase
and rasterization phase.

Application

Per-Vertex

Operations


(Transformations,

Lighting, etc.)




Rasterization

and


Fragment

Operations

Framebuffer

Figure 1: Block diagram of OpenGL pipeline phases

The transformation phase is responsible for vertex transformations, lighting, and other operations, and pro-
duces OpenGL fragments that are passed into the rasterization phase.

Rasterization is responsible for coloring the appropriate pixels in the framebuffer, which is more generally
known as a process named shading. This phase also includes operations like depth testing, texture mapping, and
alpha blending, among others.

The same rendering pipeline structure is present even with the latest programmability additions to OpenGL 2.
Some clarification may be useful. An OpenGL implementation that doesn’t have programmability available in its
feature set is said to have a fixed-function pipeline where the order of operations is strictly ordered. For example,
for the transformation phase, vertices are:

1. transformed by the model-view matrix

2. if enabled, a color derived from the lighting state is computed and replaces the current vertex color

3. if enabled, texture coordinates are generated form the texture-coordinate generation state

4. transformed by the projection matrix

5. are divided by the w coordinate

6. clipped to the view volume, generating new vertices if necessary

2At least for the moment; it’s foreseeable that in the future, rasterization operations, like texel lookup, might be available to provide data
in a vertex program
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7. passed to the rasterization phase of the pipeline

But in the case of vertex programs all the above per-vertex operations are executed in the vertex program and
are no longer strictly ordered as in the fixed-function pipeline.

The rasterization phase undergoes a similar, though not as comprehensive change. Currently, fragment pro-
grams replace texel lookups and their application to the pixel (i.e., texture environment). One can also modify the
depth value, and primary and secondary colors for the fragment, but this doesn’t represent an exchange of features
as in the vertex program case.

“Bottleneck” determination
Understanding how the OpenGL pipeline operates makes it much easier to understand in which section of your ap-
plication or OpenGL code the performance problem, or “bottleneck” exists. Generally, bottleneck determination
with respect to OpenGL consists of narrowing the problem down to one of three possibilities:

• the application can’t draw all the pixels in the window in the allocated time. This situation is known as “fill
limited.”

• the application can’t process all of the vertices that are required for rendering the geometric objects in the
scene. This situation is known as “vertex (or transform) limited.”

• the application can’t send the rendering commands to OpenGL rapidly enough to keep OpenGL’s renderer
busy. This final situation is known as “application limited.”

The next sections discuss simple techniques to determine which of the above conditions exist in the applica-
tion. If the application doesn’t meet the performance criteria (which should be a metric such as frames per second,
objects per second, or some other quantitative value), then one of the above situations will always exist.

From a practical standpoint, the application bottleneck (principally due to bus speeds) is becoming the most
predominant condition as the speed of graphics accelerators improves. As such, the placement of data and its
formatting will become much more relevant, as we’ll soon see.

Techniques for determining pixel-fill limitations
Fill-limited applications are limited by being unable to color all the pixels in the viewport in the allotted time.
This situation results from too much work being required by some or all pixels in the generated image, or simply
rasterizing too many pixels.

Of the three performance situations, pixel-fill limitations are perhaps the simplest to identify. The fundamental
problem is the viewport has too many pixels being filled, so if the application’s performance increases when the
viewport is decreased in size, the application is fill limited.

Two solutions are immediately evident: reduce the size of the viewport for the applications execution, or do
less per-pixel processing. In some cases, such as the design requirements for the application, reducing the size of
the viewport may not be an option. A full-screen window has to be the size of the full screen. It may be acceptable
to reduce the monitor’s resolution but that still may be outside the latitudes of the program’s requirement. The
more common solution is to reduce the amount of work per-pixel. Techniques for reducing per-pixel work are
discussed in the optimization section.

Techniques for determining transformation limitations
If reducing the size of the viewport doesn’t increase the frame-rate of the application then it is unlikely that the
application is fill- limited. In such a case, a simple test can be conducted to determine if the bottleneck is in the
transformation section of the rendering pipeline or caused by other non-OpenGL portions of the application.
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To determine if the application is vertex limited convert all calls from glVertex*() to glNormal*().
This can be accomplished quite simply by utilizing the C preprocessor once again, making substitutions as demon-
strated in Example 2:

Example 2 macros for replacing glVertex*() calls with glNormal*() calls for determining application
data-transfer speed

#define glVertex2d(x,y) glNormal3d(x,y,0)
#define glVertex2f(x,y) glNormal3f(x,y,0)
#define glVertex2i(x,y) glNormal3i(x,y,0)
#define glVertex2s(x,y) glNormal3s(x,y,0)
#define glVertex3d(x,y,z) glNormal3d(x,y,z)
#define glVertex3f(x,y,z) glNormal3f(x,y,z)
#define glVertex3i(x,y,z) glNormal3i(x,y,z)
#define glVertex3s(x,y,z) glNormal3s(x,y,z)
#define glVertex4d(x,y,z,w) glNormal3d(x,y,z)
#define glVertex4f(x,y,z,w) glNormal3f(x,y,z)
#define glVertex4i(x,y,z,w) glNormal3i(x,y,z)
#define glVertex4s(x,y,z,w) glNormal3s(x,y,z)

#define glVertex2dv(v) glNormal3d(v[0],v[1],0)
#define glVertex2fv(v) glNormal3f(v[0],v[1],0)
#define glVertex2iv(v) glNormal3i(v[0],v[1],0)
#define glVertex2sv(v) glNormal3s(v[0],v[1],0)
#define glVertex3dv(v) glNormal3dv(v)
#define glVertex3fv(v) glNormal3fv(v)
#define glVertex3iv(v) glNormal3iv(v)
#define glVertex3sv(v) glNormal3sv(v)
#define glVertex4dv(v) glNormal3dv(v)
#define glVertex4fv(v) glNormal3fv(v)
#define glVertex4iv(v) glNormal3iv(v)
#define glVertex4sv(v) glNormal3sv(v)

The same technique can be used to replace the calls to glRasterPos*(), however, glRasterPos*()
only invokes a single vertex transformation. Most of the real is work done when the subsequent glBitmap()
or glDrawPixels() calls are made, which have little impact on transformation bottlenecks.

The reason that this technique is useful is that it transfers the almost same quantity of data from the application
to the OpenGL pipeline, however, no geometry is ever rendered (glNormal*() sets the current normal in the
OpenGL state, so its work is limited to a few memory store operations). Additionally, glNormal*() calls are
not subject to “hidden” state changes, as you might find with glColor*()while GL COLOR MATERIAL mode
is enabled.

However, the situation is more difficult if an application uses vertex arrays. The calling of glVertex*()
in the case of vertex arrays isn’t explicit so the command substitution trick doesn’t work. While it is possible to
disable the vertex data (using glDisableClientState(GL VERTEX ARRAY)(), this isn’t terribly useful,
since the vertex data is not being transferred to the pipe, which is what we are ultimately trying to measure. If
another array is not being currently utilized, like GL TEXTURE COORD ARRAY, one could specify the vertex data
as three-dimensional texture coordinates. The same amount of data would be transferred to the graphics hardware,
but nothing would be rendered. One other caveat, however, is that the OpenGL specification [6] permits multiple
valid implementations of vertex arrays; that is, in some cases, vertex arrays are merely wrappers around the
immediate mode calls, such as glVertex*(). In other implementations, it’s quite possible that the data is
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processed on the graphics hardware without the execution of immediate mode calls. In either case, it’s difficult to
know exactly what the particular OpenGL implementation will do in the absence of vertex data. Empirical tests
are required for certain determination on your target platforms.

To generate a useful performance metric, measure and record the time of rendering a frame as normal. Then,
after making the above replacements, time the same rendering operation. If the times are significantly different,
the application is transform limited (assuming it’s not fill limited). If the times are not appreciably different, and
the fill limit test doesn’t decrease the rendering time, then the data structures and formats chosen by the application
are more likely the bottleneck.

Knowing when it’s your fault
If the application is neither fill nor transform limited, then the problem lies in the choice of data structures and
programming techniques employed in the application proper. As this situation is clearly outside of what can be
addressed in the context of OpenGL, the best recommendation is to review the choices made for data structures,
particularly for those that store data that is to be passed to OpenGL. General advice in this realm revolves around
attempting to minimize pointer-dereferences and indirection, ensuring that data structures pack-well into memory,
and that computation is as limited as feasible during OpenGL rendering. Begin investigation into application-
limited code by using performance measurement tools (such as the pixie and prof available in versions of the
UnixTMoperating system) to help locate and tune these bottlenecks.
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Performance Optimizations for each stage of the OpenGL pipeline

Techniques for reducing per-pixel operations
We will start with an analysis of the rasterization section of the OpenGL pipeline. Rasterization has many stages
that “fragments” (OpenGL’s concept of a pixel, but with more information than just position and color) must
traverse before being written into the framebuffer. By first understanding the application’s visual quality require-
ments and interactive performance requirements, you then have a baseline metric to use as a control to optimize
what combinations of fragment processing stages are employed in the application.

Viewport

Test


Scissor

Test


Alpha

Test


Stencil

Test


Incoming

Fragment


Depth

Test


Alpha

Blending
 Dithering


Logical

Pixel


Operations

Framebuffer


Figure 2: Stages of fragment processing pipeline

The operations in the rasterization pipeline can be classified into two categories: color-application (shading)
processes and fragment testing.

• color-application processes include texture mapping, alpha blending, per-pixel fogging, stencil buffer up-
dates, dithering, logical operations and accumulation buffer techniques. fragment programs fall into this
category as well.

• fragment testing operations include depth buffering, stencil tests, alpha-value tests, and viewport and scissor
box tests.

Reducing the visual quality of the rendered image is one method of reducing the fill limitation. This can be
accomplished in a number of ways, not all of which may be suitable for the requirements of the application.

Be cognizant of the costs of per-fragment operations

Perhaps the simplest way to handle fill bottlenecks is to reduce the amount of work done per pixel. In some cases,
this can be easily accomplished:

• don’t blend transparent fragments (transparent where α = 0). Eliminate their processing by enabling alpha
fragment testing.

• disable depth-testing when feasible. Situations where this is useful include:

– “clearing” the viewport using geometry (e.g., a “sky-earth” model where large gouraud shaded poly-
gons are used to clearing the window. glClear(...| GL DEPTH BUFFER BIT) must still be
called to clear the depth buffer, but the polygons rendered need not be depth tested. This can be
achieved by disabling the depth test.
Although this is less important on recent OpenGL implementations that use a fast clear (sometimes
called a “tag clear”), in which the clear operation is optimized, if your application will be rendering
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a background polygon or shape anyway which covers the viewport, it is probably better to simply
render the background object without depth testing to avoid the clear.

– depth-sorted polygons are rendered in order. This is what’s classically called the Painters’ Algorithm.
Although polygon sorting along the line-of-sight, which is what’s required for this technique, can be
difficult, it can considerably reduce the amount of depth testing that’s required. Additionally, other
algorithms, like binary space partition trees, are well suited for use in depth sorting.
However, a new hardware technique, generally referred to as hierarchical z-buffering, may cause the
previous statement to be proven incorrect. Hierarchical z-buffering discards blocks of fragments if it
determines that all of the fragments will be obscured what’s already present in the framebuffer. In such
a case, it’s advantageous to render your geometry from front-to-back, which is basically the inverse of
the Painters’ algorithm.

The following results demonstrate the reduction in pixel-fill performance as more features are enabled. For
the following graphs, every combination of enabling: 2D texture mapping, depth testing, alpha blending, dither-
ing, stencil testing, and alpha testing, was conducted and a value recorded. The performance values were then
sorted in a descending manner and the percentage difference between the two values were computed to form the
second set of graphs. Enabling texture mapping causes, across most implementations, at least a 30% performance
degradation from peak pixel-fill rates.

Figure 3: Fragment processing Results for Machine 1
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Figure 4: Fragment processing Results for Machine 2

Figure 5: Fragment processing Results for Machine 3
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Figure 6: Fragment processing Results for Machine 4

Figure 7: Fragment processing Results for Machine 5
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Figure 8: Fragment processing Results for Machine 6

Figure 9: Fragment processing Results for Machine 7

14



SIGGRAPH 2004 Performance OpenGL Course # 16

Figure 10: Fragment processing Results for Machine 8

Figure 11: Fragment processing Results for Machine 9
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Figure 12: Fragment processing Results for Machine 10

Appendix A contains tables specifically listing the modes that correspond to each index (values on the X-axis).
In many cases, with one mode enabled, all other modes are “free” (meaning their impact is negligible).

Reduce the number of bits of resolution per color component.

Reducing the number of colors that are available per component, decreases the number of bits that need to be
filled. For example, reducing the framebuffer depth from 24 bits TrueColor to 15 bits TrueColor for a 1280x1024
sized window, reduces the number of bits that need to be filled by 37.5% (1.25 MBs). The down side to this
approach is that you lose considerable color resolution, which may result in banding in the image. Dithering can
help to reduce the banding but adds both some additional fragment processing and additional visual artifacts.

Reduce the number of pixels that need to be filled for geometric objects

Backface culling is a technique to determine which faces of a geometric object are facing away from the viewer,
and under the appropriate conditions, do not need to rendered. This technique really trades fill rate for geometric
transformation work. Specifically, the given polygon is transformed, and then the signed screen-space area is
computed. If that value is negative, then the polygon is back-facing. By utilizing this technique, the amount of
depth buffering required by the application is reduced. However, not every object is suited for backface removal.
The best candidates are convex closed objects (e.g., spheres, cones, cubes, etc.).

Utilize a lesser quality texture mapping minification filter

OpenGL supports six modes for filtering texels for application to a pixel under minification. The mode that pro-
vides the best visual quality, GL LINEAR MIPMAP LINEAR, requires the computation of an eight-way weighted
average (for the 2D texture-mapping situation) to arrive at a single fragment color value. The most conservative
minification mode is GL NEAREST, which only requires a single texel lookup per fragment. The tradeoff, once
again, is visual quality.

In comparing modern graphics hardware, some interesting conclusions can be drawn. The following data
result from rendering the same scene using each of the minification filters available. The following set of graphs
illustrate rates for 64 × 64 texel textures.
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Figure 13: Results for 64 × 64 sized textures

Additionally, to test to determine if there are caching affects on performance, a 512× 512 texture was utilized
for the following results:
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Figure 14: Results for 512× 512 sized textures

We can see from the above graphs that pixels that require considerable minification (represented by the “8-to-
1 Minification” in the graphs), the simplest filters GL NEAREST and GL LINEAR, perform considerably slower
than the mipmap based filters. Interestingly, in previous years, the best advice to maximize texture-mapping speed
was to use the least taxing minification filter: GL NEAREST. It would now seem that that advice no longer holds
as much relevance as it did previously.

However, when considerations are made for the screen-space size of the object, it may become useful to
change the minification filter as the size of the object decreases. This is a level-of-detail technique that requires
tracking the object’s screen-space presence. Utilizing this technique may well help the rendering speed of the
application, but may transfer some of the burden to the application data processing, which may in turn become
the bottleneck.

Reduce the number of depth comparisons required for a pixel

Depth testing is an expensive operation. For each fragment, a read of the depth buffer is required, then a com-
parison, and if successful, then a write into the depth buffer, and finally, the color update to the framebuffer. In
diabolical situations, the actual number of pixels that make it to the screen may be a minute fraction of those sent
through the rasterization pipeline.

One method to determine the application’s depth-buffer efficiency, is to utilize “hot-spot analysis.” Hot-spot
analysis can be used to determine which regions of the scene are causing an extreme amount of depth buffering to
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occur, and then perhaps, a data management technique, like occlusion culling may be brought into play to reduce
the pixel complexity of that region of the image.

To generate an image for hot-spot analysis, some modification of the application’s rendering procedure is re-
quired. The fundamental technique is to clear the framebuffer to black, render all of the geometry in a uniform
color (say, white) in the scene with depth buffering disabled, and blending enabled with the blending modes set
with a call to
glBlendFunc( GL SRC ALPHA, GL ONE ), with the alpha value set to suitably small number. In the re-
sulting image, areas that appear more white, have higher incidences of depth testing, and indicate area where a
culling algorithm on geometry may be useful.

Utilize per-vertex fog, as compared to per-pixel fog

As per-pixel fog adds an additional color interpolation operation per pixel, utilizing per-vertex fog, may reduce the
per-fragment computation cost. This mode can be enabled by calling glHint( GL FOG HINT, GL FASTEST ).

Techniques for reducing per-vertex operations
When the bottleneck of the application occurs in the transformation stage, too much work per-vertex (from some
set of vertices) is required. Like the rasterization section of the OpenGL pipeline, the transform pipeline also
contains several features that can be manipulated to control application performance.

ModelView

Transform


Projection

Transform


Perspective

Divide


Clipping &

Viewport

Transform


Incoming

Vertex


Figure 15: Stages of transformation pipeline

Be cognizant of the work done at a vertex

The work required to process a vertex can vary greatly particularly if features like lighting or texture-coordinate
generation are enabled. Every vertex is processed by the model-view and projection matrices, clipped to the
viewing frustum, and finally projected to the viewport by the viewport transformation. This is quite a bit of math-
ematical processing even with no additional features enabled. There are a few ways to minimize this mandatory
processing that are described in the next sections.

One of the largest contributors to per-vertex work is lighting. The OpenGL lighting equation in its fullest
form is computationally demanding. Each light that is enabled contributes to the per-vertex work. In many
OpenGL hardware implementations, not all lights that are supported by OpenGL are implemented in hardware.
Additionally, the type of light may require different amounts of work. OpenGL supports two general types of
lights: point [or local] lights, and infinite [or directional] lights). The following graphs illustrate the performance
drop-off that occurs when hardware lighting cannot accommodate all the lights requested. In some cases the
penalty for falling to the software path is quite drastic — the graphics accelerator may either disable any hardware
support for lighting, or it may be required to send data back to the host representing the lighting values that were
computed in the hardware, and then combine those with the software evaluation of the remaining lights.

This sequence of results represent local-light illumination of one-pixel- area triangles. Empirical results indi-
cate that the same rendering sequence using GL POINTS is not optimized on almost all of the graphics platforms
tested. In many cases, transforming three times as many vertices (as is the case in using triangles as compared to
GL POINTS), was faster than rendering single pixel GL POINTS.
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Figure 16: Results for local (point) lights illuminating one-pixel sized triangles

For reference we also present the identical tests with directional-light illumination of the triangles. The differ-
ence in the computation required for local vs. directional lights is small.
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Figure 17: Results for infinite (directional) lights illuminating one-pixel sized triangles

Use connected primitives . . . or don’t

Every vertex is transformed, clipped, and perspective divided on its way to becoming a fragment. For many
application geometry objects, a single vertex may be shared among many of its primitives, and as such, minimizing
the number of times that that vertex is transformed is one way to reduce the load on the transformation side of the
OpenGL pipeline. OpenGL has a number of connected primitives that are ideally suited for reducing the number
of times that a vertex needs to be transformed and using these primitives can greatly increase performance.

However, connected primitives aren’t the answer to all transform limited applications. Not all geometries lend
themselves to connected primitives. Consider rendering a cube, which has eight vertices, and six faces. There is
no way that the cube can be rendered as a single, continuous connected primitive that maintains its vertex winding
properly 3. This requires that at least two glBegin()s are issued for a single cube.

When a rendering command, such as any in Table 1, is issued OpenGL may need to reconfigure its internal
rendering pipeline. This reconfiguration is called validation. In particular, for glBegin(), when the type of
geometric primitive (e.g., GL POINTS, GL LINES, etc.) is changed from the previous call to glBegin(), the
routines used for rasterizing those primitives need to be reconfigured and will most likely invoke a validation.

3Technically, this statement really depends on how much of an OpenGL purist one chooses to be. If rendering zero-area triangles is
acceptable (which is more of a personal taste issue than a technical one), then a cube can indeed be rendered as a single triangle strip with
zero-area triangles being added to change the winding of the tri-strip progression
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glAccum() glBegin()
glTexImage1D() glTexSubImage1D()
glTexImage2D() glTexSubImage2D()
glTexImage3D() glTexSubImage3D()
glDrawPixels() glCopyPixels()
glReadPixels()

(The above list is not exhaustive; routines defined in extensions are not included).

Table 1: OpenGL rendering commands that invoke a validation

Validation: keeping state consistent To an OpenGL application author OpenGL is a simple state machine with
two operational states: setting state, and rendering utilizing that state. The following state diagram describes the
situation:




Set State
 Render


Figure 18: An application programmer’s view of the OpenGL state machine

However, this model lacks an important step: validation. Validation is the operation that OpenGL utilizes
to keep its internal state consistent with what the application has requested. Additionally, OpenGL uses the
validation phase as an opportunity to update its internal caches and function pointers to process rendering requests
appropriately. Adding validation to the state diagram from Figure 19 would look like:
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Figure 19: OpenGL state machine taking into consideration the validation phase

Example 3 code sequence invoking an validation at next glBegin()
glBegin( GL_TRIANGLES );

...
glEnd();

glPolygonStipple( stippleMask );
glEnable( GL_POLYGON_STIPPLE );

glBegin( GL_TRIANGLES );
...

glEnd();

As shown in Example 3, when the glPolygonStipple() call is made, OpenGL copies the stipple mask
to its internal state, and marks an internal flag indicating that state has changed, and a validation is requested
at the next rendering state change. Likewise, when the polygon stipple is enabled with the glEnable() call,
validation is again requested at the next rendering state change.

When the glBegin() is finally executed, the validation that was requested multiple times is performed and
the parts of the OpenGL machine that were affected by the state changes are updated. In the stipple example, the
rasterizer for polygons is switched from the default one to the stippled rasterizer.

For a more thorough indication of the affects of validation, consider the following simple case study.

You need to render a large number (say 10,000) of statically positioned cubes in 3D space.

For simplicity’s sake, assume that the vertices of each cube have already been transformed to their necessary
location. There are a number of ways to approach the problem:

1. Perhaps you create a routine that takes an array of the eight vertex positions for a single cube, such as
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Example 4 rendering a cube as six quads

void drawCube( GLfloat color[], GLfloat* vertex[] )
{
static int idx[6][4] = {

{ ... },
};

glColor3fv( color );
glBegin( GL_QUADS );
for ( int i = 0; i < 6; ++i )

for ( int j = 0; j < 4; ++j )
glVertex3fv( vertex[idx[i][j]] );

glEnd();
}

where drawCube() is called in a loop to render each cube.

Ignoring issues related to loop overhead and host-memory access, this method suffices, but you notice
that you’re duplicating a considerable amount of effort. Each vertex of the cube is passed to the OpenGL
pipeline three separate times which means you are doing the same exact work three times for the same
vertex.

2. Upon reconsideration of the wasted efforts of transforming vertices, you decide to use connected primitives
to minimize the number of vertex transformations. Rewriting drawCube() slightly,

Example 5 rendering a cube as two quads and a quad-strip

void drawCube( GLfloat color[], GLfloat* vertex[] )
{
static int idx[6][4] = {

{ ... },
};

glColor3fv( color );
glBegin( GL_QUADS );
for ( int i = 0; i < 4; ++i ) // Render top of cube

glVertex3fv( vertex[idx[0][i] );
for ( i = 0; i < 4; ++i ) // Render bottom of cube

glVertex3fv( vertex[idx[1][i] );
glEnd();

glBegin( GL_QUAD_STRIP );
for ( i = 2; i < 6; ++i ) {

glVertex3fv( vertex[idx[i][0]] );
glVertex3fv( vertex[idx[i][1]] );

}
glVertex3fv( vertex[idx[2][0]] );
glVertex3fv( vertex[idx[2][1]] );
glEnd();

}
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In this case, you’ve reduced the number of vertex transformations from 24 to 14, saving 140,000 vertex
transformations per frame.

3. Feeling inspired, you rewrite drawCube() once more, this time, moving the glBegin() and glEnd()
outside of drawCube() and the loop in the main application, as in

Example 6 rendering a cube as six quads without a glBegin()/ glEnd() pair in the base routine

void drawCube( GLfloat color[], GLfloat* vertex[] )
{
static int idx[6][4] = {

{ ... },
};

glColor3fv( color );
for ( int i = 0; i < 6; ++i )

for ( int j = 0; j < 4; ++j )
glVertex3fv( verts[idx[i][j]] );

}

and in the main application rendering loop:

Example 7 outer loop used with Example 4

glBegin( GL_QUADS );
for ( int i = 0; i < numCubes; ++i )

drawCube( color[i], vertex[8*i] );
glEnd();

The results of conducting this test on three different OpenGL implementations yielded the following normal-
ized results.

Code Technique Machine A Machine B Machine C

Example 5 3.99 4.36 2.23
Example 4 3.99 4.50 2.15
Example 7 1.00 1.00 1.00

Table 2: Normalized results for various computing platforms

For each of the architectures Example 7 is by far the fastest, even though a considerable number of additional
vertices are being transformed each frame. Some of the overhead is due to function calls (there are 10,000 less
glBegin() and glEnd() calls being made in Example 7), but most can be attributed to state changing and
validation.

These tests were conducted using only immediate mode rendering. As OpenGL supports four methods for
transferring vertex data to the rendering pipeline: immediate mode, display lists, vertex arrays, and interleaved
arrays, another reasonable test would be to determine which method of passing geometry is the best for each
platform of interest.

Returning to our case study from before, we can now explain why transforming 33% more vertices went faster
than the seemingly more optimized case utilizing connected primitives. This simple example illustrates the affect
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that validation can have on an OpenGL application and suggests that minimizing validations can also improve the
performance of the application.

More on minimizing validation, particularly with respect to state changes, will be discussed in the “State
Sorting” section.

The lure of object-oriented programming Object-oriented programming is a tremendous step in the quality
of software engineering. Analyzing the larger problem as a set of smaller problems with interactions is a great aid
to better application design. Unfortunately, object-oriented programming’s “encapsulation” paradigm can cause
significant performance problems if one chooses the obvious implementation for rendering geometric objects.

For instance, one obvious encapsulation of a cube-type object is illustrated in Example 8:

Example 8 a sensible C++ class that encapsulates a geometric object that could invoke more validations than are
truly necessary

class Cube : public GeometricObject {

enum { X = 0, Y, Z };

float position[3];
float color[3];
float angle; // angle and axis for orientation
float axis[3];
float scale[3];

static float vertex[8][3] = { ... };

virtual void render( void ) {
glPushMatrix();
glTranslatef( position[X], position[Y], position[Z] );
glRotatef( angle, axis[X], axis[Y], axis[Z] );
glScalef( scale[X], scale[Y], scale[Z] );
glColor3fv( color );

// Render cube in some manner: GL_QUADS, GL_QUAD_STRIP, etc.

glPopMatrix();
}

};

Even though this is a fairly standard, well-written solution to the problem, the encapsulation paradigm hin-
ders tuning your application when considering validation and other techniques of a more global nature. This
encapsulation of rendering state, data, and functionality is easily captured in a C++ class as shown in this ex-
ample, but is truly language independent. That is, most complicated applications will at some point add layers
of abstraction to help with code understandability and maintenance. These abstraction layers need to be thought
about carefully in the context of the full OpenGL pipeline in order to ensure that performance is not lost as the
application increases in complexity. Thoughtful abstraction can yield performance gains as state can be managed
more precisely, objects sorted in more efficient ways, data managed more efficiently, and more.

One solution to this problem, which has multiple benefits, is to utilize the Visitor Pattern, as described in
[4]. Of course, one could employ visitor patterns with a class structure similar to the one’s described above. In
addition to employing the visitor pattern, making the separation of OpenGL state, and rendering data is essential.
This topic is addressed in the “State Sorting” section.
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Determining the best way to pass geometry to the pipe

OpenGL has five ways of transmitting geometric data to the OpenGL pipeline: immediate mode, display lists,
vertex arrays, interleaved arrays, and vertex buffer objects (VBOs). Although all five methods are perfectly legal
OpenGL commands, their performance across various platforms varies greatly, usually based on the systems
memory architecture (e.g., bus speed, use of DMA, etc.).

Immediate mode is the easiest mode to use and is what most application developers use. There are two major
performance disadvantages to immediate mode. First, immediate mode geometry requires a large number of
function calls. Therefore, immediate mode may not be the fastest mode of execution on computing architectures
where function call overhead is expensive. However, it may also be the case that the other modes of rendering
utilize immediate mode calls in their internals. Secondly, immediate mode rendering transmits all the vertex data
for an application’s geometry across the graphics bus. Modern graphics cards can process vertices significantly
faster than they can be fed across the graphics bus (even AGP 8x), so immediate mode almost guarantees being
bottlenecked at the bus to the graphics device.

Display lists collect most OpenGL calls (exceptions generally represent calls that return a value glGet*(),
glGenLists(), etc.). Depending upon the hardware architecture and driver implementation display lists may
merely be large allocated arrays of host memory that collect and tokenize the OpenGL input and then replay
that input upon display list execution. Optimization of the token stream may occur but does not happen in some
drivers. If the stream is optimized, then, as an example, vertex data may be stored in memory on the graphics
device, and so using display lists can yield tremendous performance benefits.

Vertex arrays are a method of specifying all of the geometric data to the OpenGL pipe in a few function
calls with hopes that the driver can efficiently process this data. This approach was principally designed to
alleviate the function call overhead problem. The base implementation of the calls for rendering vertex arrays:
glDrawArrays(), glDrawElements(), glArrayElement(), and glDrawRangeElements() is
permitted to be simply the appropriate execution of immediate mode calls, or may be a more hardware appropriate
optimized method. One additional consideration for vertex arrays is memory access for the host processor. As the
data for the vertices is distributed among multiple arrays, memory access may affect the execution performance
of vertex arrays.

Interleaved vertex arrays are a variant of vertex arrays, with the characteristic that the data for each vertex is
stored in a contiguous block of memory. For example, am array of C language ”struct” for a single vertex often
can be mapped into an interleaved vertex array, as illustrated in Example 9. For certain architectures this may be
the best format for specifying geometry — the only way to know is to conduct a benchmark case. Interleaved
arrays can be specified using both glInterleavedArrays() using one of the predefined vertex formats, or
using the ordinary vertex array functions with pointers into the interleaved data and an appropriate stride.

27



SIGGRAPH 2004 Performance OpenGL Course # 16

Example 9 Pseudocode demonstrating setup and rendering of interleaved arrays

typedef struct VertexStruct {
float texture[2];
float color[4];
float normal[3];
float coord[3];

} Vertex;

Vertex vertices[] = {/* application fills in vertices */};
int vertexCount = /* number of vertices in array */;

/* Set up the vertex array */
glInterleavedArrays(GL_T2F_C4F_N3F_V3F, sizeof(VertexStruct), vertices);

/* Draw the entire array as triangles */
glDrawArrays(GL_TRIANGLES, 0, vertexCount);

Both immediate mode and vertex arrays transmit the vertex data across the graphics bus every frame. You
might note that OpenGL has the vertex array pointers, so why would it not copy the vertex data down to the
graphics device at array specification time? Vertex arrays were designed primarily to reduce functional call
overhead, and the semantics of vertex arrays allow applications to alter the data in vertex arrays at any time!

The ”vertex buffer object” extension to OpenGL 1.4 and core feature in OpenGL 1.5 were designed to allow
vertex arrays to be created directly in graphics device memory, and then specified through the normal vertex array
functions, including interleaved vertex arrays. The authors consider this to be the fastest geometry specification
technique an application can use, if the feature is available. Instead of providing a pointer to, for example,
glVertexPointer(), the application first specifies a current ”buffer” with glBindBuffer(), and then
provides an offset within that buffer to glVertexPointer() instead of a pointer to memory.

Finally, many modern device accelerators contain a ”vertex cache”, which caches some small number (e.g.,
12 to 24) of post-vertex-program transformed vertices. In order to take best advantage of this vertex cache, an
application would use indexed primitives. Rather than providing vertex data which corresponds one-to-one with
the vertices issued for the geometry, the application provides an index for each vertex in the geometry, indicating
which entry in the vertex array should be used. To store this data in device memory, the index array is specified
through an ”element” array buffer object, then referenced through an offset to glDrawElements(). This is
illustrated using the GL ARB vertex buffer object extension in Example 10, but looks almost identical in
OpenGL 1.5. Finally, the index list may be reordered to better use the cache. There are publicly available tools
for reordering an index list to optimize for cache performance.

28



SIGGRAPH 2004 Performance OpenGL Course # 16

Example 10 Setup and rendering of vertex buffer objects and element array object

#define BUFFER_OFFSET(n) ((char *)NULL + n)

typedef struct VertexStruct {
float texture[2];
float color[4];
float normal[3];
float coord[3];

} Vertex;

Vertex vertices[] = {/* application fills in vertices */};
int vertexCount = /* number of vertices in array */;

/* ideally, index data is optimized for vertex reuse through vertex cache */
uint indices[] = {/* application fills in indices */};
int indexCount;

int vertexBuffer;
int elementBuffer;

glGenBuffersARB(1, &vertexBuffer);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vertexBuffer);
glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(Vertex) * vertexCount,

vertices, GL_STATIC_DRAW_ARB);

glGenBuffersARB(1, &indexBuffer);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, indexBuffer);
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, sizeof(uint) * indexCount,

indices, GL_STATIC_DRAW_ARB);

/* Set up the vertex array, could be portion of vertex buffer but */
/* for this example we specify offset of 0 */
glInterleavedArrays(GL_T2F_C4F_N3F_V3F, sizeof(VertexStruct), BUFFER_OFFSET(0));

/* Draw the entire array as triangles */
glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_INT, BUFFER_OFFSET(0));

Use OpenGL transformation routines

Another simple way to increase OpenGL’s transformation performance is to utilize OpenGL’s transformation rou-
tines: glTranslate*(), glRotate*(), glScale*(), glOrtho(), and glLoadIdentity(). These
routines have a benefit over the more generic routines glMultMatrix(), and glLoadMatrix(). At worst,
the “typed” routines will cause a full matrix multiply, just as could be predicted. However, for optimized ver-
sions of OpenGL, which includes most software renderers, OpenGL tracks changes to the current matrix (the
matrix at the top of each matrix stack). OpenGL does this to try and minimize the computation required for a
transformation.

When OpenGL is first initialized (at context creation time), each matrix stack is loaded with an identity matrix.
As changes are made to the matrices by matrix multiplication and loading matrices, each change is tracked. Some
properties that are tracked include:
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• realizing that the w-coordinate column is of the form (0 0 0 1)T , as in the case of rotations and scales

• determining that the matrix is a 2D rotation, as in a rotation around the z axis

• verifying that the matrix is a 2D non-rotational matrix, as in the case of a scale

• knowing when the matrix is an identity

• realizing that the transformation is specifying screen coordinates (this mostly is for the benefit of the
GL PROJECTION matrix)

Each of the situations above reduce the number of multiplications and additions required for the transforma-
tions as compared to a generic 4 × 4 matrix. The matrix type is changed whenever a transformation type call
is made. In the case of the generic matrix routines (which in this case, include glFrustum(), as the matrix
generated in this case doesn’t yield may optimizations), regardless of what type matrix is currently at the top of
the matrix stack, the type is changed to the generic type, and a full matrix multiplication is done for each vertex
transformation. Although in limited instances one may be able to determine what type a generic matrix is, this is
not commonly done due to floating-point comparison issues.
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An optimization example: Terrain mesh

The customer’s application
Here’s an example of a program which the authors have optimized using many of the techniques previously
described.

The customer’s data is a large two-dimensional array of height field data representing terrain, 4001 samples
on one side by 4801 samples on the other. The customer found that rendering the height field at its original
resolution as triangles (4000 by 4800 quads, each represented by two triangles) was too slow, so the application
downsampled the data by a factor of 16 in each direction, thus rendering only 1/256th the number of triangles in
the original. This yielded 150,000 triangles per frame at ten frames per second on a 2003-era workstation.

Figure 20: Original meshed terrain from heightfield

The application rendered each triangle in immediate mode, generating the vertex coordinate, color, and normal
for each triangle each frame.
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Example 11 Customer application code for specifying heightfield color

const GLfloat color0[3] = { 0.65, 0.40, 0.10 };
const GLfloat color1[3] = { 0.60, 0.50, 0.15 };
const GLfloat color2[3] = { 0.65, 0.55, 0.25 };
const GLfloat color3[3] = { 0.70, 0.55, 0.25 };
const GLfloat color4[3] = { 0.70, 0.75, 0.30 };
const GLfloat color5[3] = { 0.60, 0.75, 0.30 };
const GLfloat color6[3] = { 0.50, 0.80, 0.30 };
const GLfloat color7[3] = { 0.40, 0.85, 0.35 };
const GLfloat color8[3] = { 0.30, 0.85, 0.45 };
const GLfloat color9[3] = { 0.80, 0.80, 0.80 };
const GLfloat color10[3] = { 1.00, 1.00, 1.00 };

if (elev < 0.0) glColor3fv (color0);
else if (elev < 304.8) glColor3fv (color1);
else if (elev < 609.6) glColor3fv (color2);
else if (elev < 914.4) glColor3fv (color3);
else if (elev < 1219.2) glColor3fv (color4);
else if (elev < 1524.0) glColor3fv (color5);
else if (elev < 1828.8) glColor3fv (color6);
else if (elev < 2133.6) glColor3fv (color7);
else if (elev < 2438.4) glColor3fv (color8);
else if (elev < 2743.2) glColor3fv (color9);
else glColor3fv (color10);

This is perfectly valid OpenGL code. Without even considering whether the application was close to peak
speeds, note that not only is the data being generated unnecessarily each frame, but that the use of the immediate
mode API limits the application to the speed of the bus from the CPU to the graphics device.

Identifying Performance Goals
An application programmer’s first optimization step should be to identify an acceptable performance level, and
determine whether an application is approaching or exceeding that level.

This particular workstation was capable of rendering 100 million vertices per second from memory on the
graphics device. More importantly, though, for this application, the connection from the system to the graphics
device was an AGP 4x bus. Each vertex in the generated data contained 9 floats, 3 each for coordinate, color, and
normal, totalling 36 bytes. Since an AGP 4x bus can theoretically transmit approximately 1 gigabyte per second,
we can calculate that this application could never exceed 27.7 million vertices per second in immediate mode.
Perhaps 50% of that bus-transfer peak would be considered acceptable, or 13.4 million vertices per second. We
use this as our primary goal.

Secondarily, though, it would be nice to approach the device’s peak, 100 million vertices per second. We use
50% of this number as our secondary goal.
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Figure 21: Vertex Performance

The application rendered 150,000 triangles per frame at ten frames per second, or 4.5 million vertices per
second. We can see right away that the application was only reaching 32% of the speed we have established is our
primary goal, and only 9% of the secondary goal.

Identifying and Widening the Bottleneck
Next, we try to identify the bottleneck. Resizing the rendering window made no difference, so it was clear that the
application was not fill-limited. Replacing glVertex() calls with glNormal() calls also made no difference,
so the application was not transform-limited. Normally, the next step would be to store the geometry in a display
list or vertex array object and test whether transporting the geometry was an issue. Because the data was being
generated every frame, however, the generation code had to be altered to run only once at application initialization
time, and that makes it difficult to say whether the problem was the generation of the data or the download. Instead,
the per-frame generation of the data was converted to a one-time initialization step without altering the immediate
mode download method. This yielded an immediate improvement and exceeded the primary performance goal, at
the cost of the memory used to store the vertex data.

In some sense, the customer could have stopped there, depending on his/her project plan. The frame rate was
improved, but the customer could also have downsampled at a higher resolution to simply display more data at
the same frame rate as the original application. This would be a perfectly good place to stop, since the primary
performance goal was reached. We’re stubborn, though, and wanted to squeeze the customer’s money’s worth out
of the workstation. So we applied a few more techniques.

More Techniques for Performance
Although the color data was being stored (and downloaded) in three floats, it’s clear that a vertex’s color in this
application is dependent only on the height of the vertex. We can use glTexGen() with GL LINEAR texture
coordinate generation mode, and map the vertex height into a 1D texture, instead of storing and downloading 12
bytes per vertex of color data. This reduces our memory consumption and increases the rate at which we can send
vertices. Additionally, interpolating a texture coordinate across a polygon can provide many color transitions,
while interpolating between two vertex colors provides less visual information.
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Example 12 Code for providing heightfield color through glTexGen

init() {

... // other OpenGL init

float texgenPlane[4];
unsigned int texobj;

int colorMapEntryCount;
unsigned char colorMap[...];
float colormapMinElev;
float colormapMaxElev;

// Create color map, containing "colorMapEntryCount" entries (power of
// two, of course), mapping color to elevations between "colormapMinElev"
// and "colormapMaxElev".

texgenPlane[0] = 0.0;
texgenPlane[1] = 1 / (colorMapMaxElev - colorMapMinElev);
texgenPlane[2] = 0.0;
texgenPlane[3] = colorMapMinElev / (colorMapMaxElev - colorMapMinElev);

glGenTextures(1, &texobj);
glBindTexture(GL_TEXTURE_1D, texobj);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, colorMapEntryCount, 0,

GL_RGB, GL_FLOAT, colorMap);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

}

drawFrame() {
// clear, set matrices, etc

// draw some annotation, etc

glBindTexture(GL_TEXTURE_1D, texobj);
glEnable(GL_TEXTURE_1D);
glEnable(GL_TEXTURE_GEN_S);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, texgenPlane);

// draw terrain mesh

// draw more annotation, etc
// swapbuffers, etc

}

Next, in order to improve geometry rate even further, we created a vertex buffer object in order to store the
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terrain data directly on the graphics device. This is the most direct way to approach the device’s peak raw speed,
and using the glTexGen technique in the previous paragraph means we can store more vertices in device memory
as well.

As mentioned previously, using indexed data allows geometry to reuse the results of previously transformed
vertices. So we used short indexed triangle strips in spans, so that each strip reused some of the transformed
vertices from the previous strip. This allowed us to exceed our secondary goal.
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Figure 22: Improving transformed vertex reuse by optimizing for the vertex cache

Finally, we noted that the application was often used to zoom in to a section of the terrain. Since portions
of the terrain were then off-screen, we diced the terrain into tiles and implemented view-frustum culling, so that
tiles not inside the view frustum were simply not drawn. Our implementation of this technique used the occlusion
query extension for ease of implementation, but occlusion query is not required.

figure of view frustum and tiles culled and not culled
Because vertex buffer objects are paged in and out of device memory as necessary, this also gave us an

opportunity to create more terrain tiles than could fit on the device, and allow frustum culling to page tiles in and
out automatically. When the visible set of tiles all fit in device memory, then the tiles ran nearly at peak speed for
the device.

In the final implementation of this terrain viewing application, the data set was rendered at a resolution of
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2001 samples per side, or fifty times higher resolution than the original downsampled data. The lowest frame
rate measured was 3 frames per second for the entire data set, or 24 million vertices per second, nearly twice our
primary goal. However, the frame rate for viewing a portion of the data set was usually 10 frames per second or
better, and often 60 frames per second.

Figure 23: Final optimized terrain
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General OpenGL Performance Techniques

State Sorting - Trying to organize rendering around state changes
Each time certain state values (excluding vertex data such as color, normals, etc.) are updated, OpenGL prepares
to do a validation process at the next rendering operation. A logical optimization step is then to try and minimize
the number of times that state needs to be set. For instance, if the application needs to draw two objects with blue
materials, and two with red, the more efficient (and hopefully logical) progression would to render both objects
of one color first, then the other set, requiring only two material changes per frame. This technique is generally
referred to as “state sorting” and attempts to organize rendering requests based around the types of state that will
need to be updated to get the correct results.

Objects can have considerably different states, and determining a precedence for which states to sort for first
is recommended. Generally, the goal is to attempt to sort the render requests and state settings based upon the
penalty for setting that particular part of the OpenGL state. For example, loading a new texture map is most likely
a considerably more intensive task than setting the diffuse material color, so attempt to group objects based on
which texture maps they use, and then make the other state modifications to complete the rendering of the objects.

Use sensible pixel and texture formats
When sending pixel type data down to the OpenGL pipeline try to use pixel formats that closely match either
the format of the framebuffer or requested internal texture format. When pixel data is transmitted to the pipe it
proceeds through the pixel processing pipeline as illustrated below:

Pixel
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Pixel Map
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Pixel Transfer

Operations


Rasterizer

(Pixel Zoom

applied to


pixel

rectangles)


Framebuffer

Incoming


Pixel

Rechtangle


Texture

Memory


Figure 24: OpenGL’s pixel conversion and transfer pipeline

The conversion of pixel data from the format and type specified from the application to format and type that
is most palatable to OpenGL happens automatically, if required. This conversion could take a while to complete
depending upon the resolution, format, and number of components, . Minimizing these conversion is a good idea
as these conversions are both out of the application’s direct control and potentially expensive. The following set
of graphs represent a comparison of transfer and processing speeds for identical 1024×1024 sized images passed
to OpenGL using the glDrawPixels() routine. The values were computed based on number of bytes of data,
and not pixels, as to attempt to keep the volume of data transferred identical.
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Figure 25: Results for passing different pixel formats into glDrawPixels()

It appears, from these empirical results, that GL UNSIGNED BYTE or a packed-pixel format may well be the
best choices for sending pixel data into the OpenGL pipeline. These results also provide important considerations
for texture image download, as the texel in a texture are processed in the same manner (up to conversion into the
texture’s internal format. Pixels going to the screen are converted into screen format) as pixels passed down as
images to be rendered.

As a general rule of thumb, packed pixels formats (e.g., GL UNSIGNED SHORT 5 5 5 1), or combinations
of type (e.g., GL UNSIGNED BYTE) and format (e.g., GL RGBA) that match the framebuffer’s format will skip
conversion. The same is true for texture formats when compared to the texture’s internal format. Currently,
floating point formats are the least widely supported formats for any hardware available today. This is changing,
however with the fully-floating-point graphics hardware beginning to become widely available.

In instances where only a small part of an image is of interest, using glPixelStore() is one way to access
the pixels of interest. However, this approach may cause avoidable overhead due to memory access on the host
machine, and in particular, if there are only incremental changes to the area of interest from frame to frame (as in
an image roaming application, for example), it may be more optimal to utilize texture memory as an “image cache”
where only the new pixels of the image are updated. See the Reload textures using glTexSubImage*D()
section for more detail.

38



SIGGRAPH 2004 Performance OpenGL Course # 16

Pre-transform static objects
For objects that are permanently positioned in world coordinates pre-transforming the coordinates of such objects
as compared to calling glTranslate*() or other modeling transforms can represent a performance advantage
for state management and some geometry-limited scenes.

Use texture objects
In the revision of OpenGL from version 1.0 to version 1.1, a new concept for managing textures was added:
texture objects. Although this change happened years ago, reiterating the use of texture objects is useful. Without
texture objects, applications that used multiple textures per frame were required to reload each texture per frame
causing large numbers of texels to be transferred each frame, or mosaic the textures into a single larger texture,
if the texture could be accommodated in texture memory. By utilizing texture objects, management of texture
memory, along with down-loading the texels into texture memory was decreased to merely specifying to OpenGL
which texture object should be made active. In such a case that all textures fit into texture memory, changing
texture maps became almost a free operation.

An additional benefit of texture objects is the ability to add a “priority” to each texture object, providing
OpenGL a hint of which textures are the most important to keep resident in texture memory.

Use texture proxies to verify that a given texture map will fit into texture memory
Along with texture objects, texture proxies were added into OpenGL 1.1. This feature provides much more infor-
mation than merely querying the GL MAX TEXTURE SIZE, which specifies the “largest” texture that OpenGL
can handle. This value doesn’t consider number of components, texel depth, texture dimensionality, or mipmap
levels, so it is of very limited use.

Texture proxies, on the other hand, verify that all values for a specific texture: width, height, depth, internal
format, and components, are valid and that there is enough texture memory to accommodate the texture, including
mipmap levels, if requested.

Reload textures using glTexSubImage*D()
For applications that need to update texels in a texture, or refresh an entire texture, it usually is more ben-
eficial to “subload” a texture using glTexSubImage*D(), as compared to glTexImage*D(). Calls to
glTexImage*D() request for a texture to be allocated, and if there is a current texture present, deallocate it.
Although under limited circumstances (like all parameters of the two textures being identical), the deallocation
/ allocation phase may be skipped by certain OpenGL drivers, it’s unlikely this optimization is present in many
implementations.

A better approach is to allocate a texture large enough to hold whatever texels may be required, and load the
texture by calling glTexSubImage*D(). If the textures are not the same size, the texture matrix can be used
to manipulate the texture coordinates to match the new size. By sub-loading the texture, the texture never needs
to deallocated. As glTexSubImage*D() doesn’t permit changes to the texture’s internal format, requesting a
texture of a different internal format does require a deallocation / allocation phase.
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Vertex and Fragment Programming Performance Considerations

Introduction
Traditional graphics hardware has been implemented as fixed-function pipeline. ln recent years, programmable
graphics hardware has become available to the extent that all new graphics subsystems expose low-level pro-
grammability. This programmability, currently, comes in the form of assembly language-like programs that re-
place portions of the traditional fixed-function pipeline. These programs are implemented by a common set of
base instructions combined with some specific fragment and vertex instructions. These will be described more
fully later in the notes.

Programmable Pipeline versus Fixed Function

Programmability in current graphics hardware is provided by two assembly code-like programming facilities.
(These are commonly called ”shaders”, but this is slightly inaccurate.)

The first is the vertex program that replaces the traditional OpenGL fixed-function transform pipeline as il-
lustrated in Figure 26. It provides the programmer complete control of vertex transformation, lighting, texture-
coordinate generation, and allows any other computations to occur on a per-vertex basis. This permits the imple-
mentation of custom transformations and lighting equations and the ability to offload these operations from the
CPU to the vertex processor in the GPU.

Figure 26: Programmable Vertex Shader Pipeline

The second program is the fragment program that replaces the traditional OpenGL fixed-function rasterization
pipeline as illustrated in Figure 27. The fragment program provides control of fragment generation by replacing
the traditional fixed-function texture blend, color sum, and fog operations. Per-pixel tests (i.e., depth, stencil,
scissor, etc.) are still part of the fixed function pipeline. As with the vertex program, the intent behind this
programmability is to allow custom blending, color calculations, etc. to allow better lighting, bump-mapping, or
other effects not available in fixed-function pipelines.
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Figure 27: Programmable Fragment Shader Pipeline

Capabilities and Responsibilities

Vertex and fragment programming provide increased flexibility by giving the programmer more complete com-
plete control of transform, lighting, and shading. But with this new capability comes responsibility. In the case
of the vertex program, using a programmable shader to replace any part of the fixed function pipeline requires
the program to implement all transformation, lighting, and texture-coordinate generation even if it simply mimics
what is already implemented in the fixed-function pipeline. Said differently, using a vertex program requires you
to implement any or all parts of the fixed-function pipeline that you would like to utilize. Operations incumbent
upon the programmer when writing vertex programs are:

• Model-view and Projection Vertex Transformations

• Normal Transformation, Rescaling and Normalization

• Color Material

• Per-Vertex Lighting

• Texture Coordinate Generation

• Texture Matrix Transformations

• Per-Vertex Point Size

• Fog Coordinate Computations

• User Clip Planes

Operations not replaced by the vertex program include:

• Evaluators

• View Frustum Clipping

• Perspective Divide
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• Viewport Transformation

• Depth Range Transformation

• Front and Back Color Selection

• Clamping of Primary and Secondary Color

• Primitive Assembly and Setup

In the case of the fragment program it is the responsibility of the programmer to implement all operations that
compute the final fragment color prior to per-pixel testing. These operations include:

• Texturing

• Color sum

• Fog

Operations such as

• Polygon-offset depth displacement

• Depth testing

• Stencil testing

• Alpha blending

• Alpha rejection tests

are still processed by the fixed-function fragment pipeline.

SIMD Programming Concepts and Caveats

One key design element in the operation of vertex and fragment programs is that neither has any knowledge of
neighboring pixels or vertices. This design makes the vertex and fragment engines Single Instruction Multiple
Data (SIMD) machines. This simply means that the same program operates on a batch of data at once. Beneath
this design abstraction, actual graphics hardware may process several vertices or fragments in parallel, and then
pass those results to the next phases of the pipe. This parallelism enables high-performance graphic accelerators,
but with some tradeoffs. For example, a fragment shader would be a great place to try to perform some blending
among adjacent fragments, to achieve some sort of smoothing or blur effect. However, to achieve this, you would
first have to render to a texture map, then render a quad utilizing that texture map, and apply the fragment program
there. In such a case, each texel would correspond at some level to a pixel, and operations could access adjacent
texels and blend the results. The result of this SIMD operation means that multi-pass effects are required for
programs that require information about adjacent primitives. As multi-pass is a relatively expensive operation,
care must be taken when designing programs that use adjacent pixels. In many cases, if the adjacency computation
is required, there may be no performance work-around. Hence, take care in the design phase to consider whether
or not adjacency information is absolutely required.

Performance Implications

Although vertex and fragment programs provide additional levels of rendering flexibility, performance can vary
dramatically from program to program. Programmability enables hardware acceleration of graphics algorithms
previously performed on the CPU. However, vertex and fragment programs can become a bottleneck in application
performance. This section will explore the performance impacts of vertex and fragment programs.
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Basic Programs: Construction and Performance
Program Basics

Fragment and vertex programs share many of the same interfaces and instructions. This section will discuss the
basics of constructing a program, downloading it to the hardware, and the differences between vertex and fragment
program instruction sets.

A vertex or fragment program is a sequence of instructions presented to the OpenGL machine as a character
array. These are then parsed and compiled, frequently with some optimizations applied, such as dead-code-
elimination, and then used by the OpenGL machine to replace some subset of pipeline fixed-functionality. Each of
these programs are slightly different due to the different problem domains of the vertex engine and the rasterization
engine, but the programs also share much structure. Each has a header, a variable declaration section, a list of
instructions, and a footer. For example, a basic fragment program could be:

Example 13 A Basic GL ARB fragment program based Fragment Program

!!ARBfp1.0 # header

TEMP tmp; # variable declaration

MUL tmp, fragment.color, .5; # instruction
MOV tmp.a, 1; # instruction
MOV result.color, tmp; # instruction

END # footer

In large part, the only difference between the structure of this program and a vertex program would be the
header, simply changed to !!ARBvp1.0() for vertex programs. The contents of the actual instructions would
be different, and the results written would be of a different form as well. The variable declaration section will
not be explored in much detail as there are many different types of variables that can be declared and the details
behind their initialization is not relevant here. A brief tour of the types of variables is this:

TEMP read/write arbitrary temporary 4-vector variables for use within a program.

ATTRIB read-only state associated with the incoming vertex. Extra attribute arrays may be associated with
vertex array data and accessed here. see glVertexAttrib[123]dARB()

PARAM state associated with the environment of this program. Also used for read-only constants. Things like
light parameters can be read here.

We will discuss differences between vertex and fragment instructions, but not go into detail about specific in-
structions. For complete details on all elements of program syntax and semantics please see the OpenGL Architec-
ture Review Board specifications for the GL ARB vertex program[3] and GL ARB fragment program[2]
extensions, respectively.

As mentioned in the prior paragraph, each program is largely the same structurally, however the major differ-
ences occur in the instructions available to each. Even so, the vast majority of instructions available to fragment
and vertex programs are the same. Basic math, such as adding, subtracting, and multiplying, vector math, such as
dot-product and cross-product, swizzling, etc. are available to each. A complete list of instructions available to a
vertex program are the following, with those unique to vertex programs emphasized.
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ABS absolute value
ADD add
ARL address register load
DP3 3-component dot product
DP4 4-component dot product
DPH homogeneous dot product
EX2 exponential base 2
EXP exponential base 2 (approximate)
FLR floor
FRC fraction
LG2 logarithm base 2
LIT compute light coefficients
LOG logarithm base 2 (approximate)
MAD multiply and add
MIN minimum
MOV move
MUL multiply
POW exponentiate
RCP reciprocal
RSQ reciprocal square root
SGE set on greater than or equal
SLT set on less than
SUB subtract
SWZ extended swizzle
XPD cross product

Instructions available to a fragment program are the following, with unique instructions emphasized.
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ABS absolute value
ADD add
CMP compare
COS cosine with reduction to the interval [−π, π]
DP3 3-component dot product
DP4 4-component dot product
DPH homogeneous dot product
DST distance vector
EX2 exponential base 2
FLR floor
FRC fraction
KIL kill fragment
LG2 logarithm base 2
LIT compute light coefficients
LRP linear interpolation

MAD multiply and add
MAX maximum
MIN minimum
MOV move
MUL multiply
POW exponentiate
RCP reciprocal
RSQ reciprocal square root
SCS sine/cosine without reduction
SGE set on greater than or equal
SIN sine with reduction to the interval [−π, π]
SLT set on less than
SUB subtract
SWZ extended swizzle
TEX texture sample
TXB texture sample with bias
TXP texture sample with projection
XPD cross product

The major difference between the vertex and fragment program instruction sets is that fragment programs deal
with textures, and so have an associated set of instructions largely for manipulation of textures.

The major difference between vertex and fragment programs is simply their frequency of execution. Vertex
programs are executed once per-vertex and their results interpolated across the resulting primitive. These results
are then passed to a fragment program that is executed once per-fragment in that resulting primitive. Depending
on the average size of triangles in your particular shaded object, the ratio between number of vertices to number
of fragments can range from 1 to 10s to perhaps millions of pixels (for primitives spanning the entire screen area.)
Understanding this ratio becomes key to balancing performance when either vertex or fragment programs become
a bottleneck. We’ll examine balancing workload between fragment, vertex, and host later in the course.

Program Binding, Compiling, and Usage

Once you have a vertex or a fragment program as a string, downloading it to the graphics hardware and man-
aging it is analogous to managing texture ids. First, begin by calling glGenProgramsARB() to get the ID
values for the vertex and fragment programs you would like to download. Then, glBindProgramARB() us-
ing a newly-generated ID. Finally, download the program with glProgramStringARB(). Henceforth, that
program may be made active by again calling glBindProgramARB() with the same ID. Although in most
cases error checking is an undesirable action to perform at run-time, shaders require it to validate that the code
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you input was correctly parsed and is usable. Call glGetIntegerv(GL PROGRAM ERROR POSITION ARB,
errpos) and glGetString(GL PROGRAM ERROR STRING ARB) recursively to find any errors that may
be in the downloaded program. When the errpos() value returned from glGetIntegerv() is -1() the
code has compiled correctly. A visual method to check code correctness is to see if your object with a fragment
or vertex program is black or white—these colors are frequently applied in an error state.

Performance Impact of Common Instructions

The overall performance of a vertex or fragment program is based upon the performance of instructions which
compose the program. Each instruction has different performance characteristics depending upon the type of op-
eration that is performed by the instruction. Instruction performance is measured in the number of clock cycles
that an instruction takes to execute. Some instructions execute in a single clock while others execute in multi-
ple clock cycles. While cycle counts for those instructions that perform mathematical operations are typically
straightforward to predict, the performance of those that perform texture lookups is harder to calculate due to the
fact that the instruction time will be based on the overall OpenGL texture state. For example, texture lookup per-
formance will depend upon the texture format—data not in the native texture format for the hardware will require
swizzling and masking and these operations will negatively impact texture lookup performance. In all cases, it
is a good idea to consult vendor documentation to determine the performance of shader instructions. Figure 28
illustrates the wide variation in instruction performance.

Figure 28: Execution Time for Common Instructions
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Figure 29: Performance of Texture Instructions compared with ALU Instructions

As illustrated in Figure 29 texture instructions are an order of magnitude faster than ALU instructions. Given
that textures can be used as general 1D, 2D and 3D arrays, table lookups via a texture can be used to replace
calculations and ultimately improve program performance. Textures also permit dependent lookups (i.e., a =
x[y[i]])

Texture coordinates may also be used as general interpolants. In this case, general per-vertex program data
can be stored in texture coordinates and subsequently interpolated into per-fragment data during rasterization.
This technique is useful for efficiently implementing advanced rendering algorithms that require additional per-
fragment attributes.

ATTRIB normal = fragment.texcoord[3];
ATTRIB pressure = fragment.texcoord[2];

However, one must exercise caution when using texture lookups in this way as texture sampling may lead to
interpolation and continuity problems.

Longer programs tend to require more execution time due to the fact that additional instructions require ad-
ditional cycles. However, making a program shorter does not guarantee that it will execute in fewer cycles. The
order of instructions within vertex and fragment programs can also play a role in the overall performance of a
program. Again, vendor documentation is the best guide here. One potential way to ensure optimal instruction
ordering is to utilize a higher-level shading language and rely on the vendor’s compiler to optimize the order of
the resulting program instruction.

When coding a vertex or fragment program, it is best to code up the program and ensure that it is working
properly prior to optimization. In general, program performance is difficult to predict based on program contents.
This is due to the fact that:

1. the code looks like assembly, but in reality it is actually compiled for a specific platform
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2. the native hardware instruction set is different

3. because programs are compiled, dead code may be removed and instructions may be reordered

All of these can impact performance. Some manual code optimizations may make a program take more cycles to
execute, when compared with the built-in translation and optimization. As a result, trial and error is often the best
approach to optimization. The next section will discuss shader program performance analysis and optimization in
more detail.

Analysis and Optimization
In this section we will discuss a variety of tools and techniques for evaluating program performance, both on an
individual program level, and from a rendering system perspective.

As we have seen earlier in the notes, programs that are graphics bound are either transform or fill limited.
As is obvious, these two bottlenecks correspond nicely to vertex and fragment programs. If an application using
vertex or fragment programs is, for example, fragment limited, a variety of options exist for optimizing that
code directly. First among these options is to simply evaluate what operations are being performed, and if less-
expensive operations can be used instead. For example, replacing a complex set of math operations, with a
pre-calculated set of results, looked up in a texture. Another technique to reduce the number of operations would
be to pack them more tightly, to re-use results, to calculate fewer lights, octaves of noise, etc. Similar options exist
for vertex programs, where calculations could be perhaps pre-calculated on the host, and passed in as attribute
data, etc.

A second major way in which vertex and fragment program bottlenecks can be mitigated is by shifting com-
putational load up and down the pipeline. For example, if an application is transform limited, some of the compu-
tation done per-vertex could be done per-fragment, and thereby relieve some of the burden on the vertex engine.
Alternately, that work could be pushed up-stream to the CPU, and passed down as attribute data. If fill-limited,
computations could be done in a vertex program, and passed down to a fragment program as texture-coordinates,
interpolated automatically across each primitive. Utilizing the programmability of each portion of the pipeline to
balance workload among all portions is a very powerful technique for managing graphics bottlenecks.

State Issues

Vertex and fragment programs, like any other OpenGL state, have attendant costs in changing those state values.
So, as with any other state, care must be taken to change state only as frequently as necessary. But vertex and
fragment programs are different than most other OpenGL state in that they rely heavily on the other portions of
the pipe to be configured properly. For example, a fragment shader may use a texture unit to provide per-fragment
normal values to an object. For this fragment program to work properly, that texture must be loaded into the
texture unit specified by that program. Similarly, for a vertex program to operate properly, it may require certain
additional data to be loaded in its attribute arrays, so that vertex program can’t work in just a generic sense; it
requires data fed to it to be formatted a certain way. Finally vertex and fragment programs are often closely
coupled, as the output of the Vertex program frequently will compute data in a precise way (say, texture unit 3 is
an interpolated binormal) for a fragment program.

Because of the implicit state required by a vertex or fragment program, changing them frequently can be
much more expensive than any other form of state, as they require configuration of multiple state elements, such
as texture units, lighting configurations, vertex data formats, etc. In order to maximize the overall performance
of an application with multiple vertex and fragment programs in it, the programs should be resident for as long
as possible. Said differently, the number of primitives rendered per-program-bind should be as great as possible.
Switch infrequently, render lots of data in between switches, and you’ll be started down the path to good aggregate
vertex/fragment program usage and performance.
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Glossary
binary space partition (BSP) tree A technique of computing occluding geometry by subdividing space using a

geometric plane to divide 3D space into two half-spaces. The benefit of BSP trees is that they can be used
to determine an appropriate rendering order to minimize depth-buffering, as well as proving a convenient
structure for culling geometry from a rendered scene.

performance bottleneck The execution path of an application that is the limiting factor in the performance of
the program. Every program has a bottleneck; the issue is if the impact of the bottleneck is severe enough
to warrant tuning the application to remove the bottleneck.

display list rendering A mode of OpenGL command execution where OpenGL commands are stored for later
execution. Certain hardware implementations of OpenGL may include specialized hardware for executing
display lists more rapidly than in immediate mode. An additional benefit to display lists is that when they
are executed (by a call to glCallList() or glCallLists()), only that data needs to be transferred
to the rendering server in distributed cases.

fast path Term used to describe a sequences of OpenGL commands that execute hardware accelerated, or in an
optimized manner.

fragment Data relevant to a pixel in the framebuffer, including its position, color, texture coordinates, and depth.

infinite (or directional) light A type of OpenGL light that radiates light in a single direction, with all light rays
considered parallel. This type of light is generally used to simulate sunlight.

immediate mode rendering A mode of OpenGL command execution where an OpenGL command is executed
immediately, as compared to having delayed execution as with display lists.

interleaved array rendering A mode of OpenGL command execution where all vertex data (including colors,
normals, texture coordinates, and edge flags) are stored in a single array in an interleaved format such that
all the data for a particular vertex is grouped in a particular format (see the documentation for
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glInterleavedArrays() for a list of accepted formats). This method may produce faster rendering
than immediate mode in a similar manner than vertex arrays.

packed pixel formats A storage method utilized by OpenGL to compactly store the color components of an
image’s pixel in a suitable single data value, as compared to storing each color component in its own data
value location. For example, the GL UNSIGNED SHORT 5 5 5 1 stores the red, green, blue, and alpha
components in a single unsigned short value, using only two bytes. If packed pixels were not used, this
data would need at least four bytes (assuming that unsigned bytes are sufficient pixel format can be found
that matches the internal format used by the graphics hardware.

painters’ algorithm A technique of sorting (non-intersecting) geometric primitives based on distance from the
eye. In such a configuration, the geometry does not need to be depth buffered. The algorithm takes its
name from how painters render their scenes, progressing from the background to the foreground objects by
painting over objects that are considered farther from the viewer than the new objects.

point (or local) light A type of OpenGL light that radiates light in a spherical manner from a single point, as a
light bulb would in the real world. Point lights can also be converted into OpenGL spot lights.

rasterization phase The stage of the OpenGL rendering pipeline that render fragments into color pixels in the
framebuffer. This phase includes the following operations: viewport culling, scissor box, depth buffering,
alpha testing, stencil testing, accumulation buffer operations, logical pixel operations, dithering, and
blending.

shading The process of computing the color of a pixel. Shading can combine colors provided by sampling a
texture map, blending with colors already in the framebuffer, and colors modified by anti-aliasing effects.

state sorting The process of organizing OpenGL rendering such that the number of state changes is minimized.

transformation phase The stage of the OpenGL rendering pipeline that transforms vertices in world
coordinates into fragments in screen coordinates. This phase includes the following operations:
model-view and projection transformations, lighting, texture coordinate generation, per-vertex fog
computation, clipping (including user-defined clip planes).

validation The process by which OpenGL initializes its internal state to match the requests of the user. This
might include computing intermediate cached results, updating the pipeline function pointers, and other
operations.

vertex array rendering A mode of OpenGL rendering where all vertex data (including colors, normals, texture
coordinates, and edge flags) is passed to OpenGL as a set of separate arrays of information, for possible
batch processing, but mostly to minimize the fine-grained function call overhead that is required for
immediate mode rendering.

Updates
These notes are a living document and will be updated with new techniques and further elaborations over time.
The latest copy of the notes can be found at

http://www.PerformanceOpenGL.com/
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Appendix A
The following tables show the different combinations of state that were utilized in generating Figure 3 through
Figure 12. The ‘�’ represets the state being enabled, while the ‘×’ represents the particular feature being
disabled.

Test 2D Texture Alpha Depth Stencil Alpha Percentage Percentage
Id Mapping Blending Testing Testing Dithering Testing of Peak Fill Change

1 × × × � � × 100.00%
2 × × × × � � 99.99% 0.01%
3 × × × � � � 99.97% 0.02%
4 × × × � × � 99.97% 0.00%
5 × × × × � × 99.96% 0.01%
6 × × × × × � 99.94% 0.02%
7 × × × � × × 99.92% 0.02%
8 × × × × × × 99.86% 0.07%
9 × × � × � � 99.23% 0.62%

10 × × � � × � 99.20% 0.04%
11 × × � × × � 99.18% 0.02%
12 × × � × � × 99.16% 0.01%
13 × × � � × × 99.14% 0.02%
14 × × � � � � 99.14% 0.00%
15 × × � � � × 99.12% 0.02%
16 × × � × × × 98.78% 0.34%
17 × � × × × � 76.39% 22.67%
18 × � × � × � 76.38% 0.01%
19 × � × � × × 76.38% 0.00%
20 × � × × × × 76.38% 0.01%
21 × � × � � � 76.37% 0.00%
22 × � × × � � 76.37% 0.00%
23 × � × � � × 76.36% 0.01%
24 × � × × � × 76.33% 0.04%
25 × � � � × � 70.69% 7.39%
26 × � � � × × 70.69% 0.00%
27 × � � � � × 70.69% 0.01%
28 × � � × × � 70.68% 0.00%
29 × � � × � � 70.68% 0.01%
30 × � � × � × 70.68% 0.00%
31 × � � � � � 70.67% 0.00%
32 × � � × × × 70.67% 0.01%
33 � × × × � � 59.27% 16.13%
34 � × × � × � 59.26% 0.02%
35 � × × � × × 59.25% 0.01%
36 � × × × � × 59.24% 0.02%
37 � × × × × × 59.24% 0.00%
38 � × × � � × 59.24% 0.01%
39 � × × × × � 59.23% 0.01%
40 � × × � � � 59.22% 0.03%
41 � × � � � � 55.90% 5.61%
42 � × � × � � 55.88% 0.02%
43 � × � × × × 55.87% 0.02%
44 � × � � � × 55.87% 0.01%
45 � × � � × × 55.87% 0.00%
46 � × � � × � 55.87% 0.00%
47 � × � × × � 55.87% 0.00%
48 � × � × � × 55.86% 0.01%
49 � � × × � � 49.24% 11.85%
50 � � × � � � 49.24% 0.00%
51 � � × � × × 49.23% 0.03%
52 � � × × × × 49.23% 0.00%
53 � � × � � × 49.22% 0.00%
54 � � × × � × 49.22% 0.00%
55 � � × × × � 49.22% 0.00%
56 � � × � × � 49.22% 0.01%
57 � � � � � � 47.22% 4.06%
58 � � � × � � 47.22% 0.01%
59 � � � � � × 47.22% 0.00%
60 � � � × × � 47.21% 0.00%
61 � � � � × � 47.21% 0.00%
62 � � � × � × 47.21% 0.00%
63 � � � × × × 47.19% 0.04%
64 � � � � × × 47.19% 0.01%
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Test 2D Texture Alpha Depth Stencil Alpha Percentage Percentage
Id Mapping Blending Testing Testing Dithering Testing of Peak Fill Change

1 × × × × × × 100.00%
2 × × � � × � 100.00% 0.00%
3 × × � × × � 99.99% 0.01%
4 × × � � × × 99.98% 0.01%
5 × × × × × � 99.97% 0.01%
6 × × × � × × 99.88% 0.08%
7 × × � × × × 99.88% 0.00%
8 × × × � × � 95.37% 4.52%
9 × � � × × × 68.99% 27.66%

10 × � × × × × 68.99% 0.00%
11 × � � × � × 68.98% 0.01%
12 × × � × � � 68.98% 0.00%
13 × � × � � � 68.98% 0.00%
14 × � × � × � 68.98% 0.00%
15 × × × � � � 68.98% 0.00%
16 × � � � � × 68.97% 0.00%
17 × � × � × × 68.97% 0.00%
18 × � � × � � 68.97% 0.01%
19 × × � � � × 68.97% 0.00%
20 × � � � � � 68.96% 0.00%
21 × × � × � × 68.96% 0.00%
22 × × × × � � 68.96% 0.00%
23 × � × × × � 68.96% 0.01%
24 × � � � × × 68.96% 0.00%
25 × × × � � × 68.96% 0.00%
26 × � × × � � 68.91% 0.07%
27 × × � � � � 68.89% 0.03%
28 × � × × � × 68.89% 0.00%
29 × � � × × � 68.88% 0.00%
30 × � � � × � 68.88% 0.00%
31 × � × � � × 68.86% 0.04%
32 × × × × � × 68.65% 0.30%
33 � × × × × × 45.00% 34.45%
34 � � � × � � 44.93% 0.16%
35 � × × � × � 44.93% 0.01%
36 � × × × � � 44.93% 0.00%
37 � � × × � × 44.93% 0.00%
38 � � × � � × 44.92% 0.00%
39 � × × × × � 44.92% 0.00%
40 � × � × � � 44.92% 0.00%
41 � × � � × � 44.92% 0.00%
42 � � × × × � 44.92% 0.00%
43 � × × � � × 44.92% 0.00%
44 � × × × � × 44.92% 0.00%
45 � × � × � × 44.92% 0.00%
46 � × � × × � 44.92% 0.00%
47 � � × � � � 44.92% 0.00%
48 � � � � � � 44.92% 0.00%
49 � × × � � � 44.92% 0.00%
50 � � × × � � 44.92% 0.00%
51 � � × × × × 44.92% 0.00%
52 � × � � � × 44.92% 0.00%
53 � � � � � × 44.92% 0.00%
54 � � � × � × 44.91% 0.00%
55 � � × � × � 44.91% 0.00%
56 � � × � × × 44.91% 0.00%
57 � � � × × × 44.88% 0.06%
58 � � � � × � 44.88% 0.00%
59 � × � × × × 44.88% 0.00%
60 � � � × × � 44.88% 0.00%
61 � × × � × × 44.87% 0.02%
62 � × � � × × 44.86% 0.03%
63 � × � � � � 44.85% 0.02%
64 � � � � × × 44.84% 0.02%
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Test 2D Texture Alpha Depth Stencil Alpha Percentage Percentage
Id Mapping Blending Testing Testing Dithering Testing of Peak Fill Change

1 × × × × � � 100.00%
2 × × × × × × 99.98% 0.02%
3 × × × × × � 99.97% 0.01%
4 × × × × � × 99.95% 0.02%
5 � × × × × � 98.64% 1.31%
6 � × × × � � 98.61% 0.04%
7 � × × × � × 98.58% 0.02%
8 � × × × × × 98.58% 0.00%
9 × × � × � � 85.66% 13.11%

10 × × � × × � 85.65% 0.01%
11 × × � × × × 85.64% 0.01%
12 × × � × � × 85.62% 0.02%
13 × × � � × × 85.32% 0.35%
14 × × � � � × 85.32% 0.01%
15 × × � � � � 85.31% 0.01%
16 × × � � × � 85.28% 0.04%
17 � × � � � × 85.27% 0.01%
18 � × � � × � 85.26% 0.00%
19 � × � � × × 85.25% 0.01%
20 � × � � � � 85.25% 0.00%
21 × × × � × � 83.80% 1.70%
22 × × × � � � 83.78% 0.02%
23 × × × � × × 83.74% 0.05%
24 × × × � � × 83.72% 0.03%
25 � × × � × × 83.31% 0.48%
26 � × × � � � 83.29% 0.03%
27 � × × � � × 83.29% 0.00%
28 � × × � × � 83.25% 0.04%
29 � × � × × × 82.31% 1.14%
30 � × � × � × 82.30% 0.01%
31 � × � × × � 82.28% 0.03%
32 � × � × � � 82.25% 0.04%
33 × � × × � � 72.68% 11.64%
34 × � × × × × 72.66% 0.02%
35 × � × × × � 72.65% 0.02%
36 × � × × � × 72.64% 0.01%
37 × � × � � × 71.68% 1.32%
38 × � × � × × 71.68% 0.00%
39 × � × � × � 71.68% 0.00%
40 × � � � � × 71.67% 0.00%
41 × � × � � � 71.67% 0.00%
42 × � � � × � 71.66% 0.02%
43 × � � � � � 71.66% 0.00%
44 × � � � × × 71.65% 0.02%
45 � � × � × × 69.25% 3.34%
46 � � × � × � 69.25% 0.00%
47 � � × × � � 69.25% 0.01%
48 � � × � � � 69.24% 0.01%
49 � � × × × × 69.24% 0.00%
50 � � × � � × 69.24% 0.00%
51 � � × × × � 69.23% 0.01%
52 � � � � � � 69.23% 0.00%
53 � � × × � × 69.22% 0.00%
54 � � � � × × 69.21% 0.01%
55 � � � � × � 69.21% 0.01%
56 � � � � � × 69.20% 0.00%
57 × � � × × × 67.47% 2.50%
58 × � � × × � 67.45% 0.04%
59 × � � × � × 67.45% 0.00%
60 × � � × � � 67.44% 0.02%
61 � � � × � � 64.32% 4.61%
62 � � � × × × 64.32% 0.00%
63 � � � × � × 64.31% 0.02%
64 � � � × × � 64.31% 0.00%
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Test 2D Texture Alpha Depth Stencil Alpha Percentage Percentage
Id Mapping Blending Testing Testing Dithering Testing of Peak Fill Change

1 × × � × � × 100.00%
2 × × � × � � 99.99% 0.01%
3 × × � � × × 99.99% 0.00%
4 × × � × × � 99.98% 0.01%
5 × × × � � � 99.98% 0.00%
6 × × � × × × 99.98% 0.00%
7 × × × � × � 99.96% 0.01%
8 × × × × × × 99.93% 0.04%
9 × × × × × � 99.93% 0.00%

10 × × � � � × 99.93% 0.00%
11 × � � � � × 99.92% 0.01%
12 × × × × � � 99.91% 0.01%
13 × � × � × � 99.91% 0.00%
14 × � � � � � 99.90% 0.00%
15 × � � × � � 99.90% 0.01%
16 × � × � � × 99.90% 0.00%
17 × � × × � × 99.89% 0.00%
18 × � × × × � 99.89% 0.01%
19 × � � × × × 99.89% 0.00%
20 × � × × × × 99.87% 0.01%
21 × × � � × � 99.87% 0.00%
22 × × � � � � 99.87% 0.00%
23 × � × � � � 99.87% 0.00%
24 × � × × � � 99.86% 0.01%
25 × � × � × × 99.86% 0.00%
26 × � � × � × 99.86% 0.00%
27 × � � × × � 99.86% 0.00%
28 × � � � × � 99.86% 0.00%
29 × � � � × × 99.84% 0.01%
30 × × × � × × 99.67% 0.17%
31 × × × × � × 99.60% 0.07%
32 × × × � � × 99.60% 0.00%
33 � × � × � � 54.35% 45.43%
34 � × � × � × 54.35% 0.01%
35 � × × � � × 54.35% 0.00%
36 � × � × × � 54.34% 0.01%
37 � × × × � × 54.34% 0.01%
38 � × × � � � 54.34% 0.00%
39 � × × � × � 54.33% 0.00%
40 � × × × × � 54.33% 0.00%
41 � � × × � � 54.33% 0.00%
42 � × � × × × 54.33% 0.01%
43 � � � � � × 54.33% 0.01%
44 � × � � � � 54.33% 0.00%
45 � � � � � � 54.32% 0.00%
46 � × � � × � 54.32% 0.00%
47 � � � � × � 54.32% 0.00%
48 � � � × × × 54.32% 0.00%
49 � � × � × × 54.32% 0.00%
50 � � × × × × 54.32% 0.00%
51 � � � × � × 54.31% 0.01%
52 � � � � × × 54.31% 0.00%
53 � � × � � � 54.31% 0.00%
54 � � × � × � 54.31% 0.00%
55 � � × × � × 54.31% 0.00%
56 � × � � � × 54.31% 0.00%
57 � � × × × � 54.31% 0.00%
58 � � � × � � 54.31% 0.00%
59 � � × � � × 54.31% 0.00%
60 � � � × × � 54.31% 0.00%
61 � × × × × × 54.25% 0.11%
62 � × × � × × 54.24% 0.01%
63 � × × × � � 54.23% 0.01%
64 � × � � × × 54.15% 0.15%
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Id Mapping Blending Testing Testing Dithering Testing of Peak Fill Change

1 × × × × � × 100.00%
2 × � × × × × 99.99% 0.01%
3 × � × × � × 99.96% 0.02%
4 × � � × � × 99.96% 0.01%
5 × × � × × × 99.95% 0.00%
6 × × × × × × 99.90% 0.05%
7 × × � × � × 99.88% 0.02%
8 × � � × × × 99.81% 0.07%
9 × × � × � � 99.09% 0.72%

10 × � × × × � 99.08% 0.01%
11 × � � × � � 99.05% 0.03%
12 × � � × × � 99.02% 0.03%
13 × × � × × � 99.01% 0.02%
14 × × × × � � 98.98% 0.03%
15 × � × × � � 98.85% 0.13%
16 × × × × × � 98.84% 0.01%
17 × � × � × × 77.02% 22.08%
18 × × × � � × 77.00% 0.03%
19 × × � � × × 76.93% 0.09%
20 × × × � × × 76.87% 0.08%
21 × � × � � × 76.65% 0.29%
22 × × � � � × 76.58% 0.08%
23 × � � � × × 76.50% 0.11%
24 × � � � � × 76.24% 0.34%
25 × � � � � � 70.75% 7.19%
26 × � × � � � 70.74% 0.01%
27 × � � � × � 70.71% 0.04%
28 × × × � � � 70.63% 0.12%
29 × � × � × � 70.61% 0.02%
30 × × � � � � 70.53% 0.12%
31 × × � � × � 70.51% 0.04%
32 × × × � × � 70.44% 0.10%
33 � � � × � × 58.59% 16.81%
34 � × � × × × 58.54% 0.09%
35 � � � × × × 58.54% 0.00%
36 � � × × × × 58.54% 0.01%
37 � × � × � × 58.54% 0.00%
38 � × × × � × 58.53% 0.01%
39 � × × × × × 58.53% 0.01%
40 � � × × � × 58.51% 0.03%
41 � × × × � � 55.21% 5.63%
42 � × � × × � 55.20% 0.02%
43 � × × × × � 55.14% 0.12%
44 � � × × � � 55.12% 0.03%
45 � � � × × � 55.05% 0.13%
46 � � � × � � 55.04% 0.03%
47 � � × × × � 55.00% 0.06%
48 � × � × � � 54.99% 0.01%
49 � � × � � × 48.80% 11.26%
50 � � � � � × 48.76% 0.08%
51 � × × � � × 48.73% 0.07%
52 � × � � × × 48.72% 0.01%
53 � � � � × × 48.71% 0.03%
54 � � × � × × 48.68% 0.05%
55 � × × � × × 48.68% 0.01%
56 � × � � � × 48.65% 0.07%
57 � × � � × � 46.72% 3.95%
58 � × × � × � 46.67% 0.11%
59 � × × � � � 46.66% 0.02%
60 � � � � � � 46.66% 0.00%
61 � � × � × � 46.61% 0.11%
62 � � × � � � 46.59% 0.04%
63 � × � � � � 46.52% 0.16%
64 � � � � × � 46.45% 0.15%
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1 × � × × × × 100.00%
2 × × × × × × 99.99% 0.01%
3 × × � × × × 99.79% 0.21%
4 × � � × × × 99.72% 0.06%
5 × � × × � � 99.13% 0.59%
6 × × � × � � 99.13% 0.00%
7 × � � × � � 99.12% 0.02%
8 × × × × � � 99.03% 0.09%
9 × � � × × � 98.84% 0.20%

10 × × × × × � 98.80% 0.04%
11 × × � × × � 98.78% 0.01%
12 × � × × × � 98.76% 0.02%
13 × × × × � × 86.57% 12.34%
14 × � × × � × 86.56% 0.01%
15 × × � × � × 86.55% 0.02%
16 × � � × � × 86.53% 0.02%
17 × × � � × × 78.03% 9.83%
18 × × × � × × 78.02% 0.01%
19 × � � � × × 77.99% 0.03%
20 × � × � × × 77.95% 0.06%
21 × × × � × � 71.38% 8.42%
22 × � × � × � 71.38% 0.01%
23 × × � � × � 71.36% 0.02%
24 × � � � × � 71.31% 0.07%
25 × � � � � � 70.80% 0.71%
26 × � × � � � 70.77% 0.05%
27 × × × � � � 70.76% 0.01%
28 × × � � � � 70.70% 0.09%
29 � � × × × × 60.10% 14.99%
30 � × × × × × 60.09% 0.01%
31 × � � � � × 59.95% 0.24%
32 � � � × × × 59.95% 0.00%
33 × � × � � × 59.94% 0.01%
34 × × × � � × 59.94% 0.00%
35 × × � � � × 59.94% 0.00%
36 � × � × × × 59.93% 0.01%
37 � � � × � � 57.14% 4.67%
38 � � × × � � 57.12% 0.03%
39 � × × × � � 57.11% 0.02%
40 � × � × � � 57.10% 0.02%
41 � � × × × � 56.00% 1.93%
42 � × � × × � 55.96% 0.08%
43 � � � × × � 55.96% 0.00%
44 � × × × × � 55.91% 0.07%
45 � × × × � × 50.80% 9.15%
46 � � × × � × 50.79% 0.01%
47 � � � × � × 50.78% 0.03%
48 � × � × � × 50.78% 0.00%
49 � � × � × × 49.72% 2.09%
50 � × � � × × 49.69% 0.05%
51 � × × � × × 49.63% 0.12%
52 � � � � × × 49.61% 0.05%
53 � � � � � � 47.85% 3.55%
54 � × � � � � 47.84% 0.01%
55 � � × � � � 47.82% 0.03%
56 � × × � � � 47.82% 0.01%
57 � × × � × � 47.12% 1.45%
58 � � � � × � 47.11% 0.04%
59 � × � � × � 47.10% 0.01%
60 � � × � × � 47.07% 0.06%
61 � � � � � × 42.72% 9.24%
62 � � × � � × 42.72% 0.01%
63 � × � � � × 42.72% 0.01%
64 � × × � � × 42.67% 0.11%
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1 × × × × × � 100.00%
2 × × � × × � 99.48% 0.52%
3 × × × × × × 98.71% 0.77%
4 × × × × � × 97.11% 1.63%
5 × × � × � � 96.00% 1.14%
6 × × � × � × 95.60% 0.42%
7 × × � × × × 95.55% 0.05%
8 × × × × � � 94.88% 0.70%
9 × � × � � × 61.16% 35.54%

10 × × � � × × 60.80% 0.59%
11 × × � � � × 60.18% 1.02%
12 × × × � � � 60.06% 0.19%
13 × � � × � � 59.98% 0.14%
14 × � × � × � 59.92% 0.09%
15 × � � × � × 59.87% 0.09%
16 × � � × × � 59.81% 0.09%
17 × � � � � � 59.71% 0.17%
18 × × � � � � 59.60% 0.19%
19 × � × × × � 59.48% 0.19%
20 × � � � � × 59.44% 0.08%
21 × � � × × × 59.38% 0.09%
22 × × � � × � 59.25% 0.23%
23 × � � � × � 59.10% 0.25%
24 × � × � � � 59.09% 0.03%
25 × � × × � × 59.09% 0.00%
26 × � × × × × 59.06% 0.05%
27 × � × × � � 58.91% 0.25%
28 × � � � × × 58.90% 0.01%
29 × × × � × × 58.87% 0.06%
30 × × × � × � 58.66% 0.34%
31 × � × � × × 58.56% 0.17%
32 × × × � � × 57.29% 2.17%
33 � × × × � � 40.11% 29.99%
34 � � � � × × 40.08% 0.09%
35 � � × × × × 40.02% 0.14%
36 � × � � × � 39.97% 0.12%
37 � × � � � � 39.95% 0.05%
38 � � � × × � 39.74% 0.54%
39 � × × � × × 39.72% 0.04%
40 � � � � × � 39.66% 0.14%
41 � � � � � × 39.64% 0.05%
42 � � � × � × 39.62% 0.06%
43 � � × � � � 39.56% 0.14%
44 � × � � � × 39.56% 0.01%
45 � × � � × × 39.46% 0.26%
46 � × × × × � 39.43% 0.06%
47 � � � × � � 39.39% 0.11%
48 � � × × × � 39.37% 0.06%
49 � × � × × � 39.28% 0.23%
50 � � � × × × 39.25% 0.07%
51 � × × � � � 39.25% 0.01%
52 � × × � × � 39.23% 0.06%
53 � × × � � × 39.21% 0.03%
54 � � × × � × 39.12% 0.25%
55 � × × × � × 39.07% 0.12%
56 � × � × � × 39.05% 0.04%
57 � × × × × × 39.00% 0.14%
58 � � � � � � 38.85% 0.38%
59 � � × � × × 38.81% 0.09%
60 � � × × � � 38.63% 0.46%
61 � × � × � � 38.63% 0.01%
62 � � × � � × 38.58% 0.13%
63 � � × � × � 38.28% 0.77%
64 � × � × × × 38.27% 0.03%
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1 × � � × × × 100.00%
2 × × � × × × 99.88% 0.12%
3 × × × × × × 99.17% 0.71%
4 × � × × × × 99.13% 0.04%
5 � � � × × × 84.64% 14.62%
6 � × � × × × 84.53% 0.13%
7 � × × × × × 84.03% 0.59%
8 � � × × × × 84.02% 0.01%
9 × × × � × × 73.02% 13.09%

10 × � � � × × 72.97% 0.06%
11 × × � � × × 72.96% 0.02%
12 × � × � × × 72.91% 0.06%
13 � × × � × × 59.87% 17.89%
14 � � × � × × 59.86% 0.02%
15 � � � � × × 59.84% 0.04%
16 � × � � × × 59.76% 0.13%
17 × × × × � × 54.85% 8.22%
18 × × × × × � 54.84% 0.03%
19 × � × × � � 54.82% 0.02%
20 × � � × � × 54.80% 0.04%
21 × × � × � × 54.80% 0.01%
22 × × � × � � 54.80% 0.00%
23 × × × × � � 54.79% 0.02%
24 × � × × � × 54.78% 0.01%
25 × � × × × � 54.77% 0.01%
26 × � � × × � 54.74% 0.05%
27 × × � × × � 54.72% 0.04%
28 × � � × � � 54.70% 0.05%
29 � � × × � × 47.28% 13.56%
30 � × × × � × 47.25% 0.05%
31 � × × × � � 47.24% 0.03%
32 � × × × × � 47.22% 0.03%
33 � � × × × � 47.21% 0.03%
34 � � × × � � 47.21% 0.01%
35 � × � × � × 47.17% 0.08%
36 � � � × × � 47.10% 0.14%
37 � × � × × � 47.09% 0.02%
38 � � � × � � 47.09% 0.01%
39 � × � × � � 47.09% 0.01%
40 � � � × � × 47.08% 0.02%
41 × × � � � × 43.47% 7.67%
42 × � × � × � 43.44% 0.07%
43 × × × � � × 43.42% 0.03%
44 × � × � � × 43.41% 0.04%
45 × � � � � � 43.40% 0.02%
46 × × × � × � 43.40% 0.01%
47 × × � � � � 43.38% 0.03%
48 × � � � � × 43.38% 0.01%
49 × × � � × � 43.36% 0.03%
50 × � � � × � 43.36% 0.01%
51 × � × � � � 43.31% 0.10%
52 × × × � � � 43.30% 0.03%
53 � � × � � × 38.07% 12.09%
54 � � × � � � 38.06% 0.02%
55 � × × � � � 38.05% 0.02%
56 � × × � � × 38.04% 0.03%
57 � × � � � × 38.01% 0.10%
58 � × � � × � 38.01% 0.00%
59 � × � � � � 38.00% 0.01%
60 � � � � � × 37.99% 0.02%
61 � � � � � � 37.99% 0.00%
62 � � × � × � 37.96% 0.08%
63 � � � � × � 37.96% 0.02%
64 � × × � × � 37.75% 0.54%
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1 � � � × � × 100.00%
2 × � × × × × 27.09% 72.91%
3 × × � × × × 27.05% 0.14%
4 × × × × × × 27.04% 0.03%
5 × � � × � � 27.01% 0.11%
6 × � � × � × 26.99% 0.08%
7 × � × × � × 26.99% 0.01%
8 × × � × � × 26.96% 0.10%
9 × × × × � × 26.93% 0.09%

10 × � � × × × 26.75% 0.68%
11 × × � × � � 22.71% 15.11%
12 × × × � × � 19.27% 15.16%
13 � × � × � × 19.17% 0.52%
14 � × × × × × 19.16% 0.06%
15 × × × � � � 19.15% 0.02%
16 � � × × × × 19.15% 0.02%
17 � × × × � × 19.14% 0.07%
18 � � � × × × 19.12% 0.08%
19 � × � × × × 19.11% 0.06%
20 × � × � × � 19.10% 0.03%
21 × × � � × � 19.06% 0.22%
22 × � � � × � 19.05% 0.05%
23 × � � � � � 19.05% 0.01%
24 × � × � � � 19.03% 0.09%
25 � � × × � × 18.99% 0.23%
26 × × � � � � 18.88% 0.60%
27 × × � � � × 18.19% 3.63%
28 × × × � × × 18.10% 0.51%
29 × � � � � × 18.09% 0.02%
30 × × × � � × 18.06% 0.21%
31 × � × � × × 17.93% 0.69%
32 × × � � × × 16.96% 5.43%
33 × � × � � × 16.62% 1.97%
34 � � � � � × 14.94% 10.10%
35 � � × � � � 14.80% 0.94%
36 � × � � � � 14.78% 0.18%
37 � × × � � � 14.78% 0.00%
38 � × × � × � 14.74% 0.28%
39 � × � � × � 14.73% 0.02%
40 � � � � � � 14.73% 0.01%
41 � � � � × � 14.70% 0.21%
42 � � × � × � 14.63% 0.50%
43 � � � � × × 14.54% 0.56%
44 � � × � × × 14.40% 0.98%
45 � × � × � � 14.37% 0.20%
46 � × × � × × 14.15% 1.54%
47 � � � × � � 13.56% 4.15%
48 � � × � � × 11.66% 14.06%
49 � × � � × × 10.34% 11.26%
50 � × � � � × 9.79% 5.34%
51 � × × � � × 7.76% 20.74%
52 × � � � × × 7.42% 4.41%
53 × × × × � � 1.83% 75.35%
54 × � × × × � 1.82% 0.39%
55 × × × × × � 1.82% 0.26%
56 × � × × � � 1.81% 0.59%
57 × × � × × � 1.41% 22.10%
58 × � � × × � 1.41% 0.01%
59 � � × × × � 0.05% 96.41%
60 � × × × × � 0.05% 0.77%
61 � × � × × � 0.05% 0.15%
62 � � � × × � 0.05% 0.37%
63 � × × × � � 0.05% 0.33%
64 � � × × � � 0.03% 30.88%
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1 × × × × × × 100.00%
2 × × � × × × 99.90% 0.10%
3 × � × × × × 99.86% 0.04%
4 × � � × × × 99.81% 0.05%
5 � � × × × × 97.66% 2.15%
6 � × � × × × 97.64% 0.02%
7 � � � × × × 97.59% 0.05%
8 � × × × × × 97.49% 0.10%
9 × � � × � × 86.42% 11.35%

10 × × � × � × 86.40% 0.03%
11 × � × × � × 86.39% 0.01%
12 × × × × � × 86.37% 0.03%
13 × � � × × � 85.55% 0.94%
14 × � × × × � 85.53% 0.03%
15 × × � × × � 84.68% 1.00%
16 × × � × � � 83.64% 1.22%
17 × × × × � � 83.29% 0.42%
18 × � × × � � 83.04% 0.30%
19 × � � × � � 83.04% 0.01%
20 × × × × × � 80.26% 3.34%
21 � × × × � × 79.75% 0.64%
22 � × � × � × 79.68% 0.08%
23 � � × × � × 79.67% 0.02%
24 � × × × × � 79.31% 0.45%
25 � � � × � × 79.31% 0.00%
26 � × � × × � 79.21% 0.13%
27 � � � × � � 79.19% 0.02%
28 � × � × � � 78.34% 1.07%
29 � � � × × � 78.03% 0.39%
30 � � × × � � 77.40% 0.81%
31 � � × × × � 71.80% 7.23%
32 � × × × � � 71.64% 0.22%
33 × � × � × × 64.59% 9.84%
34 × × � � × × 64.59% 0.00%
35 × � � � × × 64.58% 0.02%
36 × × × � × × 64.55% 0.04%
37 × × � � × � 61.21% 5.17%
38 × � × � � � 61.19% 0.03%
39 × × × � � × 61.18% 0.01%
40 × × × � � � 61.12% 0.10%
41 × × × � × � 61.12% 0.01%
42 × � × � × � 61.11% 0.00%
43 × × � � � � 61.11% 0.01%
44 × � × � � × 61.10% 0.01%
45 × � � � × � 61.09% 0.02%
46 × � � � � � 61.09% 0.01%
47 × × � � � × 61.07% 0.02%
48 × � � � � × 60.87% 0.34%
49 � × × � × × 54.16% 11.02%
50 � � � � × × 54.13% 0.05%
51 � � × � × × 54.12% 0.03%
52 � × � � × × 53.89% 0.42%
53 � × � � � × 51.91% 3.66%
54 � × × � � � 51.91% 0.01%
55 � � × � � � 51.88% 0.05%
56 � � × � × � 51.87% 0.04%
57 � � � � � × 51.86% 0.00%
58 � × × � × � 51.84% 0.04%
59 � � � � � � 51.84% 0.00%
60 � × � � × � 51.84% 0.00%
61 � × � � � � 51.84% 0.00%
62 � � × � � × 51.82% 0.03%
63 � × × � � × 51.82% 0.01%
64 � � � � × � 51.77% 0.09%
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