OpenGL & Window
System Integration

“Most portable 3D; fastest 3D.”

SIGGRAPH 97 Course
August 4, 1997

O™ o1

Mark J. Kilgard Brian Paul
Silicon Graphics, Inc. Avid Technology

Nate Robins
SGI, University of Utah,
Parametric Technology

Abstract

This practical course explains the application development
options for writing portable, high—performance OpenGL programs
for both the X Window System and Microsoft's Windows 95 and
NT. Instead of focusing on rendering images with OpenGL, this
course focus on how OpenGL integrates with your native window
system. The course emphasizes Windows programming and
Motif-based approaches to writing real OpenGL applications.
Techniques for ensuring portability between different platforms
will be highlighted. The class also introduces high—level toolkits
and alternative OpenGL interfaces. Advanced topics like stereo,
effective debugging, and exotic input devices are covered.

1

OpenGL is a registered trademark of Silicon Graphics, Inc.
X Window System is a registered trademark of X
Consortium, Inc. Motif is a trademark of Open Software
Foundation, Inc. Spaceball is registered trademark of
Spatial Systems, Inc.

Copyright (C) 1994, 1995, 1996, 1997
Mark J. Kilgard, Brian Paul, Nate Robins.
All rights reserved.

Table of Contents

Abstract
Speaker background

Course notes

Brian’s course notes (Portability, etc.)
Mark’s course notes (X & Motif issues)
Nate’s course notes (Win32 issues)

Topic Discussion

comparison of OpenGL window system interfaces
OpenGL application design and organization
using OpenGL extensions

GLX portability

OpenGL *“gotchas”

OpenGL hardcopy

OpenGL language bindings

The Mesa 3-D graphics library (a white paper)
OpenGL/Mesa off-screen rendering

OpenGL performance optimization

OpenGL portability

Togl — a Tk OpenGL widget

OpenGL toolkit choices

TR — OpenGL tile rendering library

graphics library transitions

Articles

Use OpenGL with Xlib
Integrating OpenGL with Motif

Specification

OpenGL Graphics with the X Window System
(Version 1.1), a.k.a. “the GLX spec”

Win32 Tutorials

Win32: a simple example
Processing messages
Pixel formats and palettes
Overlays and underlays
WGL Reference

[HEN

27
63

75

85

89
101
109
113
117
121
133
141
157
161
169
179
187

191
210

223

241
247
255
268
272

The Speakers

Mark J. Kilgard

0)

0)

© O

Member of the Technical Staff, Silicon Graphics,
Inc.

Author of Programming OpenGL for the X Window
System.

Directly involved in the design and implementation
of SGI's window system support for OpenGL.
Implemented OpenGL Utility Toolkit (GLUT).
Karaoke rendition of Dolly Parton’s “9 to 5”

can’t be beat.

Address: Silicon Graphics, Inc., Mail Stop 8U-590, 2011
N. Shoreline Blvd., Moutain View, CA 94043-1389.
Email: mjk@sgi.com Phone: 415-390-2028 Fax:
415-965-2658.

Brian Paul

0 Graphics software engineer at Avid Technology.

0 Author of Mesa - free implementation of the
OpenGL API.

0 Formerly: developer of scientific visualization

software at University of Wisconsin — Madison.

Address: Avid Technology, 6400 Enterprise Lane —
Suite 201, Madison, WI 537109.

Email: brianp@sgi.com Phone: 608-228-2014 Fax:
608-273-9198

The Speakers (cont’d)
Nate Robins

0 Worked for Evans & Sutherland in the Graphics
Systems Group.

0 Ported the OpenGL Utility Toolkit (GLUT) to
Windows 95 & NT.

0 Worked for Parametric Technology porting
Pro/3DPAINT to Windows NT.

0 Currently an Intern at SGil.

OpenGL & Window System Integration

Brian Paul

“Most portable 3D, fastest 3D.” '’

Mark J. Kilgard Silicon Graphics, Inc.
Brian Paul Avid Technology

Nate Robins SGI, University of Utah,
Parametric Technology

SIGGRAPH '97 Cours e
August 4, 1997

My background:

W Graphics software engineer at Avid
Technology

W Author of Mesa — free implementation of the
OpenGL API

w Formerly: developer of scientific visualization
software at University of Wisconsin — Madison

Topics:

OpenGL Development Choices

W% OpenGL Development Choices
w Portability and Interoperability

W Off-screen Rendering

v Overview

Programming Languages

Low-level OpenGL interfaces

High-level OpenGL toolkits

Mesa

Development Choices: Overview

Programming Languages

Choices:
Programming language
OpenGL integration method
User interface toolkit

Issues:
Commercial vs. free software
Importance of cross—platform portability
Complexity of the application

w OpenGL APl is defined by the C
bindings.

v C++ bindings identical to those for C.

w Fortran bindings are common but
inconsistent (identifier prefixes,
identifier length restrictions).

w Ada, Modula-3, Tcl, Java and other
bindings or wrappers are available.

OpenGL Integration Method

OpenGL Integration Method (2)

Low-level interfaces (GLX, WGL, etc):

W Advantages:

Provides access to all features (stereo,
multisampling)

Standardized (i.e. GLX is used on all X/OpenGL
systems)

v Disadvantages:
Doesn’t provide GUI elements
Too many details, easy to make mistakes

Requires considerable window system
programming knowledge

High-level interfaces (Motif, Tcl/Tk, etc):

Built on top of the low-level interfaces

w Advantages:
Hides implementation details
Clean integration with other GUI elements
May be more portable

w Disadvantages:
May not offer access to low-level features
May not be available for your GUI of choice

Example high-Ilevel interfaces

Xt/Motif

v Xt/Motif

v GLUT

v Tcl/Tk

v XForms

7 Open Inventor
7 OpenGL++

v Others

Motif is a popular widget set built on Xt, the X
toolkit library.

The GLwMDrawingArea widget provides a
canvas into which OpenGL can render.

w Motif advantages:
Standardized
Full featured

W Motif disadvantages:
Large, complicated
Not free

GLUT

Tcl/Tk

GLUT is afree, portable toolkit which provides
functions for creating windows, pop-up
menus, event handling, simple geometric
primitives and more.

W% GLUT advantages:
Free
Very simple (like the OpenGL API)
Good for demos and small applications

w GLUT disadvantages:
Doesn’t provide all the GUI elements needed
for real applications (buttons, scrollbars etc).

Tclis an interpreted scripting language. Tkisa
GUI toolkit for Tcl. Anumber of Tk widgets are
available for OpenGL rendering.

w Tcl/Tk advantages:
Free
Simple yet powerful
Good for any size application
Now available for X, Windows, Macintosh

w Tcl/Tk disadvantages:
Interpreted; may not be fast enough in
really demanding applications.
OpenGL integration not standardized.

01

Tcl/Tk Example

Tcl/Tk Usage

Magniiieation Filier Mux Terure Coord | GLTEXTURE EWV_MODE
. L NEAREST % GL MODULATE
+ GL LNEAR # 6L DECAL

GL_TEXTURE_WRAP_S

Minftcation Fltsr + GL_REFEAT

. 8L NEAREST i
] aL_TExTURE AR T | R
- GL NEAREST MPMAP NEAREST | 4 o\ pepear

- L LINEAR MIPMAP_NEAREST

+ GL NEAREST MPMAP_ LINEAR
. 6L UNEAR MPMAR LINEAR

- GL BLEWD

. GL_CLAWP
Teuture image
. Checker
* Tiee

_ Face

Two approaches:

v Use Tcl wrappers for OpenGL to
write an application entirely
with Tcl/Tk (Tiger).

v Create and manage GUI and
OpenGL canvas with Tcl/Tk but
render into with with C code.
(Togl)

Example: Togl (1)

Example: Togl (2)

W The Togl widget lets one create an OpenGL
canvasin Tcl:
togl.my_widget —width 320 —height 200
-rgba true —double true —depth true
pack .my_widget

W Register C callback functions for widget
creation, rendering, and resizing:
Togl_CreateFunc(create_cb);
Togl_DisplayFunc(display_cb);
Togl_ReshapeFunc(reshape_cb);

w C create callback function:

void create_ch(struct Togl *widget)
{
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTO);
glEnable(GL_LIGHTING);
/* load 3—D model */
/* make display lists */
/* etc. */

Example: Togl (3)

Example: Togl (4)

w Crendering callback function:
void display_cb(struct Togl *widget)

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

/* draw something */

Togl_SwapBuffers(widget);

W7 C reshape callback function:
void reshape_ch(struct Togl *widget)

int width = Togl_Width(widget);
int height = Togl_Height(widget);

glViewport(0, 0, width, height);
/I setup projection matrix with
/I glFrustum or glOrtho, etc.

T 1

Example: Togl (5)

Example: Togl (6)

7 One may also define new commands
implemented in C, callable from Tcl, to
implement user—interface callbacks:

int reset_view_cb(struct Togl *widget,
int argc, char *argv[])
{

glMatrixMode(GL_MODELVIEW);
glLoadldentity();
Togl_PostRedisplay(widget);
return TCL_OK;

}

Togl_CreateCommand("ResetView" reset_view_chb);

v Invoke the new command from Tcl with:
.my_widget ResetView
The main use of this feature is to send
"messages" to the C program from Tcl in
response to user input.

The command may simply modify a C variable
or invoke an arbitrary computation.

Example: Togl (7)

Tcl/Tk Summary

7 Putting it all together:
int main(int argc, char *argv(])

Tk_main(argc, argv, my_init);
return 0;

}
int my_init(Tcl_Interp *interp)

Tcl_Init(interp);

Tk_Init(interp);

Togl_Init(interp);
Togl_CreateFunc(create_cb);
Togl_DisplayFunc(display_cb);
Togl_ReshapeFunc(reshape_cb);
Togl_CreateCommand(“ResetView", reset_view_cb);
return TCL_OK;

¢ 1

The approach of using Tcl/Tk for GUI
construction and management while using
C for computation and rendering is quite
powerful:

w The GUI may be changed without
recompiling

W The C components allow efficient
3-D rendering.

XForms

Open Inventor

XForms is a free GUI toolkit built on top of X.
Based on the original IRIS GL-based FORMS
library. XForms includes a rudimentary
OpenGL canvas widget.

W% XForms advantages:
Free
Simple

W XForms disadvantages:
Not as powerful as Motif or Tcl/Tk.
OpenGL support is minimal.

Open Inventor is a high-level 3—-D graphics
toolkit built on OpenGL. Itincludes functions
for creating 3—D windows and methods for
accessing the underlying window system.

W Open Inventor advantages:
Higher-level 3-D environment
Powerful cene graph
Direct manipulation/interaction support
Available for many systems

W Open Inventor disadvantages:
Not free (but a free work—-alike is coming)
Still need a GUI toolkit for for real apps

OpenGL++

Other high-Ilevel OpenGL toolkits

W Proposed toolkit for OpenGL which offers
higher—level organizational and rendering
support.

Still in planning stages at this time.

Should be widely adopted by OpenGL licensees.

w Commercial toolkits: IRIS Performer for visual
simulation. ImageVision for image processing.

W There are Python bindings for OpenGL, Tk, and
GLUT.

W Anunofficial set of OpenGL bindings for Java are
available from the University of Waterloo.

W MET++ is a C++ multi-media application
framework for Unix/X which includes OpenGL
support.

W Tiger : Tcl wrappers for OpenGL APl so a3-D
application may be written with just a Tcl script.

€1

Mesa

Mesa (2)

w Mesa is afree 3—D graphics library which uses
the OpenGL APl and semantics.

W Expands the range of systems which support
OpenGL development and execution: old
workstations, X terminals, PCs, etc.

w7 Not 100% equivalent to OpenGL. A few
features are not implemented yet.

w Not as fast as commercial OpenGL
implementations, but still quite usable.

¥ Hardware support is under development.

w Drivers available for X Window System,
Microsoft Windows 95/NT, Macintosh,
Amiga, NextStep, BeBox, others...

W With X, supports rendering on almost any X
server, even monochrome.

W Implements OpenGL 1.1 API and several
extensions.

W Source code is free. Users have tuned it to
improve their application’s performance.

v 1

Next topic:

Portability and Interoperability

w7 OpenGL Development Choices

W Portability and Interoperability

W Off-screen Rendering

v Overview

v Source code

v OpenGL details

v Using extensions correctly
v GLX/X11 interoperability

Source code

Source code

v Modular source code:

Window system, widget toolkit and OpenGL
interface (GLX, WGL) code.

OpenGL graphics code.
OS-specific code.

Core data structures, number crunching,
event callbacks.

v Clean code:
Follow standards (POSIX, use STL?)

Write clean module interfaces. Callbacks
very helpful.

Develop and test on multiple platforms.

Use OpenGL extensions correctly.

ST

OpenGL details

OpenGL details (2)

Despite OpenGL'’s clean design, well-defined
specification and lack of subsetting,
developers must be aware of possible gotchas:

W Optional features
w Implementation limits

W Versions and extensions

v Optional features
Frame buffer alpha planes
Overlay/underlay planes
Aux buffers

Singel/double buffering

OpenGL details (3)

OpenGL details (4)

v Implementation Limits:

OpenGL spec calls for minimum
requirements in many areas.
Can’t assume that an arbitrary
OpenGL implementation will
offer more.

v Example Limits:

Stacks (Modelview: 32, Projection: 2,
Texture: 2, Attribute: 16)

Textures may be limited to 64x64
Max viewport may equal screen size
Stencil buffer may be one bit deep
Max curve control points may be 8
Pixel map size may be only 32 entries

Using OpenGL extensions

Extension naming conventions (1)

v Naming conventions
v Compile-time testing
¥ Run-time testing

7 OpenGL version 1.1

7 Microsoft OpenGL extensions

Core extensions have names of the form:
GL_type_name. (GLX: GLX_type_name)

type may be EXT, SGI, SGIX, SGIS, IBM,
DEC, MESA, etc.

name is a lowercase character string
Examples:

GL_EXT_polygon_offset
GL_SGIS_detail_texture

91

Extension naming conventions (2)

Compile—time extension testing

Extensions may add new constants
and/or functions.

Constants and functions are suffixed with
the extension type.

Examples:
GL_FUNC_ADD_EXT
GL_MIN_EXT, GL_MAX_EXT
GL_DETAIL_TEXTURE_2D_SGIS
glBlendEquationEXT()
glPolygonOffsetEXT()

The header file will define a preprocessor
symbol with name of the extension:

#define GL_EXT_polygon_offset 1

Surround code which uses the extension
with preprocessor conditionals:

#ifdef GL_EXT_polygon_offset
glPolygonOffsetEXT(a, b);
#endif

LT

Run-time extension testing

Extension fall-back scenerios

v The glGetString(GL_EXTENSIONS)
function returns a list of extensions
supported by the renderer.

v Must be called after a rendering
context has been made current.

v Be wary of using strstr() for searching
the extension list string!

w Disable: If the GL_SGIS_multisample
extension is not available, disable
antialiasing.

v Work-around: Ifthe GL_EXT_vertex_array
extension isn’t available use ordinary
glVertex*() calls.

W Abort: If your volume visualization program
depends on the GL_EXT_texture_3D
extension you may have no choice but to
abort. Alast resort and discouraged!

Extension example: vertex arrays

Extension example: vertex arrays (2)

w Determine if extension is available:

GLboolean HaveVertexArray = GL_FALSE;

/* MakeCurrent() must have already been called! */
#ifdef GL_EXT_vertex_array
char *extensions = glGetString(GL_EXTENSIONS);
if (strstr(extensions,"GL_EXT_vertex_array")) {
HaveVertexArray = GL_TRUE;

-
#endif

Note: See course notes for the
CheckExtension() function to use instead
of strstr().

void DrawTriangleStrip(const GLfloat V[][3], GLuint n)
{

if (HaveVertexArray) {
#ifdef GL_EXT_vertex_array
glVertexPointerEXT(3, GL_FLOAT, 0, n, v);
glDrawArrayseEXT(GL_TRIANGLE_STRIP, 0, n);
#endif

else {
inti;
glBegin(GL_TRIANGLE_STRIP);
for (i=0;i<n;i++)
glVertex3fv(v[i]);
glEnd();
}

Extensions and OpenGL 1.1

Extensions and OpenGL 1.1 (2)

A number of extensions from OpenGL
1.0 are now standard features of
OpenGL 1.1.

Problem: How to accommodate 1.0,
extensions, and OpenGL 1.1

Example: the 1.0 extension function
gIBindTextureEXT() is called
gIBindTexture() in OpenGL 1.1.

8 1

w Atcompile time, also look for
GL_VERSION_1 1 preprocessor symbol:

if (HaveTextureObjects) {

#if defined(GL_VERSION_1_1)
glBindTexture(GL_TEXTURE_2D, t);

#elif defined(GL_EXT_texture_object)
gIBindTextureEXT(GL_TEXTURE_2D, t);

#endif

}

else {
/I fall-back code

}

Extensions and OpenGL 1.1 (3)

Extensions and OpenGL 1.1 (4)

At runtime, call glGetString(GL_VERSION)
to determine if renderer supports OpenGL
1.1:

GLboolean HaveTextureObjects = GL_FALSE;

GLubyte *version =glGetString(GL_VERSION);

if (strncmp((char*)version,"1.1",3)==0) {
HaveTextureObjects = GL_TRUE;

}

w Dealing with extensions and OpenGL 1.1
can be messy.

w Best approach is probably to abstract the
use of extensions or 1.1 features into
functions which can hide the ugliness from
your main code.

W7 In other cases, the C preprocessor can be
useful for resolving naming differences.

W See course notes for details.

6 1

Microsoft OpenGL extensions

Microsoft OpenGL extensions (2)

w Unfortunately, Microsoft OpenGL and SGI
Cosmo OpenGL extensions are even more
complicated.

An extension function can’t be called
directly as it may not exist in the OpenGL
DLL.

Instead, call function via pointer returned
by wglGetProcAddress().

w Example:

#if defined(WIN32) && defined(GL_WIN_swap_hint)
if (CheckExtension("GL_WIN_swap_hint")) {
/I The following type is found in the GL/gl.h file:
PFNGLADDSWAPHINTRECTWINPROC glAddSwapHintRectWIN;
/I Get pointer to function.
glAddSwapHintRectWIN = (PFNGLADDSWAPHINTRECTWINPROC)
wglGetProcAddress("glAddSwapHintRectWIN");
/I Call the function
if (glAddSwapHintRectWIN) {
(*glAddSwapHintRectWIN)(x, y, width, height);
}

}
#endif

GLX and GLU extensions and versions

GLX/X11 interoperability

w The GLX and GLU libraries can also have
extensions. Several versions of these
libraries exist.

Do compile and run—time extension and
version testing similar to core OpenGL.

See course notes for details.

GLX extends the X protocol to allow remote
OpenGL rendering in a network.

w In principle, nothing special must be
done in a GLX application to support
this.

v In practice, there are a number of
issues to be aware of to be sure the
application is robust and
well-behaved.

0 ¢

GLX/X11 interoperability (2)

GLX Visuals (and Mesa)

w lIssues involved:
GLX Visuals (Mesa compatibility)
Colormaps
Double/single buffering

Alpha planes

v Typically, giXChooseVisual() is used to
select a GLX visual.

GLX spec says:
Color index mode - return PseudoColor or
StaticColor visual

RGB mode - return TrueColor or
DirectColor visual

Mesa:
RGB mode — may return any visual type.
Be prepared for that.

Colormaps

Colormaps (2)

Different colormap strategies for RGB
vs color index mode.

W RGB mode — usually never alter the
colormap entries

W Cl mode — may or may not need to alter
colormap entries

In either case, want to avoid colormap
flashing by sharing colormaps.

Colormap flashing occurs when color
demands exceed the hardware capabilities.

Common problem on low—-end systems
with only one hardware colormap.

Colormaps my be shared by windows using
same visual type and depth.

Use default/root colormap when possible.

T ¢

Colormaps (3)

Colormaps (4)

Y For RGB mode:

If OpenGL visual matches root visual then
Use root colormap. Mesa will manage to
allocate all the colors it needs.

Otherwise, look for a standard RGB colormap
with XGetRGBColormaps().

Last resort: Create new colormap with
XCreateColormap(..., AllocNone)

w For Color Index mode:

Do you need to be able to store particular
colors in particular colormap cells (lighting,
fog, colormap animation)?

If yes, you need a private, writable
colormap.

Otherwise, share an existing colormap and
let X allocate colors or color cells for

you.

Colormaps (5)

Colormaps (6)

IF you need a private colormap THEN
call XCreateColormap(..., AllocAll)
set colormap entries with XStoreColor().
ELSE
IF GLX visual matches root/default visual THEN
use root colormap
ELSE
XCreateColormap(.., AllocNone).
ENDIF
allocate read/write cells with XAllocColorCells()
store colors into cells with XStoreColor()
allocate read-only cells with XAllocColor()
free colors or color cells with XFreeColors()
ENDIF

Two more X colormap tips:

7 1 XAllocColor() fails, get a copy of the
colormap with XQueryColors() and
search for closest match. See Mesa
code for example.

W If your top-level window contains
children with non—default colormaps
inform the window manager with a call
to XSetWMColormapWindows().

¢ ¢

GLX single / double buffering

Mesa/X11 double buffering

w Beaware that GLX doesn’t require the

presence of both single and double buffered
visuals.

W GLX may offer only single buffered visuals or
only double buffered visuals.

W Write your gIXChooseVisual() code with this in
mind.

w Single buffering can be easily simulated with a
double buffered visual by calling
glDrawBuffer(GL_FRONT).

w When using double buffering, Mesa can use
either an X Pixmap or XImage as its back
buffer.

w Use the MESA_BACK_BUFFER environment
variable to determine which performs better
with your application. Thisis especially
important when remotely rendering.

GLX/X11 Alpha buffers

Next topic:

w Alpha (transparency) planes must be
explicitly requested.

v Ifalphaplanes are not supported in the
hardware frame buffer they may be
implemented in software —> slow.

% Alpha planes not needed for most
transparency and blending effects.

% Mesa can simulate alpha planes.

W% OpenGL Development Choices
w Portability and Interoperability

w Off—screen Rendering

€ C

Off-screen Rendering

Off-screen Rendering (2)

Uses for off-screen rendering:
v Intermediate image generation
v Hardcopy image generation

v Tiled rendering

Many ways to do off-screen rendering:

W AUX buffers

w OpenGL for Microsoft Windows — device
independent bitmaps

W GLX - GLX Pixmaps
W7 Mesa - Off-screen rendering API
w SGI Pbuffers

AUX buffers

DIBs and GLXPixmaps

v OpenGL spec defines auxillary (AUX)
buffers.

Request via gIXChooseVisual() or
ChoosePixelFormat()

Select with glDrawBuffer() and
glReadBuffer()

Problem: available in few OpenGL
implementations

Alternatives to AUX buffers:

W Windows: device indepedent bitmaps (DIB)
W GLX: GLXPixmaps

W Create via window system—-dependant
functions.

W Bind OpenGL context to the buffer just like
awindow.

W Read back with glReadPixels.

Problem: seldom hardware accelerated

v C

Mesa: OSMesa interface

SGI Pbuffers

Mesa’s off-screen rendering interface:

W No operating system or window system
dependencies. Very portable.

W Renders into a color buffer allocated by
the client.

W7 Maximum size may be reconfigured.

w An SGl-only extension (GLX_SGIX_pbuffers)

w Auxilliary buffers allocated from frame buffer
memory.

w Used in conjunction with the
GLX_SGIX_fbconfig extension.

W Hardware accelerated!
v Difficult to use.
W Dependent on X.
See course notes for example program.

Tiled Rendering

Tiled Rendering (2)

Often want to generate large, high-resolution
images. For example: hard copy.

Problem: Maximum OpenGL image size
limited by several factors:

w Maximum window size.
w Maximum off-screen buffer size.
w Maximum viewport size (ex: 2k x 2k)

Solution: tiled rendering- break large image
into pieces then assemble pieces.

Difficulties in tiled rendering:

w Must carefully setup projection matrix for
each tile to avoid seam/edge artifacts in
final image.

w Must manage memory carefully if
generating very large images

W glRasterPos and glBitmap are
troublesome.

G ¢

Tiled Rendering (3)

TR library makes it easy:

W Takes care of projection and viewport
arithmetic.

w Can automatically assemble final image
from tiles.

W Allows access to intermediate tiles.

v trRasterPos() — solves glRasterPos
problem.
W Generate arbitrarily large images without
using lots of memory.
Included on course notes CD—ROM with
examples.

2 6

L C

OpenGL & Window System Integration

Mark Kilgard

“Most portable 3D, fastest 3D.” ’

yOe® 1,

Mark J. Kilgard Silicon Graphics, Inc.

Brian Paul Avid Technology
Nate Robins SGI, University of Utah,

Parametric Technology

SIGGRAPH '97 Cours e
August 4, 1997

My background:

w Author of Programming OpenGL for the X
Window System

W% Member of Technical Staff at Silicon Graphics.

W Directly involved in implementation of SGI's X
Window System support for OpenGL

W% Implemented OpenGL Utility Toolkit (GLUT)

It will help to know one or more of . ..

Main Objective (entire course!):

v

v

C programming

Fundamentals of computer graphics
Basics of OpenGL programming
Xlib or Xt/Motif programming

Windows programming

Not learning how to use the OpenGL APl and
writing whizzy 3D programs...

But how to properly integrate whizzy 3D
OpenGL programs with the your window
system. Also, being portable & fast.

Often a neglected topics.

8 ¢

Basic X Topics

GLX Integrates X and OpenGL

V7 OpenGL Integration for X
Y OpenGL with Motif

W GLX Extensions

OpenGL = API for rendering

Window management API left to the
native window system

With X Window System, Xlib and
Xt/Motif = windowing API

Still, X—specific OpenGL “binding” API
between X calls and OpenGL needed

Therefore, GLX.

Role of GLX

GLX Functionality

W% OpenGL specification has no mention of the
X'Window System. GLX specifies how
OpenGL and X interact.

7 GLX isthe “glue” between OpenGL and X.

W% Xserver supports OpenGL if GLX is on its
extension list.

w Wgl (pronounced “wiggle”) has a similar
role for Windows NT. More on Wgl later.

4 4 ¢« 4«

<

Extension queries.
Visual selection.

OpenGL context management.

Pixmap handling. W Buffer swapping.

X font support. W Synchronization.

6 ¢

GLX: APl and Protocol

When OpenGL routines are called...

W% GLXisaprogramming interface (API).

w GLX routines begin with gIX like
glXCreateContext

GLX is also an X extension protocol.

Protocol provides inter-vendor
interoperability and network
transparency.

W% GLXAPI hides GLX protocol for OpenGL
and GLX calls.

W Typical OpenGL routine call:
glEnable(GL_DEPTH_TEST);

Notice no window destination specified.

Also no X display connection specified.

Also no context for OpenGL state.

4 4 4«4 4«

This information is implicit for each
OpenGL call.

GLX Contexts and Making Current

Analogy of Rendering Models

W% Programs use giXCreateContext to create
OpenGL rendering context.

W% Rendering context = instance of an
OpenGL state machine.

w Programs use giXMakeCurrent to bind to
context and OpenGL-capable drawable.

Once bound, OpenGL calls render to
W currentdrawable using current context.

W OpenGL Rendering Context :: X Graphics Context :: Crayon
W GLXDrawable :: Drawable :: Paper

Graphics Context _

’ OpenGL Rendering
Context
Drawable / GLXDrawable
\ & /

Types of GLXDrawables

Choosing frame buffer capabilities

¥ On-screen X windows.

Not every window has to be OpenGL
capable though.

W7 Off-screen GLXPixmaps.

A GLXPixmap is an “enhanced” version of a
standard X pixmap.

W Different GLXDrawables can have different
frame buffer capabilities.

w Core X11 protocol uses “visuals’ to abstract
methods of mapping pixel values to color
values at various depths.

Example: 24-bit TrueColor window.

W OpenGL has frame buffer capabilities not
known by core X.

Example: depth buffer, stencil buffer,
double buffering, stereo

OpenGL overloads X visuals with new info.

0 €

Some frame buffer capabilities

W% OpenGL-capable (all visuals don’t have to be!).
W Color index vs. RGBA color model.

¥ Bits ofimage resolution.

Vv Buffers: stencil, depth, accumulation.

W7 Double buffering.

v

Frame buffer level (overlays, underlays).

GLX Visual Attributes
Attribute Type Notes
GLX_USE_GL boolean true if OpenGL rendering is supported
GLX_BUFFER_SIZE integer depth of the color buffer
GLX_LEVEL integer frame buffer level: >0=overlay
GLX_RGBA boolean true if in RGB mode
GLX_RED_SIZE integer number of bits of red in RGB mode
GLX_GREEN_SIZE integer number of bits of green in RGB mode
GLX_BLUE_SIZE integer number of bits of blue in RGB mode
GLX_ALPHA_SIZE integer number of bits of alpha in RGB mode
GLX_DOUBLEBUFFER boolean true if front/back color buffers pairs
GLX_STEREO boolean true if left/right color buffers pairs
GLX_DEPTH_SIZE integer number of bits in the depth buffer
GLX_STENCIL_SIZE integer number of bits in the stencil buffer
GLX_AUX_BUFFERS integer number of auxiliary color buffers
GLX_ACCUM_RED_SIZE integer accumulation buffer red component
GLX_ACCUM_GREEN_SIZE integer accumulation buffer green component
GLX_ACCUM_BLUE_SIZE integer accumulation buffer blue component
GLX_ACCUM_ALPHA_SIZE integer accumulation buffer alpha component

(Further discussed when glXChooseVisual and glXGetConfig are
introduced.)

T €

X visuals advertise configurations

Important Distinction

W% Frame buffer configuration = supported set of
OpenGL frame buffer capabilities.

W Agiven X server supporting OpenGL
enumerates all its frame buffer configurations
via its supported visuals.

¥ When an XCreateWindow is performed with a
given visual, the new window supports the
frame buffer configuration of the its visual.

W The configuration (like the visual) is fixed for
the lifetime of the X window.

v Number and types of frame buffer
configurations (and therefore capabilities)
can vary by OpenGL implementation.

Depends on available hardware.

v But, all OpenGL rendering capabilities are
mandated for all implementations.

v Still, GLX mandates high base-line of
minimum guaranteed frame buffer
configurations.

Frame buffer functionality baseline

Example of OpenGL Visuals

WV Every GLX-capable X server must provide at
least one OpenGL-capable RGBA visual with
at least the following:

stencil buffer at least 1-bit deep
depth buffer at least 12-bits deep
an accumulation buffer

w Ifcolorindex provided, one OpenGL color
index visual must have:

stencil buffer at least 1-bit deep
depth buffer at least 12-bits deep

Indigo Entry workstation (SGI's lowest end
graphics) exports the following 5 visuals with
these capabilities:

VisuallD: 22

VisuallD: 20 depth=8, class=TrueColor ,

depth=8, class=PsuedoColor , o1 ¢ = _ o
buffersize=8 , level=normal, rgba=no, bufferS!ze:8 s Ievelmoﬁrmal, rgbafyef (redSize=1,
doubleBuffer=no, stereo=no, auxBuffers=0, greensSize=2, bluesize=1, alphaSize=0),
depthSize=32 bits , stencilSize=8 bits , doubleBuffer=no, stereo=no, auxBuffers=0,
accumulationBuffer=no depthSize=32 bits , stencilSize=8 bits ,
N accumulationBuffer=yes (redSize=16,
VisuallD: 24 greenSize=16, blueSize=16, alphaSize=16)
depth=4, class=PsuedoColor , . X
bufferSize=4 , level=normal, rgba=no, VlsuaIIIB. 23 .
doubleBuffer=yes , stereo=no, auxBuffers=0, dépth=4, class=TrueColor , _ o
depthSize=32 bits | stencilSize=8 bits , bufferSize=4 , level=normal, rgba=yes (redSize=1,
accumulationBuffer=no greenSize=2, blueSize=1, alphaSize=0),
doubleBuffer=yes , stereo=no, auxBuffers=0,

VisuallD: 25 depthSize=32 bits, stencilSize=8 bits,
depth=2, class=PsuedoColor , accumulationBuffer=yes (redSize=16,
bufferSize=2 , level=overlay , rgba=no, greenSize=16, blueSize=16, alphaSize=16)

doubleBuffer=no, stereo=no, auxBuffers=0,
depthSize=0 bits, stencilSize=0 bits,
accumulationBuffer=no

OpenGL Rending Contexts

Direct & Indirect Rendering

W% OpenGL rendering context = full OpenGL state
machine.

WV Two options:

Indirect rendering — uses GLX protocol,
inter—operable, network-extensible, always
supported.

Direct rendering — higher local performance,
direct access to hardware, not required.

¢ €

Local application

Remote application OpenGLIGLX

device
dependent N
OpenGL renderer

OpenGL/GLX

Local
connection

i

connection

Protocol
dispatch
device 4
dependent
penGL renderer

Xrenderer 4]
X server

GLX API Functionality (Part1)

GLX API Functionality (Part 2)

W Extension queries: glXQueryExtension,
glXQueryVersion, gIXQueryExtensionsString,
glXGetClientString, gliXQueryServerString

W Visual selection: glXChooseVisual, giXGetConfig

w Context manipulation: glXCreateContext,
glXCopyContext, giXDestroyContext

W Context/Drawable binding: gliXMakeCurrent

W Context queries: glXGetCurrentContext, glXIsDirect

Drawable query: glXGetCurrentDrawable
Buffer swapping: glIXSwapBuffers

Display listable X font support: gliXUseXFont

4 4 94 4«

Synchronization: gIXWaitGL, gIXWaitX

GLX can also have API extensions, both standard
and vendor supplied...

Header files for using OpenGL’s APIs

GLX Extension Queries

v

To get the OpenGL rendering API, use:
#include <GL/gl.h>

To get the OpenGL GLX window system integration
for X API, use:

#include <GL/gIx.h>

€ €

W Does X server support OpenGL? Example:

Display *dpy;

int error_base, event_base;

if('gIXQueryExtension(dpy, &error_base, &event_base))
fatalError("no OpenGL GLX extension!");

V' Also, can query version of OpenGL/GLX. Example:
Status status;

int major_vers, minor_vers;
status = gIXQueryVersion(dpy, &major_vers, &minor_vers);

W GLX 1.0, 1.1, and 1.2 are currently available.

GLX1.1

GLX 1.2: Most recent

v

OpenGL 1.0 has mechanism to support API
extensions to the basic OpenGL API.

GLX 1.1 adds a similar mechanism to GLX.
str=gIXQueryExtension(dpy,screenNum);
GLX 1.1 adds no “real” functionality.

Backward compatible.

¥ One new call:
dpy = glXGetCurrentDisplay();
Fixes functionality oversight.

W7 Mostly, provides the protocol specification
and associated updates for OpenGL 1.1.

v €

Visual Selection

Quick and Dirty Visual Selection

W glXGetConfig returns an OpenGL configuration for
a specified visual. Example:

XVisuallnfo *visual;
int value;
zerolfSuccess = gIXGetConfig(dpy, visual, GLX_USE_GL, &value)

if(value == True)
printf("Visual 0x%x does GL\n",visual->visualid);

W Examples of other configuration attributes:

GLX_USE_GL True if OpenGL rendering supported
GLX_DEPTH_SIZE Number of bits in the depth buffer

w gIXChooseVisual is “quick and dirty” visual
selection routine.

W Example to find visual that supports double
buffering, uses the RGBA color model, and
has a depth buffer with at least 16 bits:
int configuration[] = { GLX_DOUBLEBUFFER, GLX_RGBA,

GLX_DEPTH_SIZE, 16, None };
XVisuallnfo *visual;

visual = gIXChooseVisual(dpy, DefaultScreen(dpy),
configuration);

Creating OpenGL Rendering Contexts

Destroying and Copying Contexts

W Use gIXCreateContext to create an OpenGL
rendering context:

GLXContext context;

context = gIXCreateContext(dpy,
visual /* defines buffer resources of context */,
NULL /* share context for display lists */,
True /* try to create a direct context */);

W Note: contexts can share display lists.

w Note: a context’s visual must match the visual
of drawables it can be bound to.

W7 Use glXDestroyContext to destroy a created
context:

glXDestroyContext(dpy, context);

W Contexts are expensive; recycle, don't
repeatedly create/destroy them.

Ww glXCopyContext allows a context’s OpenGL
state to be copied to another context:

glXCopyContext(dpy, src_ctx, dest_ctx,
/* copy everything */ GL_ALL_ATTRIB_BITS);

G €

OpenGL rendering to pixmaps

Handling GLXPixmaps

W% Tocreate awindow for rendering OpenGL into,
use Xlib’s standard XCreateWindow routine;
the window’s visual determines the frame
buffer configuration.

But X pixmaps do not have visuals!

OpenGL rendering is pretty limited without the
benefit of ancillary buffers like a depth buffer.

v Howdoyou render OpenGL into a pixmap
then?

W% Torender OpenGL into a pixmap, a GLXPixmap
handle is created that “wraps’ a pixmap created
by XCreatePixmap. Example:

XVisuallnfo *visual,

Pixmap pixmap;
GLXPixmap glxpixmap;

pixmap = XCreatePixmap(dpy, DefaultRootWindow(dpy),
width, height, depth);
glxpixmap = gIXCreateGLXPixmap(dpy, visual, pixmap);

¥ Draw core X rendering to pixmap, draw OpenGL
rendering to glxpixmap.

Wrapping a Pixmap for OpenGL

OpenGL’s “make current” operation

pixmap = XCreatePixmap(...)

pixmap > E

L\image buffer

glxpixmap = gIXCreateGLXPixmap(dpy, visual, pixmap)

glxpixmap —>= /*ﬁ

pixmap —= g

OpenGL ancillary
buffers

~ T ~image buffer

¥ OpenGL rendering commands do not take a
Display* or drawable or context per call.

Vv Instead, the current context and drawable
are used.

w7 glXMakeCurrent establishes the current
context and drawable for the calling thread:
Display *dpy;
Window win;
GLXContext ctx;

glXMakeCurrent(dpy, win, ctx);

9 €

More about glXMakeCurrent

Notes about GLX Contexts

w OpenGL rendering contexts are considered to
“reside” in a given address space.

Indirect contexts reside in the X server’s address
space.

Direct contexts reside in the application’s address
space.

W Therefore, direct contexts can not be shared by
distinct applications (though indirect contexts
can).

Buffer Swapping

W Use gIXMakeCurrent whenever you switch
OpenGL rendering to a different context or
drawable.

W Don'tcall OpenGL API routines unless you
are “made current.”

W Youcan unbind from a context and window
by calling:
glXMakeCurrent(dpy, None, NULL);

GLX Queries

W GLXDrawable gixdrawable;

glxdrawable = gIXGetCurrentDrawable();
W GLXContext context;

context = gIXGetCurrentContext();

GLX 1.2

W Display *display; /

display = gIXGetCurrentDisplay();
W if(gIXIsDirect(context))

printf("this context is direct\n");

W% OpenGL supplies its own means to perform a
buffer swap:

Window window;
gIXSwapBuffers(dpy, window);

W Double buffering gets you seamless window
updates.

Native X font usage by OpenGL

Synchronizing X & OpenGL rendering

OpenGL has no native font support.

The GLX API does supply a routine that turns
X fonts into bitmap display lists so OpenGL
and X can draw using the same bitmap fonts:

Font font;

int first; /* first glyph to be used */

int count; /* number of glyphs */

int displayListBase; /* base display list ID */

font = XLoadFont(dpy, "fixed");
glXUseXFont(font, first, count,
displayListBase);

7

The command streams for X and OpenGL are
considered separate.

There is no guaranteed ordering for the
execution of X request and OpenGL
commands relative to each other.

Two GLX routines allow efficient explicit
synchronization:

gIXWaitX();
gIXWaitGL();

L €

Putting it all together

Continuing example

v

Now, we put the OpenGL, GLX, and Xlib APIs together.

Ashort example that doesn’t always do the smartest thing
but demonstrates the basics...

Start at the beginning, #includes:

#include <stdio.h>

#include <X11/Xlib.h>

#include <GL/gl.h>

#include <GL/gIx.h>

Declare attribute lists to use with gIXChooseVisual:

static int configuration[] = {GLX_RGBA,
GLX_DEPTH_SIZE, 16, None};

v

Declare variables:

Display *dpy;

Window win;

GLXContext ctx;

XVisuallnfo *visual;

Colormap cmap;
XSetWindowAttributes winattrs;
XEvent event;

Start main:

main(int argc, char **argv)

Open X server connection:

dpy = XOpenDisplay(NULL);
if(dpy == NULL) fatalError("bad DISPLAY");

8 €

Continuing example (2)

Continuing example (3)

W Find an appropriate visual:

visual = gIXChooseVisual(dpy,
DefaultScreen(dpy), configuration);

if(visual == NULL)
fatalError("no visual");

if(visual->class != TrueColor)
fatalError("expected TrueColor visual");

W Create an OpenGL rendering context for visual:

ctx = gIXCreateContext(dpy, visual,
NULL, /* go direct if possible */ True);

W Impolite colormap strategy, just create one:
cmap = XCreateColormap(dpy, RootWindow(dpy,

visual—->screen), visual->visual,
AllocNone);

W Create the window with the correct visual; be careful,
since it is likely not the default visual:

winattrs.colormap = cmap;
winattrs.border_pixel = 0; /* avoid BadMatch */
winattrs.event_mask = StructureNotifyMask;
win = XCreateWindow(dpy, RootWindow(dpy,

visual->screen), 0, 0, 300, 300, 0,
visual->depth, InputOuput, visual->visual,
CWaBorderPixel| CWColormap|CWEventMask,
&winattrs);

Connect the context to the window:

glXMakeCurrent(dpy, win, cx);

Map the window:

XMapWindow(dpy, win);

Continuing example (4)

Continuing example (5)

W Wait for MapNotify event (assume waitForNotify was
defined before main):

static Bool
waitForNotify(Display *d, XEvent *e, char *arg)

return (e->type == MapNotify) &&
(e—>xmap.window == (Window)arg);
W Backinmain...

XIfEvent(dpy, &event, waitForNotify,
(char*) win);

v

Draw in the window using OpenGL; clear the window
tored:

glClearColor(1,0,0,1); /* red */
glClear(GL_COLOR_BUFFER_BIT);
glFlush();

Sleep for a bit, then exit.
sleep(10);

exit(0);

}

Greatly simplified, of course. Real application would have
real X event loop and would do colormap selection better,
etc., etc.

Non-default Visuals Event handling for OpenGL programs

6 €

w Note thatit is likely that the visual you select is 7 The GLX extension adds no new events; still
not the default visual. event handling for OpenGL programs has some
caveats:
v \?v?nagj,z)?/ﬁv?mgenchggggg ﬁlfltigdg?tmg anXx ¥ An Expose event leaves the contents of all
’ OpenGL ancillary buffers in the damaged region
v When you create a top-level window not using undefined.
the default visual, you can not inherit the
colormap. You must specify a colormap created
for your visual.
W Also the border pixel value must be specified;
generally just supply 0.
More Event handling for OpenGL Basic X Topics
W Usually OpenGL programs call glViewport to v OpenGL Integration with X: GLX (mjk)
reshape the viewport of windows that receive
a ConfigureNotify event indicating the
window has been resized. v OpenGL with Motif

w Beaware the coordinate system origin for X is
the upper-left corner; the origin for V4 GLX Extensions
OpenGL’s coordinate system is lower—-left.

Translate button, keyboard, and motion
event locations accordingly.

0P

OpenGL with Motif

Example of OpenGL and Motif

W Programmers typically combine OpenGL
rendering with Motif user interface toolkit.

7 Specialized OpenGL drawing area widgets make
combining OpenGL and Motif relatively
painless.

W Basic split:

User interface written using Motif.

3D OpenGL rendering done into special
drawing area widgets.

Fila Edit Effncts Funoedon

Motif Options

Why is a special widget needed?

w OpenGL rendering into standard Motif
drawing area widget. Involved.

W% OpenGL rendering into specialized OpenGL
drawing area widget. Fairly easy.

Using specialized OpenGL widget generally
better option!

(Potential exists for more specialized OpenGL
widgets. Open Inventor widgets are examples
of this.)

w OpenGL relies on selecting appropriate
visual for determining OpenGL frame buffer
configuration.

WV The X Toolkit (Xt) on which Motif relies,
allows visual to be specified easily only for
Shell and Shell-derived widgets.

W% Non-shell widgets inherit visual from parent
widget.

w Impossible (without resorting to widget
internals) to set the visual of non—Shell Motif
1.2 widgets!

The OpenGL Widgets)

FYI: Partial Widget Class Hierarchy

WV Actually two OpenGL widgets!

<

GLwMDrawingArea is Motif OpenGL widget.

WV GLwDrawingArea is vanilla Xt OpenGL
widget (notice lack of M) which can be used
with non—Motif widget sets.

w Minor difference is the Motif OpenGL widget
is derived from Motif’'s XmPrimitive widget.

| %

Core
N — — Shell
XmPrimitive Composite /
GLwDrawingArea Constraint WMShell
XmManager

VendorShell
XmLabel XmTextField

GLwMDrawingArea XmFrame TopLevelShell

Xm prefix = Motif, XmDrawingArea
GLw prefix = OpenGL, others = X Toolkit

Using an OpenGL widget

OpenGL widget software layering

¥ The Motif OpenGL widget header:
#include <X11/GLw/GLwMDrawA.h>

¥ Thevanilla OpenGL widget header (notice lack
of M):

#include <X11/GLw/GLwDrawA.h>

w Excepting obscure XmPrimitive resources, the
two widgets are functionally equivalent.

W Typical OpenGL widget program software
layering:

Client code

GLwMDrawingArea
widget

Motif
OpenGL [GLX |
AP IAPL) o0kt

Xlib

W Typical library link options (in right order):

—-IGLw -IGLU —IGL —IXm —IXt —IXext —=IX11 —Im

Types of OpenGL widget resources

Visual selection resources

v

Visual selection resources: for selecting the
appropriate OpenGL frame buffer
configuration.

Callback resources: for handling graphics
initialization, resizes, exposes, and input.

Colormap management resources: allocation
of background and other colors, colormap
installation.

GLwNuvisuallnfo: allows particular XVisuallnfo* to
specify visual. Recommended!

GLwNattribList: contains list of GLX visual attributes to
be passed to gIXChooseVisual.

Per—GLX visual attribute resources:

GLwNbufferSize GLwNlevel

GLwNrgba GLwNdoublebuffer
GLwNstereo GLwNauxBuffers
GLwNredSize GLwNgreenSize
GLwNblueSize GLwNalphaSize
GLwNdepthSize GLwNstencilSize
GLwNaccumRedSize GLwNaccumGreenSize

GLwNaccumBIlueSize GLwNaccumAlphaSize

A %

Why GLwNvisuallnfo recommended

Callback resources

7

XtCreateWidget has no ability to fail if described

visual can not be found!

The OpenGL widget terminates the program
with a message if described visual not found.

(Limitation of X Toolkit!)

To guarantee described visual exists, call
gIXChooseVisual yourself (testing for failure),
and then use GLwNvisuallnfo to specify an
explicit visual to use.

W% GLwNginitCallback: called when widget is first
realized. Good time to do OpenGL
initialization.

W7 GLwNresizeCallback: called when the widget is
resized. Good time to adjust OpenGL viewport,
etc.

W7 GLwNexposeCallback: called when widget
receives expose events. Redraw the scene.

w GLwNinputCallback: called in response to user
input.

e v

OpenGL callback information

Realizing Widgets & the ginit Callback

W% The call_data structure passed to each OpenGL
widget callback:

typedef struct {
int reason;
XEvent *event;
Dimension width, height;
} GLwDrawingAreaCallbackStruct;

w reason is why callback called: GLWCR_EXPOSE,
GLWCR_RESIZE, GLWCR_INPUT, &
GLWCR_GINIT.

W eventis X event that triggered callback; NULL
for the ginit and resize callbacks.

v

v

v

X Toolkit does not create X window for widget
until widget is realized.

XtWindow(widget) will not return a valid
window ID until window is realized.

Therefore, you can not “make current” to a
widget until realized.

(Note: callbacks for some widgets can be called
before a widget is realized like the resize
callback!)

The GLwNginitCallback helps you know when
to start doing OpenGL state initialization, etc.

Creating GLXContexts for widgets

“Making current” for callbacks

w Itisyour responsibility to call gIXCreateContext
to create OpenGL rendering contexts for use
with widgets you create.

¥ Normally, this can be done before a widget is
actually created since it does not require an X
window, just the XVisuallnfo*.

W You can also wait to create OpenGL contexts
until your ginit callback is called. Either works.

¥ How you share and use rendering contexts is up
toyou.

v

v

The OpenGL widget does not automatically
perform a gIXMakeCurrent before the callback.

To make current, call:

glXMakeCurrent(XtDisplay(widget),
XtWindow(widget), context);

If there are multiple OpenGL drawing areas,
you should always call giXMakeCurrent before
calling any OpenGL routines within a widget
callback.

The resize callback

The expose callback

w Typically used to change OpenGL viewport and
possibly to update the projection matrix.

V7 Example:

void
resize(Widget w,
XtPointer data, XtPointer callData)

GLwDrawingAreaCallbackStruct *info =
(GLwDrawingAreaCallbackStruct*) callData;

gIXMakeCurrent(XtDisplay(w),
XtWindow(w), context);
glViewPort(0, 0, info—>width, info->height);
}

v v

w Typically used to redraw the window’s entire
scene.

YV Example:

void
redraw(Widget w,
XtPointer data, XtPointer callData)

gIXMakeCurrent(XtDisplay(w),
Xtwindow(w), context);

/* redraw the scene... */

gIXSwapBuffers(XtDisplay(w), XtWindow(w));

The input callback

Widget colormap allocation

W% Typically used to handle user input for the
window.

W Asaprogramming convenience, by default, the
OpenGL widget sets up the following
translations:

<KeyDown>: glwInput()
<KeyUp>: glwinput()
<BtnDown>: glwinput()
<BtnUp>: glwinput()
<BtnMotion>: glwinput()

w glwlinput calls the GLwNinputCallback.

w Alternate translations can be set up.

W% If Xcolormap is not explicitly provided, OpenGL
widget will attempt to allocate one.

W7 All widget instances share a colormap cache, so
OpenGL widgets for the same visual will get
assigned the same colormap.

w Good advice: allocate your own colormap and
explicitly set it instead of letting widget do it for
you. Better control!

S v

An OpenGL widget example:

glw.c demonstrates...

glw.c

Proper visual selection.
Falling back to single buffering.
Proper colormap allocation.

Using WorkProcs for animation.

4 4 4 94 4«

Suspending WorkProc animation when
iconified.

<

OpenGL widget callback registration and
handling.

¥ Handles indirect rendering.

glw.c (1): necessary headers

glw.c (2): global variables

Necessary headers:

#include <stdlib.h>

#include <stdio.h>

#include <Xm/Form.h> /* Motif Form widget */

#include <Xm/Frame.h> /* Motif Frame widget */

#include <X11/GLw/GLwMDrawA.h> /* Motif OpenGL drawing area */
#include <X11/keysym.h>

#include <X11/Xutil.h>

#include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP */
#include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap */
#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/gIx.h>

static int sngIBuf[] = {GLX_RGBA,
GLX_DEPTH_SIZE, 16, None};
static int dblBuf[] = {GLX_RGBA, GLX_DEPTH_SIZE, 16,
GLX_DOUBLEBUFFER, None};
static String fallbackResources[] = {
"*glxarea*width: 300", "*glxarea*height: 300",
"*frame*x: 20", "*frame*y: 20",
"*frame*topOffset: 20", "*frame*bottomOffset: 20",
“*frame*rightOffset: 20", "*frame*leftOffset: 20",
"*frame*shadowType: SHADOW_IN", NULL

h

Display *dpy;

XtAppContext app;

XtWorkProcld workld = 0;

Widget toplevel, form, frame, glxarea;
XVisuallnfo *visinfo;

GLXContext glxcontext;

Colormap cmap;

Bool doubleBuffer = True, spinning = False;

I

glw.c (3): initial main

glw.c (4): iconification & animation

Start of main, before OpenGL widget creation:

void main(int argc, char **argv)

toplevel = XtApplnitialize(&app, "Glw", NULL, 0, &argc, argv,
fallbackResources, NULL, 0);
dpy = XtDisplay(toplevel);

visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy), dbIBuf);
if (visinfo == NULL) {
visinfo = gIXChooseVisual(dpy, DefaultScreen(dpy), snglBuf);
if (visinfo == NULL)
XtAppError(app, "no good visual);
doubleBuffer = GL_FALSE;

}

XtAddEventHandler(toplevel, StructureNotifyMask,
False, map_state_changed, NULL);

form = XmCreateForm(toplevel, "form", NULL, 0);

XtManageChild(form);

frame = XmCreateFrame(form, "frame", NULL, 0);

XtvaSetValues(frame, XmNbottomAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM, XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM, NULL);

XtManageChild(frame);

Notice main’s XtAddEventHandler call.

An Xt WorkProc is used to control animation. Be
sure to install and uninstall it on unmapping and
unmapping of toplevel widget. Otherwise, useless
rendering to unmapped window wastes CPU:

void map_state_changed(Widget w, XtPointer clientData,
XEvent * event, Boolean * cont)

switch (event->type) {
case MapNotify:
if (spinning && workld != 0)
workld = XtAppAddWorkProc(app, spin, NULL);
break;
case UnmapNotify:
if (spinning)
XtRemoveWorkProc(workld);
break;
}
}

glw.c (5): OpenGL widget creation

glw’s Widget Instance Hierarchy

Create your own colormap using the ICCCM
colormap allocation conventions by calling Xt
version of getShareableColormap.

Create glwMDrawingArea widget and add
callbacks.

cmap = getShareableColormap(visinfo);
glxarea = XtvVaCreateManagedWidget("glxarea",
glwMDrawingAreaWidgetClass, frame,

GLwNvisuallnfo, visinfo, XtNcolormap, cmap, NULL);
XtAddCallback(glxarea, GLwNginitCallback, init_callback, NULL);
XtAddCallback(glxarea, GLwNexposeCallback, expose_callback, NULL);
XtAddCallback(glxarea, GLwNresizeCallback, resize_callback, NULL);
XtAddCallback(glxarea, GLwNinputCallback, input_callback, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(app);

glw
(Glw)

form
(XmForm)

frame
(XmFrame)

glxarea
(glwMDrawingArea)

LV

glw.c (6): colormap allocation

glw.c (7): ginit callback

Try to get a shared colormap:

Colormap getShareableColormap(XVisuallnfo * vi) {
XStandardColormap *standardCmaps;
Colormap cmap; Status status; int i, numCmaps;

I* be lazy; using DirectColor too involved for this example */
if (vi=>class != TrueColor)
XtAppError(app, "no support for non-TrueColor visual");
/* if no standard colormap but TrueColor, just make an unshared one */
status = XmuLookupStandardColormap(dpy, vi->screen, vi->visualid,
vi->depth, XA_RGB_DEFAULT_MAP, /* replace */ False, /* retain */ True);
if (status == 1) {
status = XGetRGBColormaps(dpy, RootWindow(dpy, vi->screen),
&standardCmaps, &numCmaps, XA_RGB_DEFAULT_MAP);
if (status == 1)
for (i=0; i < numCmaps; i++)
if (standardCmapsli].visualid == vi->visualid) {
cmap = standardCmaps]i].colormap;
XFree(standardCmaps);
return cmap;

cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen), vi->visual, AllocNone);
return cmap;

Graphics initialization callback creates OpenGL
context, binds context to widget’s window, and
initializes OpenGL state:

void
init_callback(Widget w, XtPointer client_data, XtPointer call)
XVisuallnfo *visinfo;

XtVaGetValues(w, GLwNvisuallnfo, &visinfo, NULL);

glxcontext = gIXCreateContext(XtDisplay(w), visinfo,
/* no sharing */ 0, /* direct if possible */ GL_TRUE);

glXMakeCurrent(XtDisplay(w), XtWindow(w), glxcontext);

I* setup OpenGL state */

glEnable(GL_DEPTH_TEST);

glClearDepth(1.0);

glClearColor(0.0, 0.0, 0.0, 0.0); /* clear to black */

glMatrixMode(GL_PROJECTION);

gluPerspective(40.0, 1.0, 10.0, 200.0);

glMatrixMode(GL_MODELVIEW);

glTranslatef(0.0, 0.0, =50.0);

glRotatef(-58.0, 0.0, 1.0, 0.0);

glw.c (8): resize callback

glw.c (9): expose callback

Resize callback updates OpenGL context’s viewport
to reflect new window size:

void
resize_callback(Widget w,
XtPointer client_data, XtPointer call)

GLwDrawingAreaCallbackStruct *call_data;
call_data = (GLwDrawingAreaCallbackStruct *) call;

glViewport(0, 0, call_data—>width, call_data—>height);

Expose callback redraws the OpenGL widget’s
window by calling the draw routine:
void
expose_callback(Widget w,
XtPointer client_data, XtPointer call)

draw();

Note: the common draw routine is also used
when a redraw is generated by animation.

Two possible redraw reasons in glw:
1) expose events.
2) animation.

8 v

glw.c (10): draw routine

glw.c (11): input callback

Draw routine renders OpenGL scene.

void
draw(void)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBegin(GL_POLYGON);
glColor3f(0.0, 0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);
glColor3f(0.7, 0.7, 0.7); glVertex3f(10.0, -10.0, 0.0);
glColor3f(1.0, 1.0, 1.0); glVertex3f(-10.0, 10.0, 0.0);
glEnd();
glBegin(GL_POLYGON);
glColor3f(1.0, 1.0, 0.0); glVertex3f(0.0, -10.0, -10.0);
glColor3f(0.0, 1.0, 0.7); glVertex3f(0.0, -10.0, 10.0);
glColor3f(0.0, 0.0, 1.0); glVertex3f(0.0, 5.0, -10.0);
glEnd();
glBegin(GL_POLYGON);
glColor3f(1.0, 1.0, 0.0); glVertex3f(-10.0, 6.0, 4.0);
glColor3f(1.0, 0.0, 1.0); glVertex3f(-10.0, 3.0, 4.0);
glColor3f(0.0, 0.0, 1.0); glVertex3f(4.0, -9.0, -10.0);
glColor3f(1.0, 0.0, 1.0); glVertex3f(4.0, -6.0, —10.0);
glEnd();
if (doubleBuffer) gIXSwapBuffers(dpy, XtWindow(glxarea));
if ('glXIsDirect(dpy, glxcontext))
glFinish(); /* avoid indirect rendering latency from queuing */

Input callback starts and stops animation on key press:
void input_callback(Widget w, XtPointer clientData, XtPointer callData)
(

XmDrawingAreaCallbackStruct *cd = (XmDrawingAreaCallbackStruct *) callData;
char buffer[1]; KeySym keysym;

switch (cd->event->type) {
case KeyRelease:
if(XLookupString((XKeyEvent *) cd—>event, buffer, 1, &eysym, NULL) > 0) {
switch (keysym) {
case XK_S: XK_s: I*the S key */
if (spinning) {
XtRemoveWorkProc(workld);
spinning = GL_FALSE;
}else {
workld = XtAppAddWorkProc(app, spin, NULL);
spinning = GL_TRUE;
}
break;
case XK_Escape: I* the Escape key exists */
exit(0);

break;

glw.c (12): spin WorkProc

Basic X Topics

Spin routine is registered as an Xt WorkProc to keep
the scene spinning. Do rotate, redraw scene, keep
WorkProc registered:

Boolean
spin(XtPointer clientData)

glRotatef(2.5, 1.0, 0.0, 0.0);
draw();
return False; /* leave work proc active */

v OpenGL Integration with X: GLX (mjk)
v OpenGL with Motif

v GLX Extensions

6 7

GLX Extensions

Pbuffer extension (SGIX)

v Adds window system dependent

functionality.

v Typically deal with new context

handling or video capabilities or
frame buffer capabilities.

¥ Capability for GLX extensions added

with GLX 1.1.

Pbuffer = pixel buffer; new off-screen
hardware accelerated drawable type.

Brian talks about using these.
Abit difficult to use.

Often pbuffers are limited by hardware
frame buffer memory limits.

Available on RealityEngine, InfiniteReality,
02, Impact and Octane. Probably other
vendors will support too.

FBconfig extension (SGIX)

Make Current Read extension (SGI)

<

FBconfig = frame buffer configuration.
FBconfigs are more general than X visuals.

FBconfigs work for new non-window
drawables like pbuffers.

FBconfigs relax compatibility requires.

FBconfigs permit off-screen drawable better
than displayable window types.

Likely for GLX 1.3.

v

Normally, glCopyPixels copies from rectangle
in current window to rectangle in the same
window (source & destination drawable).

glXMakeCurrentReadSGlI allows a different
source & destination drawable.

Enables:
Window to window copies.
Pbuffer to window copies.

GLXPixmap to window copies, etc.

Import Context extension (EXT)

Visual Info extension (EXT)

WV Letsyou share an indirect rendering context
between multiple X connections.

W% Limited usefulness.

w Easytoimplement because of how GLX
protocol works so easy for X vendors to
support.

7 See: gIXImportContextEXT

09

Adds more frame buffer attributes.

Permits matching on overlay transparency
mode.

W Better control of X visual type selected.

Visual Rating extension (EXT)

Multisample extension (SGIS)

Adds one more frame buffer attributes.

Indicates if an X visual or FBconfig has an
caveats:

None,
Non-conformant, or
Slow.
¥ Allows vendors to expose slow or
non-compliant visuals and FBconfigs without

confusing programs that probably don’t want
caveated visuals.

Supports multisample antialiasing mode.

Expensive; probably only available on
high—end machines such as InfiniteReality
and RealityEngine.

¥ No brainer way to eliminate (reduce) jaggies
inyour scenes. Greatly improves visual
quality, particularly for animated scenes.

W New frame buffer attribute added.

1S

More Advanced Topics

w Advanced Topics: overlays, stereo, etc.

Performance, Performance! (not just X)

A Few Advanced Topics

Double Buffering
Stereo

Font Support
Overlays
OpenGL over a network

Mixing 2D rendering with OpenGL
Alternative Input Devices

4 4 4 4 4 94 4

Double Buffering

v
Call gIXSwapBuffers.

W Visuals can be either exported as single or
double buffered.

¥ The buffer naming scheme for OpenGL is
“relative” scheme meaning buffers are
referred to as front and back.

v

glDrawBuffer determines what buffer gets
drawn to.

Double Buffering in Action (2)

OpenGL supports hardware double buffering.

frame buffer A

rotate %”S splayed

e

Draw(40 degree)

(o]
application

-1
@
>
@
Q

frame buffer A

glIXSwapBuffers(...)

OpenGL L,
application [“mm

i

rotate

¢ S

Double Buffering in Action (1)

frame buffer A

gIXSwapBuffers(...)

OpenGL
application [

rotate

Displayed screen

buffer buffer B

frame buffer A

‘lllllll““- .

rotate

rendering to
Draw(40 degrees) | opencL
application

rotate

- .

Hardware Double Buffering

W Double buffer hardware usually splits the image data bits
in a frame buffer into 2 buffers.
v

Each pixel is usually assigned a display ID which indicates
if the pixel is double buffered, and if so which buffer is
currently displayed.

Per-pixel frame
buffer information

Buffer A T ———————— & Scannedout
—— Single Buffer

to video controller
Display ID table
} Buffer B 0
5 » Display ID \ Changing display ID

S|SB | which buffer s dispiayed!

Ancillary buffer | Colorindex_ | played:

data: depth buffer, etc.

— 31

Hardware Double Buffering (2)

W Fordisplay ID style double buffer hardware, a
buffer swap involves flipping the display buffer
bit in the display ID table entry for the window.

Normally this is synchronized with the vertical
W retrace to avoid any tearing artifacts.

Sophisticated graphics systems also block the
w buffer swap initiator’s further rendering to

ensure no more rendering takes place until the
swap has completed.

OpenGL Stereo
W Stereo support built into OpenGL standard.
W% Model: “stereo in a window”
W Stereowindow gets left & right color buffers.
v

glDrawBuffer and glReadBuffer can choose
left and/or right buffers.

W% Almost always needs to be double buffered so
left & right for front & back.
4 buffers, so called “quad buffering”.

v

Unfortunately, expensive style of stereo.

€S

Quad buffered Stereo

Actually Using OpenGL Stereo

Stereo OpenGL app renders scene twice from
slightly different eye points.

Left Right
Back Back
Left Right
Front Front

N

Video display hardware switches between
displaying left & right buffers, typically 120 Hz
refresh rate. LCD shutter goggles show left or
right based on stereo emitter signal.

¥ Render lefteye, then right eye. Slight
different eye points for stereo effect.

W% Oneshared depth buffer. Leftand right
renders must be done serially.

w gIXSwapBuffers swaps both left and right
buffers.

W% Nice, clean stereo model, but takes up twice
the color buffer memory as a mono window.

Cheaper OpenGL Stereo

Cheaper OpenGL Stereo Scheme

W% Split from buffer into top & bottom half.
Top half is left; bottom half is right.

W Special video format “streches’ screen halves
to fill entire screen (1x2 pixel aspect ratio).

w 120 Hertz video refresh.

v Requires switching between two windows in
top & bottom half of the screen.

W7 SGI has proprietary X server extension for this
(does split screen stereo; X nicely draws into
both top and bottom of frame buffer).

left (top)

Screen split to make stereo; actual
stereo visuals have stretched pixels.

top (left)

/’

[]
L NG

bottom (right)

right (bottom)

Font Support

Using glXUseXFont generated fonts

v glXUseXFont makes X fonts into an array of
OpenGL bitmap display lists.

W These display lists can be called using
glCallLists (and glListBase) to print out strings
of text.

W Therefore, all available X fonts are available to
OpenGL.

w Ofcourse, X fonts are fairly limited since they
are simply bitmaps in a single orientation, ie.
limited utility within 3D scenes.

v G

W7 glXUseXFont makes X fonts into an array of
OpenGL bitmap display lists.

Font xfont;
GLuint font_base;

xfont = XLoadFont(dpy, "fixed");

if(xfont == NULL) fatalError("font not found.");
base = glGenLists(128 /* 7-bit ASCII range */);
glXUseXFont(xfont, 0, 128, base);

W Then, render a string by calling:

output_string(int x, int y, char *string) {
glRasterPos2i(x, y);
glListBase(base);
glCallLists(strlen(string), GL_UNSIGNED_BYTE,
(GLubyte *)string);

More sophisticated fonts

Overlays

W OpenGL programmers are not limited to using
X bitmap fonts via giXUseXFont.

W OpenGL’s rendering facilities are well suited
to other more sophisticated font rendering
techniques:

scalable outline fonts
scalable stroke fonts
anti—aliased fonts
texture mapped fonts

7 New GLC (OpenGL Character) API supports
font rendering via OpenGL.

An overlay is an alternate set of frame buffer bitplanes
that can be preferentially displayed instead of the
standard bitplanes.

W Imagine a stack of frame buffer layers with transparent
pixel values. Example:

Weather Map Weather Map
" -
Al
/
1/5/94 1/5/94
Normal Planes Overlay Planes Normal & Overlay

G 9

X/OpenGL'’s overlay support

Creating an Overlay Sandwich

W% OpenGL considers frame buffer layers to exist in

asingle window hierarchy.

W% One of the OpenGL visual attributes is
GLX_LEVEL that indicates what frame buffer
layers the visual belongs to (O=normal,
>0=overlay).

W% OpenGL is compatible with the

SERVER_OVERLAY_VISUALS convention. Used
by SGI, HP, and others; Sun now supporting it!

W OpenGL doesn’t advertise a transparent pixel
value; either get it from the
SERVER_OVERLAY_VISUALS property.

v

To support the weather map example of using
the overlay planes, do the following:

Create a normal plane window.

Create a subwindow with an overlay plane
visual with the same size and position. Set the
background pixel to be the overlay’s
transparent pixel value.

Only select for input events in the subwindow.

For OpenGL rendering, use giXMakeCurrent to
switch between windows.

Efficient 3D over the network

Mixing GUI and OpenGL rendering

W% OpenGL supports non—editable display lists.

W Display lists can reside in the X server to
efficiently execute large batches of OpenGL
rendering commands.

w Display lists and immediate mode can be mixed.

w Ifrunning efficiently over the network is
important to your 3D application, use display
lists.

v

Most OpenGL X applications will use Motif or
some other X toolkit for their user interface
needs.

The use of OpenGL is generally limited to 3D
application windows. The buttons and scroll bars
continue to be using core X rendering.

This makes good sense; segregating OpenGL and
X rendering by windows avoids the overhead of
synchronizing the OpenGL and X execution
streams.

9 G

OpenGL and the X Input Extension

Basics of the X Input extension

w OpenGL applications often want access to
sophisticated input devices like:

Tablet. Dial and button

box.

W The X Input extension provides access to such
devices.

W Distinct extension to the X server. Query for it
separately from OpenGL GLX extension.

WV The X Input extension augments the input events|
generated by the core X11 protocol.

w Header file for the X Input extension API:
#include <X11/extensions/XInput.h>

w Required library link options for using X Input
extension:

—IXi —IXext -IX1 1

Using the X Input Extension

Next topic:

W Query for server’s support of the extension
using XGetExtensionVersion.

W Listavailable input devices using
XListlnputDevices and determine what devices
to use.

w Call XOpenDevice to open desired devices.

W% Determine device event types and classes, then
select desired events using
XSelectExtensionEvent.

W Get XInput events by calling XNextEvent.

Advanced Topics: overlays, stereo, etc.

W Performance, Performance! (not just X)

LS

Pipeline Oriented Tuning

. - - Akeley’
The Graphics Pipeline taxoromy
L

/

¥ Most computer programs are tuned
based on “hot-spots.”

v “80% of the time is spent in 20% of
the code.”

v With graphics hardware, you need
to think about “pipeline” oriented
tuning...

e
G T X R D

Generation | Traversal i Xformation / Rasterization Display
/ / / 1
j

j j
/ /
Display | !
List i i
/ /
j j
/ er-Vertex |/
| Evaluator perations
7 | Primitve ;
j ssel
/
i

What work is off-loaded to gfx hardware?

Example Architectures

Tuning a Pipeline

v “Dumb frame buffer” (VGA)
GTXR-D

v Silicon Graphics Indy
GTX-RD

v Silicon Graphics Indigo IMPACT
GT-XRD

Two basic ideas:
7 Keep the graphics pipeline busy.

7 Keep the graphics pipeline balanced.

8 G

Maximizing performance

Maximizing performance (2)

High-level issue:
How can | structure my application to
achieve maximum performance?

Low-level issue:
How do | get the best performance
from OpenGL?

High-level techniques:
Multiprocessing (IRIS Performer)
Image quality vs performance
Culling and level of detail management

Low-level techniques:
Efficient data structures
Efficient traversal
Careful use of OpenGL features

High—level techniques

Low-level techniques

Multiprocessing
Perform rendering, computation, database
generation in separate threads.

Image quality vs performance
Use high-resolution model and features for static
images, low-resolution model and simpler features
for animation.

Level of detail management and culling
Monitor application performance and modify
database to meet minimum frame rate.

Efficient data structures and traversal

Maximize vertices between glBegin/gIEnd.

Minimize extraneous code between
glBegin/glEnd.

Store vertex data with zero stride in compact
representations.

Use efficient forms of glVertex, glColor, etc.

6 G

Example: data structs and traversal

Ex: data structures and traversal (2)

Drawing cities for a road map:

#define VILLAGE 1
#define CITY 2

struct city {
float latitude, longitude;
int size; /* VILLAGE or CITY */

Want to draw a small dot for villages and
a large dot for cities.

Poor implementation:

void draw_cities(int n, struct city list[]) {
for (i=0;i<n;i++) {
glPointSize(list[i].size==CITY ? 3.0, 1.0);
glBegin(GL_POINTS);
glVertex2f(list[i].latitude, list[i].longitude);
glEnd();

Ex: data structures and traversal (3)

Ex: data structures and traversal (4)

Better implementation:

void draw_cities(int n, struct city list[]) {
glPointSize(1.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)
if (list[i].size==VILLAGE)
glVertex2f(list[i].latitude,list[i].longitude);
glEnd();
glPointSize(3.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)
if (list[i].size==CITY)
glVertex2f(list[i].latitude,list[i].longitude);
glENd();

Better yet— a new data structure and drawing
function:

float cities[MAX][2];
float villages[MAX][2];

void draw_cities(int n, int size, float position[][2]) {
glPointSize(size==CITY ? 3.0, 1.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)
glVertex2fv(position[i]);
glEnd();

}

(even better, the vertex array extension)

OpenGL optimization

OpenGL optimization: traversal

Traversal

Transformation

Rasterization

Texturing

Clearing

Miscellaneous

Window system integration
Mesa-specific
Hardware/implementation—specific

4 4 dCdI9d9494

09

Use connected primitives (triangle and line strips).
Store vertex data in consecutive memory locations.

Use the vector versions of glVertex, gINormal,
glColor, and glTexCoord.

Use the vertex arrays (extension or OpenGL 1.1).
Reduce the number of primitives (tessellation).
Use display lists.

Don’t specify unneeded per-vertex data.
(texcoords)

Minimize extraneous code between glBegin/glEnd.

OpenGL optimization: transformation

OpenGL optimization: lighting

Disable normal vector normalization when not needed.

Use long connected primitives such as GL_LINE_STRIP,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, and
GL_QUAD _STRIP.

Don’t over—tessellate your primitives (NURBS, spheres,
etc).

Use efficient forms of glVertex, gINormal, etc. such as
glVertex3fv and gINormal3fv.

Disable clipping planes that aren’t needed.

Avoid positional lights.

Avoid spotlights.

Avoid two-sided lighting.

Avoid negative material and light coefficients.

Avoid using the local viewer option.

Avoid frequent changes to GL_SHININESS.

Some implementations optimized for using a single
light source.

Consider pre-lighting your model.

Don’t use too many light sources.

Avoid frequent material changes.

OpenGL optimization: rasterization

OpenGL optimization: texturing

Disable smooth shading when not needed.
Disable depth testing when not needed.
Disable dithering if not needed (esp. glClear).
Use polygon culling whenever possible.

Use few large polygons rather than many small
polygons to reduce raster setup time.

Avoid extra fragment operations such as scissoring,
stenciling, blending, stippling, alpha testing and
logic operations.

Reduce your window size or screen resolution.

Use integer glPixelZoom() values.

Antialiased lines of width 1 often optimized.

Use efficient image formats such as GL_UNSIGNED_BYTE or
one of the internal packed formats optimized for your
hardware.

Use fewer texture color components.

Encapsulate textures in texture objects or display lists to reduce
binding time.

Use simple sampling functions such as GL_LINEAR and
GL_NEAREST.

Use a simple texture environment function such as GL_DECAL
instead of GL_MODULATE for 3-component textures.

Compile many small textures into one larger texture and use
offset texture coordinates to address them.

Use smaller texture maps.

Pre—dither or pre-light textures to avoid dithering and lighting.

19

OpenGL optimization: clearing

OpenGL optimization: misc (1)

Be aware glClear takes a bitmask; don’t use multiple gIClear calls.
Disable dithering before clearing.
Use scissoring to limit clearing to subregions.
Don’t clear the color buffer at all if redrawing the entire window.
Eliminate depth buffer clearing if redrawing entire window:
if (EvenFlag) {
glDepthFunc(GL_LESS);
glDepthRange(0.0, 0.5);
}else {
glDepthFunc(GL_GREATER);
glDepthRange(1.0, 0.5);

Avoid round trip calls such as glGet*(), glisEnabled()
and glGetString() in your rendering loop.

Avoid glPushAttrib(), especially with
GL_ALL_ATTRIB_BITS.

Use glColorMaterial() instead of glMaterial() for
frequent material changes.

Avoid using viewports which are larger than the
window.

Check for GL errors during development with
glGetError().

¢ 9

OpenGL optimization: misc (2)

Optimizations: window system

Don’t allocate alpha, stencil, accumulation, or
overlay planes unless you really need them.

Try implementing transparency with stippling
instead of blending.

Avoid using glPolygonMode() for drawing unfilled
polygons. gIBegin(GL_LINE_LOOP) may be
faster.

Group GL state changes together.

Be aware of your depth buffer’s depth (ex 16 vs
32-bit) and your hardware’s optimized
configuration.

Minimize calls to the MakeCurrent function.
Context switching is expensive.

Be aware of tradeoffs in visual/pixel formats with
respect to precision (bits) versus speed.

Avoid mixing OpenGL rendering with native
window system (X11) rendering in the same
window.

Don’t redraw more often than needed. Example: X
expose events often come in groups.

Be aware that SwapBuffers may stall the graphics
pipe until the next vertical retrace.

Mesa optimizations

System-—specific optimizations

Double buffering may be implemented with an XImage or
Pixmap. Experiment to learn which is faster for you.

Some X visuals can be rendered into quicker than others
(8-bit vs 24-bit).

Mesa supports 16 or 32-bit depth buffers. 16-bit is usually
faster but may not be not precise enough for some
applications.

When drawing constant, flat shaded primitives put the
glColor call before the glBegin call.

The GLubyte versions of glColor are the fastest.

The GLfloat versions of glVertex, gINormal, and glTexCoord
are the fastest.

See the README file for optimized rendering combinations.

Read your vendor’s release notes and documentation
carefully to learn the optimal parameters of your
hardware and OpenGL: lengths of triangle strips,
texture sizes, texture formats, pixel depths, etc.

Use the glGetString(GL_RENDERER) call to test for
specific hardware configurations and use specialized
OpenGL code.

Write test programs to determine what'’s fast and slow or
to compare relative speeds of different code
fragments.

€9

OpenGL & Window System Integration

Nate Robins

“Most portable 3D, fastest 3D.” ’

Mark J. Kilgard Silicon Graphics, Inc.
Brian Paul Avid Technology

Nate Robins SGI, University of Utah,
Parametric Technology

SIGGRAPH '97 Cours e
August 4, 1997

My background

¥ Worked for Evans & Sutherland in the Graphics
Systems Group

V7 Worked for Parametric Technology porting
Pro/3DPAINT to Windows NT.

¥ Currently an Intern at SGI

W Ported the OpenGL Utility Toolkit (GLUT) to
Windows NT/95.

OpenGL & Win32 Topics

A simple example

WV Asimple example to get started

W Processing messages & using menus
¥ Pixel formats & palettes

¥ Overlays & underlays

¥ WGL reference

Three basic steps

7 Create awindow
7 Set the pixel format

v Createarendering

v 9

Creating a window

Registering a window class

Two—fold process

7 Register awindow class

¥ Create awindow in the new class

What is a window class?

¥ Atemplate used to create a
window in an application

W specifies certain basic attributes (such as
window procedure)

W identified by character string name

WV every window must be associated with a class

Registering a window class (2)

Registering a window class (3)

How do I register a window class?
¥ Fillina WNDCLASS structure

WNDCLASS wc;

we.style =0; /* no special styles */

we.lpfnawndProc = (WNDPROC)WindowProc; I* message handler */
we.chCIsExtra = 0; /* no extra class data */
we.cbWndExtra = 0; /* no extra window data */
wc.hinstance = GetModuleHandle(NULL); /* instance */

wc.hlcon = Loadlcon(NULL, IDI_WINLOGO); /* load a default icon */
we.hCursor = LoadCursor(NULL, IDC_ARROW); /* load a default cursor */
we.hbrBackground = NULL; /* redraw our own bg */
wec.IpszMenuName = NULL; /* no menu */
we.lpszClassName = "OpenGL"; /* use a special name */

W The hbrBackground member should be
NULL

W ThelpszClassName can be any
character string

How do I register a window class?
7 Call the RegisterClass() function
RegisterClass(&wc);

w returns TRUE on success, FALSE if
an error occurred

w when the application that registered
awindow class exits, the window
class is destroyed

W seethe course notes for amore
complete example

G 9

Creating a window from the class

Setting the pixel format

v Call CreateWindow() function

HWND hwnd;

hWnd = CreateWindow("OpenGL", /* class */
"Simple Example”, /* title (caption) */
WS_CLIPSIBLINGS |
WS_CLIPCHILDREN, I* style */
X, y, width, height, /* dimensions */

NULL, NULL, /* no parent, no menu */
GetModuleHandle(NULL), /* instance */
NULL); /* nothing for WM_CREATE */

W Thestyle argument must include the
WS_CLIPSIBLINGS and
WS_CLIPCHILDREN attributes

v Final preparation forthe window

ShowWindow(hWnd, SW_SHOW);
/* send an initial WM_PAINT message (expose) */
UpdateWindow(hwnd);

What is a pixel format?

¥ Specifies properties of a
rendering context

w number of color bits
W depth of the Z buffer
W single/double buffered

Vi number of stencil bits

W etc

Setting the pixel format (2)

Creating a rendering context

How do | set the pixel format?

v Simplest method is to fill out a
PIXELFORMATDESCRIPTOR and call
the ChoosePixelFormat() command

HDC hDC;

PIXELFORMATDESCRIPTOR pfd;

pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);

pfd.nVersion =1; * version (should be 1) */

pfd.dwFlags =PFD_DRAW_TO_WINDOW | /* draw to window (not bitmap) */
PFD_SUPPORT_OPENGL, /* draw using opengl */

pfd.iPixelType = PFD_TYPE_RGBA; I* PFD_TYPE_RGBA or COLORINDEX */

pfd.cColorBits = 24;

pf = ChoosePixelFormat(hDC, &pfd);
W returnsavalid pixel format index on
success, 0 if none match

7 More on this later! (better methods)

What is a rendering context?

¥ Port through which all OpenGL
commands pass

v Link between OpenGL and
Windows NT/95 windowing systems

7 Win32 context has the type HGLRC
(analog in X is the GLXContext)

Creating a rendering context (2)

Screenshot of simple.c program

How do | create a rendering context?
v Justwiggle! (Use WGL)

HDC hDC; /* device context */
HGLRC hRC; /* opengl context */

hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

W remember to clean up when done (see the
course notes for details)

99

OpenGL

OpenGL & Win32 Topics

Processing messages & using menus

7 Asimple example to get started

¥ Processing messages & using menus
W7 Pixel formats & palettes

¥ Overlays & underlays

¥ WGL reference

Topics
v About messages
v Peeking at messages
v Using window procedures
v Using menus

L 9

About messages

About messages (2)

What is a message?

w Method of communicating user input to
an application

W MSG structure contains data pertinent to
each message

¥ Analog of an X Window event

How do | use messages?

w Two methods will be discussed (peeking
& window procedure)

W Structure common to all messages

W all message names begin with WM_ (can be used in a
switch statement)

all messages have an IParam and a wParam (long word
and word parameter)

W valuesin IParam and wParam depend on the message

Peeking at messages

Using window procedures

v Keep checking the message
queue until a message appears

MSG msg;
while (1) {
/* check for (and process) messages in the queue */
while(PeekMessage(&msg, hwnd, 0, 0, PM_REMOVE)) {
switch(msg.message) {
case WM_KEYDOWN:
if(msg.wParam == 27) /* ESC */
/* do something */
break;
I* case for other messages */
default:
DefWindowProc(hWnd, msg.message,
msg.wParam, msg.|Param);
break;

W PeekMessage() can’t retrieve all message types

What is a window procedure?

W Special function registered with the
window class designed to handle
messages

W Usually has a large switch() statement

LONG WINAPI WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM IParam)
LONG IRet = 1;

switch(uMsg) {

case WM_CREATE:
break;

[* other message cases */

default:
IRet = DefWindowProc(hWnd, uMsg, wParam, IParam);
break;

return IRet;

8 9

Using window procedures (2)

Using menus

How do | use a window procedure?

W Translate and dispatch messages

while(PeekMessage(&msg, hwnd, 0, 0, PM_NOREMOVE)) {
if(GetMessage(&msg, hWnd, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}else {
/* bail out — window was destroyed */

v Ifyouwantto yield until a message
appears on the queue, use GetMessage()
in place of PeekMessage() and
translate/dispatch within the while loop

Why use menus?

v BuiltintoWin32
v Simple to use

v Professional looking :-)

Using menus (2)

Using menus (3)

How do | create a menu bar?

W Use CreateMenu() then insert items & attach

it to the window

HMENU hFileMenu; /* file menu handle */
HMENU hMenu; /* menu bar */
MENUITEMINFO item; I*item info */

hFileMenu = CreateMenu();

hMenu = CreateMenu();

item.cbSize = sizeof(MENUITEMINFO);

item.fMask =MIIM_ID | MIIM_TYPE | MIIM_SUBMENU;
item.fType = MFT_STRING;

item.hSubMenu = NULL;

item.wID =X}

item.dwTypeData = "E&xit";

item.cch = strlen("E&xit");

InsertMenultem(hFileMenu, 0, FALSE, &item);

item.wID =0;
item.dwTypeData = "&File";
item.cch = strlen("&File");

item.hSubMenu = hFileMenu;
InsertMenultem(hMenu, 0, FALSE, &item);

SetMenu(hWnd, hMenu);

How do | get messages from a menu?

¥ All menu items send a WM_COMMAND
message to the window when selected

case WM_COMMAND:
switch(LOWORD(wParam)) {
case X
PostQuitMessage(0);
break;

break;

Using menus (4) Screenshot of menu.c program

How do | handle a popup menu?

v . . -
Create the menu as outlined earlier e m

¥ When a mouse button is pressed, call
TrackPopupMenu() noae

Don't Rotate

case WM_RBUTTONDOWN:
point.x = LOWORD(IParam);
point.y = HIWORD(IParam);
ClientToScreen(hwnd, &point);
TrackPopupMenu(hPopup, TPM_LEFTALIGN, point.x, point.y,
0, hwnd, NULL);
break;

W position of the popup menu must be in
screen coordinates

W use ClientToScreen() function to convert

6 9

OpenGL & Win32 Topics Pixel formats & palettes

W% Asimple example to get started

Topics

W Processing messages & using menus]]
7 The Pixel Format Descriptor

W Pixel formats & palettes .
S k2 v Using Palettes

W% Overlays & underlays

¥ WGL reference

0L

The pixel format descriptor

The pixel format descriptor (2)

What is a pixel format descriptor?

w Astructure whose fields indicate
properties of an OpenGL context

W% Gateway to choosing a pixel format
suitable for a given application

W Similar to an XVisuallnfo structure in
X'Windows but tailored to OpenGL

How do | use it?

W% Thesimplestway is to fill in the fields of the
structure with desired properties & call
ChoosePixelFormat() (see simple.c)

WV We can do better than ChoosePixelFormat()

W Enumerate all formats and compare against
our own criteria

W See the course notes for a detail on each field
of the pixel format descriptor

The pixel format descriptor (3)

Using Palettes

W Use the DescribePixelFormat() function to
enumerate all the pixel formats

int pf, maxpf;
PIXELFORMATDESCRIPTOR pfd;

I* get the maximum number of pixel formats */
maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

/% loop through all the pixel formats */
for (pf = 1; pf <= maxpf; pf++
DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
if (pfd.dwFlags & PFD_DRAW_TO_WINDOW &&
pfd.dwFlags & PFD_SUPPORT_OPENGL &&
pfd.dwFlags & PFD_DOUBLEBUFFER &&
pfd.cDepthBits >= 24)

/* found a matching pixel format */

Two basic reasons to use a palette

v When exact control over colors is
needed or for palette animation
(color index mode)

¥ When Truecolor display can’t be
used (must simulate Truecolor
with ramp & dithering)

1T L

Using color index mode

Using color index mode (2)

v Must use a logical palette (user
defined table of colors)

v Select and Realize the palette for
Win32 to recognize it (next slide)

v Intercept the proper messages

case WM_QUERYNEWPALETTE:
SelectPalette(GetDC(hWnd), hPalette, FALSE);
IRet = RealizePalette(GetDC(hWnd));
break;

case WM_PALETTECHANGED:
if(hwnd == (HWND)wParam) break;
SelectPalette(GetDC(hwnd), hPalette, FALSE);
RealizePalette(GetDC(hWnd));
UpdateColors(GetDC(hwnd));
IRet = 0;
break;

v Create, select and realize a logical

palette
LOGPALETTE Igpal I* custom logical palette */
int =5 /* number of entries in palette */
PALETTEENTRY peEntr\es[S] {k [* entries in custom palette */
0, O,N acl

255 0, O NULL /*red *

0, 255 0, NULL, I* green */

0, 0,255, NULL, 1* blue */

255 255, 255, NULL 1* white */

[* create a logical palette (for color index mode) */

Igpal.palVersion = 0x300; /* version should be 0x300 */
Igpal.palNumEntries = nEntries; /* number of entries in palette */
hPalette = CreatePalette(&Igpal);

SetPaletteEntries(hPalette, 0, nEntries, peEntries);
SelectPalette(hDC, hPalette, TRUE) I* map Ioglcal into physical palette */
RealizePalette(hDC);

Simulating Truecolor with a palette

Screenshot of index.c program

v Abittricky deciding what the
palette should look like

v Must have an adequate range of
colors

¥ Functions exist to generate such
palettes

v See the course notes for a
detailed example

! OpenGL _ O] x|

¢ L

OpenGL & Win32 Topics

Overlays & Underlays

W7 Asimple example to get started

WV Processing messages & using menus
WV Pixel formats & palettes

WV Overlays & underlays

YV WGL reference

7 Overlay/Underlay associated
with a particular pixel format

7 cannot be free floating over any

window (as in X Windows)

Same basic process as before, but
now must use special WGL
functions designed for overlays
when setting pixel formats,
creating contexts and swapping
buffers

Overlays & Underlays (2)

Overlays & Underlays (3)

How do | use overlay/underlays?

7 Same basic process as before, but
now must use special WGL functions
designed for overlays when setting
pixel formats, creating contexts and
swapping buffers

int pf, maxpf;
PIXELFORMATDESCRIPTOR pfd;
LAYERPLANEDESCRIPTOR Ipd; [* layer plane descriptor */

maxpf = DescribePixelFormat(hDC, 0, 0, NULL);
for(pf = 0; pf < maxpf; pf++) {
DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
if (pfd.bReserved > 0) {
[* aha! This format has uver\ays/underlays *
wglDescribeLayerPlane(hDC, pf, 1,
sizeof(LAYERPLANEDESCRIPTOR), &Ipd);
if (Ipd.dwFlags & LPD_SUPPORT_OPENGL &&
Ipd.dwFlags & LPD_DOUBLEBUFFER) /* any other flags */

/* found one! */

How do I use overlay/underlays?

7 Must ALWAYS set the palette for an
overlay/underlay

/* set the pixel format */
if(SetPixelFormat(hDC, pf, &pfd) == FALSE) {
MessageBox(NULL
"SetPixelFormat() failed: Cannot set format specified.",
"Error", MB_OK);
return 0;

[* set up the layer palette */
wglSetLayerPaletteEntries(hDC, 1, 0, nEntries, crEntries);

[* realize the palette */
wglRealizeLayerPalette(hDC, 1, TRUE);

/* announce what we've got */
printf("Number of overlays = %d\n", pfd.bReserved);
printf("Color bits in the overlay = %d\n", Ipd.cColorBits);

c L

Screenshot of overlay.c program

OpenGL & Win32 Topics

W7 Asimple example to get started

W Processing Messages & Using Menus
WV Pixel Formats & Palettes

W7 Overlays & Underlays

7 WGL Reference

WGL Reference

Rendering Context Functions

¥ Rendering Context Functions
¥ Fontand Text Functions
¥ Overlay, Underlay and Main Plane Functions

W% Miscellaneous Functions

wglCreateContext

Creates a new rendering context.
wglMakeCurrent

Sets a thread’s current rendering context.
wglGetCurrentContext

Obtains a handle to a thread’s current rendering

context.
wglGetCurrentDC

Obtains a handle to the device context associated

with a thread’s current rendering context.
wglDeleteContext

Deletes a rendering context.

v L

Font and Text Functions

Overlay, Underlay & Main Plane (1)

wglUseFontBitmaps
Creates a set of character bitmap display lists.
Characters come from a specified device context’s
current font. Characters are specified as a
consecutive run within the font’s glyph set.
wglUseFontOutlines
Creates a set of display lists, based on the glyphs of
the currently selected outline font of a device
context, for use with the current rendering context.
The display lists are used to draw 3-D characters of
TrueType fonts.

wglCopyContext
Copies selected groups of rendering states from one OpenGL rendering context to

another.

wglCreateLayerContext
Creates a new OpenGL rendering context for drawing to a specified layer plane on

adevice context.

wglDescribeLayerPlane

Obtains information about the layer planes of a given pixel format.

wglGetLayerPaletteEntries
Retrieves the palette entries from a given color-index layer plane for a specified

device context.

Overlay, Underlay & Main Plane (2)

Miscellaneous Functions

wglRealizeLayerPalette
Maps palette entries from a given color-index layer plane into the physical

palette or initializes the palette of an RGBA layer plane.

wglSetLayerPaletteEntries
Sets the palette entries in a given color-index layer plane for a specified device

context.

wglSwapLayerBuffers
Swaps the front and back buffers in the overlay, underlay, and main planes of the

window referenced by a specified device context.

wglSharelLists
Enables a rendering context to share the display-list
space of another rendering context.

wglGetProcAddress
Returns the address of an OpenGL extension
function for use with the current OpenGL rendering
context.

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

Comparison of OpenGL Window Sytem
Interfaces

Contents

. Introduction
. Basic functionality
. Data types and objects
. Interface functions
O 4.1 Testing for OpenGL availability
O 4.2 Getting OpenGL version information
O 4.3 Selection of a visul or pixel format
O 4.4 Query visual/pixel format attributes
O 4.5 Creating a rendering context
O 4.6 Destroying a rendering context
O 4.7 Context binding
O 4.8 Copying context state
O 4.9 Testing for direct rendering
O 4.10 Swapping color buffers
O 4.11 Off-screen rendering
O 4.12 Bitmap fonts
O 4.13 Querying the current context and drawable
O 4.14 Synchronization
O 4.15 Miscellaneous
® 5. To learn more

o000
A OWN P

1. Introduction

Since OpenGL is designed to be independent of any window system, integration of OpenGL with a
window system is accomplished with a special interface. This interface is dependent on the window
system and is typically designed and implemented by the window system vendor.

Though each OpenGL window system interface is different they are all similar in functionality. This
document compares the functionality of several interfaces. Programmers writing applications for more

75

than one window systems should find this information especially relevant.
The following interfaces are compared:

® AGL for the Apple Macintosh

® GLX for the X Window System

® PGL for OS/2’s Presentation Manager
® WGL for Microsoft Windows 95 and NT

2. Basic Functionality

There are five basic steps to OpenGL and window system integration in an application:

1. Test for OpenGL capability - be sure that the system supports OpenGL rendering.

2. Select a visual/pixel type based on criteria such as RGB vs color index, single vs double
buffering, depth buffering, stenciling, etc select a visual/pixel type.

3. Create an OpenGL rendering context create a rendering context for the visual/pixel type
selected.

4. Create a drawable- create a window or color buffer using the window system’s API. One of the
parameters to the window creation function will probably be the visual/pixel type.

5. Bind the rendering context to the drawable- binding a context to a drawable activates the
context and directs rendering to that drawable.

Note that the rendering context and drawable must usually use the same visual/pixel type. In other
words, if you need two rendering windows which don’t share the same visual/pixel type you’ll need to
create a separate context for each window.

3. Data types and objects

There are several data types or handles which are used for similar purposes in all the OpenGL interfaces.

Display/Session handle
The notion of a display or drawing/device context.

Datatypes
O AGL: none
O GLX: Display
O PGL:HAB
O WGL: HDC

Visual/Pixel format

The way in which pixel data in a frame buffer is displayed is controlled by a visual or pixel format.
OpenGL typically augments a window system’s visuals/pixel formats with information about

76

double buffering, depth buffers, stencil buffers, etc.

Datatypes
O AGL: AGLPixelFmtID
O GLX: Xvisuallnfo
O PGL:PVISUALCONFIG
O WGL.: an integer pixel format number or a PIXELFORMATDESCRIPTOR structure

OpenGL rendering context
OpenGL is designed as a state machine. OpenGL state is encapsulated in a context. Multiple
contexts may be created but only one may be active at a time. If an application needs to render into
several windows, one context may be used for both windows if the windows use the same visual or
pixel format. If different pixel formats are used then different OpenGL contexts may be required.

Datatypes
O AGL: AGLContext
O GLX: GLXContext
O PGL:HGC
O WGL: HGLRC

Window/drawable
The destination of OpenGL rendering is typically a window on your terminal screen. The OpenGL
interface may also allow rendering into an off-screen color buffer. The handle for an off-screen
buffer is typically compatible with a window handle.

An OpenGL rendering context is activated by binding a context to a window or drawable.
Datatypes

O AGL: AGLDrawable

O GLX: GLXDrawable (a Window or GLXPixmap)

O PGL:HWND
O WGL: HDC

4. Interface Functions
This section presents the major function of the interfaces catagorized according to their purpose.
4.1 Testing for OpenGL availability

At runtime it may be necessary to determine if a display or terminal is capable of OpenGL rendering.

GLX
Bool giXQueryExtension(Display *dpy, int *errorBase, int *eventBase)

PGL
LONG pglQueryCapability(HAB hab)

77

4.2 Getting OpenGL version information

Since OpenGL is an evolving standard it's sometimes useful to be able to determine which version of
OpenGL render is being used.

AGL
GLboolean aglQueryVersion(int *major, int *minor)

GLX
Bool giXQueryVersion(Display *dpy, int *major, int *minor)

PGL
void pglQueryVersion(HAB hab, int *major, int *minor)

4.3 Selection of a visual or pixel format

A visual or pixel format describes the frame buffer and ancillary buffers. Attributes include RGB vs
color index, bits per color component, single vs double buffered, size of depth buffer, size of stencil
buffer, etc.

The application programmer should know what frame buffer attributes are needed and select a visual or
pixel format accordingly.

These functions return a visual or pixel format based on a attribute list provided by the programmer.

AGL
AGLPixelFmtID aglChoosePixelFmt(GDHandle *dev, int ndev, int *attribs)

GLX
XVisuallnfo* gIXChooseVisual(Display *dpy, int screen, int *attribList)

PGL
PVISUALCONFIG pglChooseConfig(HAB hab, int *attriblist)

WGL
int ChoosePixelFormat(HDC hdc, PIXELFORMATDESCRIPTOR *pfd)

4.4 Query visual/pixel format attributes

As an alternative to asking the window system for a visual/pixel format which matches an attribute list,
one may query the attributes of a particular visual or pixel format. This allows the programmer complete
control over visual/pixel format selection. These functions return the value of an attribute for a given
visual/pixel format.

AGL
GLboolean aglGetConfig(AGLPixelFmtID pix, int attrib, int *value)

GLX
int gIXGetConfig(Display *dpy, XVisuallnfo *vis, int attrib, int *value)

78

PGL
PVISUALCONFIG *pglQueryConfigs(HAB hab)

WGL
int DescribePixelFormat(HDC hdc, int pixelformat, UINT bytes,
LPPIXELFORMATDESCRIPTOR pfd)

4.5 Creating a rendering context

After a visual/pixel format has been selected an OpenGL rendering context may be allocated. Rendering
contexts may share display lists and texture maps if the contexts are compatible. Contexts are considerec
to be compatible if they share the same address space and pixel format and are both direct or indirect.

Direct contexts provide a means of utilizing local graphics hardware in the most efficient means
possible. Indirect contexts are used in other situations such as when rendering remotely.

In the case of GLX, a direct context may be used when using local graphics hardware; the GLX protocol
encoding/decoding is bypassed. An indirect context allows remote display to X servers which support
the GLX extension.

Some OpenGL interfaces make no distinction between direct and indirect rendering.

AGL
AGLContext aglCreateContext(AGLPixelFmtID pix, AGLContext shareList)

GLX
GLXContext gIXCreateContext(Display *dpy, XVisuallnfo *vis, GLXContext
shareList, Bool direct)

PGL
HGC pglCreateContext(HAB hab, PVISUALCONFIG pVisualConfig, HGC ShareList, BOOL
IsDirect)

WGL
HGLRC wglCreateContext(HDC hdc)

BOOL wglShareLists(HGLRC hglrcl, HGLRC hglrc2)
4.6 Destroying a rendering context
When finished with a context it may be destroyed.

AGL
GLboolean aglDestroyContext(AGLContext ctx)

GLX
void glXDestroyContext(Display *dpy, GLXContext ctx)

PGL
BOOL pglDestroyContext(HAB hab, HGC hgc)

79

WGL
wglDeleteContext(HRC hrc)

4.7 Context binding

When a rendering context is bound to a window it becomesutient contextOpenGL rendering may
then begin. Note that it is not until this point that one may test for OpenGL extensions.

AGL
GLboolean agIMakeCurrent(AGLDrawable drawable, AGLContext ctx)

GLX
Bool gIXMakeCurrent(Display *dpy, GLXDrawable drawable, GLXContext ctx)

PGL
BOOL pglMakeCurrent(HAB hab, HGC hgc, HWND hwnd)

WGL
wglMakeCurrent(HDC hdc, HGLRC hrc)

4.8 Copying context state

These functions copy a subset of a context state from one context to another. The mask parameter takes
the same values as glPushAttrib().

AGL
GLboolean aglCopyContext(AGLContext src, AGLContext dst, GLuint mask)

GLX
void gIXCopyContext(Display *dpy, GLXContext src, GLXContext dst, GLuint mask
)

PGL
BOOL pglCopyContext(HAB hab, HGC hgc_src, HGC hgc_dst, GLuint attrib_mask)

WGL
BOOL wglCopyContext(HGLRC hglrcSrc, hglrcDst, UINT mask)

4.9 Testing for direct rendering

These functions test if a rendering context is direct.

GLX
Bool gIXIsDirect(Display *dpy, GLXContext ctx)

PGL
LONG pglisindirect(HAB hab, HGC hgc)

4.10 Swapping color buffers

80

Theswap buffer®peration exchanges the front and back color buffers when double buffering is
enabled. The contents of the back buffer become undefined after the swap operation.

AGL
GLboolean aglSwapBuffers(AGLDrawable drawable)

GLX
void gIXSwapBuffers(Display *dpy, GLXDrawable drawable)

PGL
void pglSwapBuffers(HAB hab, HWND hwnd)

WGL
BOOL SwapBuffers(HDC hdc)

4.11 Off-screen rendering

These functions create an off-screen color buffer or pixmap. Be aware that rendering to an off-screen
color buffer may not be accelerated by your graphics hardware.

AGL
AGLPixmap aglCreateAGLPixmap(AGLPixelFmtID pix, GWorldPtr pixmap)

GLboolean aglDestroyAGLPixmap(AGLPixmap pix)

GLX
GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisuallnfo *vis, Pixmap pixmap)

void glIXDestroyGLXPixmap(Display *dpy, GLXPixmap pix);

4.12 Bitmap fonts

Fonts provided by the window system may be convertgitmap() format and stored in display
lists. Character strings may then be rendered gidtflLists() . These functions convert font glyphys
from the window system to a sequence of display lists.

AGL
GLboolean aglUseFont(int familyID, int size, int first, int count, int
listBase)

GLX
void giXUseXFont(Font font, int first, int count, int listBase)

PGL
BOOL pglUseFont(HAB hab, HPS hps, FATTRS fatAttrs, LONG llicid, int first, int
count, int listbase)

WGL
BOOL wglUseFontBitmaps(HDC hdc, DWORD first, DWORD count, DWORD listBase)

BOOL wglUseFontOutlines(HDC hdc, DWORD first, DWORD count, DWORD listBase,
FLOAT deviation, FLOAT extrusion, int format, LPGLYPHMETRICSFLOAT Ipgmf)

81

4.13 Querying the current context and drawable

The ID of the current rendering context and current window/drawable may be queried with these
functions.

AGL
AGLContext aglGetCurrentContext(void)

AGLDrawable aglGetCurrentDrawable(void)

GLX
GLXContext gIXGetCurrentContext(void)

GLXDrawable gIXGetCurrentDrawable(void)

PGL
HGC pglGetCurrentContext(HAB hab)

HWND pglGetCurrentWindow(HAB hab)

WGL
HGLRC wglGetCurrentContext(void)

HDC wglGetCurrentDC(void)

int GetPixelFormat(HDC hdc)

4.14 Synchronization

Since both OpenGL and the native window system renderer may both draw into the same window
synchronization is needed to be sure operations are performed in the correct order.

GLX
void gIXWaitGL(void)

void gIXWaitX(void)

PGL
HPS pglWaitGL(HAB hab)

void pglWaitPM(HAB hab)

4.15 Miscellaneous

Each OpenGL window system interface has some unique functions. Some of them are described here.

AGL
GLenum aglGetError(void)

Returns the current error setting or GL_OK if none.

int aglListPixelFmts(GDHandle dev, AGLPixelFmtID **fmts)

82

Returns a list of all pixel formats offered for the given device.
GLboolean aglSetOptions(int options)
Sets AGL-specific options.

GLboolean aglUpdateCurrent(void)

Causes the current context’s state to be updated from the window system. This should be called
whenever the window is moved, resized, or the screen resolution or depth is changed.

GLX: (version 1.1)
const char *glXQueryExtensionsString(Display *dpy, int screen)

Returns a list of space separated GLX extensions on the specified display.
const char *gIXGetClientString(Display *dpy, int name)

Returns a string describing an attribute of the OpenGL client library.

const char *gIXQueryServerString(Display *dpy, int screen, int name)

Returns a string describing an attribute of the OpenGL display server.

PGL
INT pglSelectColorindexPalette(HAB hab, HPAL hpal, HGC hgc)

This function specifies the color index palette for OpenGL to use when drawing in RGB mode.

BOOL pglGrabFrontBitmap(HAB hab, HPS phps, HBITMAP phbitmap)

BOOL pglReleaseFrontBitmap(HAB hab)
These functions are used to gain exclusive access to a window.

WGL
wglCreateLayerContext, wglDescribeLayerPlane, wglGetLayerPaletteEntries,

wglSetLayerPaletteEntries, andwglSwapLayerBuffers

Provide support for overlay and underlay color buffers.

5. To learn more

Introduction to OpenGL and X, Part 1: An Introduction
(http://www.sgi.com/Technology/openGL/mjk.intro/intro.html) by Mark Kilgard of SGI describes how
to get started with OpenGL and the X Window System.

83

The Unix man pages for GLX and the GLX specification documents describe the GLX functions in
detail.

agl.txt describes the AGL interface. This information provided courtesy of Template Graphics Software.

OpenGL for OS/2 including documentation can be obtained from
ftp://ftp.austin.ibm.com/pub/developer/os2/OpenGL/.

Using OpenGL in Visual C++ Version 4.x (http://www.iftech.com/oltc/opengl/opengl0.stm) by N. Alan
Oursland of Interface Technologies, Inc. describes how to get started using OpenGL with Microsoft’s
Visual C++.

OpenGL I: Quick Start (http://www.microsoft.com/msdn/library/technote/gl1.htm) by Dale Rogerson of
Microsoft is the first in a series of articles explaining how to use OpenGL with Windows 95 and
Windows Nit.

Microsoft's Developer Studio / Visual C++ product includes online documentation of the WGL
interface.

Last edited on April 13, 1997 by Brian Paul.

84

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Application Design and Organization
Notes

Contents

® 1. Introduction

® 2. Organization

® 3. An example: Vis5D

® 4. Graphics library functionality

® 5. Multi-window system applications

1. Introduction

This document presents information which may help you in designing your OpenGL application and
organizing its source code such that it may be portable to different window systems or graphics libraries.

Why would we want to do this? One, we may want our application to work on both X and Windows
platforms. Two, we may want to support both OpenGL and IRIS GL (or PEX) during a transition period.

2. Organization

The basics:

® isolate window system-dependent code (including WGL and GLX code) in separate modules.
® isolate OpenGL code, and other graphics library code, in separate modules

The practicality of this depends on the nature and size of the application. One one hand, modern window
system toolkits are quite similar in that GUIs are designed with the callback/event loop paradigm:

® Create user interface

85

® Setup callback functions
® Enter event loop

Furthermore, rendering can be encapsulated in wrapper functions which present a higher-level API
which is independent of the graphics library.

On the other hand, a complex application may be so tightly integrated with a user interface toolkit or
graphics library that it's impractical to support alternative interfaces or libraries.

3. An example: Vis5D

Vis5D is a system for interactive visualization of three dimensional atmospheric data. It can use
OpenGL, IRIS GL, or PEX for 3-D rendering. An Xlib-based GUI toolkit provides the only user
interface at this time but it's quite feasible to write a new one.

OpenGL, IRIS GL and PEX code is isolated into separate source files:

® graphics.ogl.c
® graphics.gl.c
® graphics.pex.c

Each file performs the rendering functions defined by a single header file, graphics.h, defining functions
such as:

® create_3d_window()

® clear_3d_window()

® swap_3d_window()

® draw_isosurface()

® draw_trajectory()

® draw_contour_slice()

which graphics.ogl.c, graphics.gl.c and grahics.pex.c each implements in its own way. The Makefile
determines which source file is compiled.

The core of VisbDs functionality is isolated from the user interface by an internal API. Everything
"below" the API is GUI independent. Everything "above" the API is considered user interface code.

While Vis5D’s user interface code is substantial, it could be replaced by an alternative toolkit with
minimal impact on the rest of the system.

4. Graphics library functionality

When supporting multiple graphics libraries, a difficult problem to deal with is subsetting. While
OpenGL mandates that all its features be implemented other graphics libraries aren’t as stringently

86

defined. PEX implementations, for example, vary greatly in terms of what features are implemented.
The simplest solution to this problem is to only use functionality which is common to all libraries. This
can actually be quite practical in simple applications which don’t require elaborate renderering
techniques.

The other solution is to poll the graphics system to determine its capabilities and work around those it

doesn’t support. VisbD, for example, offers volume rendering only on systems with alpha blending
capability.

5. Multi-window system applications

Suppose your OpenGL application must work on several window system such as X and Microsoft
Windows. How can this be accomplished?

5.1 Cross-platform GUIs
Consider using a cross-platform GUI such as GLUT or Tcl/Tk which is available for several window

systems. GLUT is appropriate for demos or small applications. Tcl/Tk is appropriate for any size demo
or application. Both are free.

5.2 Commercial porting tools
There are commercial solutions which provide Motif emulation for Windows:
® NuTCRACKER from DataFocus, Inc. (http://www.datafocus.com/)
® OpenNT from Softway Systems, Inc. (http://www.softway.com/OpenNT/)
® Exceed from Hummingbird Communications, Ltd. (http://www.hummingbird.com/)

Commercial solutions for porting Windows applications to Unix/X/Motif include:

® \Wind/U from Bristol Technology, Inc. (http://www.bristol.com/)
® MainWin Studio from Mainsoft Corporation (http://www.mainsoft.com/)

5.3 Native support for multiple GUIs

Larger applications which use native window system toolkits will have to be partitioned into modules
which isolate window and operating system-specific code.

If one is going to use multiple window systems (for example X/Motif and Win32) it's best to first survey
the GUIs to determine what they have in common or what is unique to each. It may be wise then to
avoid using GUI features which can’t be implemented in all window systems.

The OpenGL window system interface (WGL, GLX) calls should be considered window system code
and not be put in the OpenGL modules. This includes the swapbuffers operation.

87

Last edited on April 13, 1997 by Brian Paul.

88

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

Using OpenGL Extensions

Contents

. Introduction

. Naming conventions

. Compile-time extension testing
. Run-time extension testing

. An extension sampler

. OpenGL 1.1

. GLU extensions and versions

. GLX extensions and versions

. Fall-back scenarios

10. Using Extensions with Microsoft OpenGL or SGI Cosmo OpenGL
11. References

0000000000
OCO~NOOITDA,WNPEF

1. Introduction

The designers of OpenGL anticipated the need to extend OpenGL in the future. Thus they clearly
defined how extensions are to be implemented and used. To be sure your application is portable it is
very important that one uses extensions correctly.
There are three tenets to using extensions:

1. Compile-time extension testing

2. Run-time extension testing

3. Fall-back scenarios

These are discussed below. Furthermore, one may also have to deal with different versions of OpenGL
and the GLU and GLX libraries.

We begin with a discussing of extension naming conventions.

89

2. Naming conventions

OpenGL extension are named according to the convention:

GL_type name

Wheretypeis EXT or a vendor-specific identifier such &sl1 or IBM.

TheEXT indentifier generally indicates that an extension has been adopted by at least two vendors.
Vendors may also extend thgeconvention to indicate the class of the extension. Silicon Graphics, for
example, ussaGis to indicate an extension may only be available on particular systenssantb
indicate that the extension is experimental.

nameis a string of lowercase characters sucpoggon_offset

Example extension names:

GL_EXT_polygon_offset

GL_SGI_color_table

GL_SGIS_detail_texture

[)
[)
[)
® GL_MESA_window_pos

If an extension defines any ne&tenumvalues they will be suffixed with the extension type. For
example, thesL_EXT_blend_minmax extension adds the followir@Lenumvalues:

® GL_FUNC_ADDEXT

® GL_MIN_EXT

® GL_MAXEXT

® GL_BLEND_EQUATIONEXT

If an extension defines any new API functions they will be suffixed with the extension type as well. For
example, thesL_EXT_polygon_offset extension adds the function:

void glPolygonOffset EXT(GLfloat factor, GLfloat bias)

3. Compile-time extension testing

If an OpenGL extension is supported at compile-time the hgisti$ile will define a preprocessor
symbol named for that extension. For examplegttefile will have

#define GL_EXT _texture3D 1

if the GL_EXT _texture3D extension is supported.

90

Any references to constants or functions defined by the extension must be surrounded by
#ifdef/#endif . For example:

#ifdef GL_EXT _texture3D
glTeximage3DEXT(GL_TEXTURE_3D_EXT, 0, format, w, h, d, border,
format, type, pixels);
#endif

Failure to test for extensions at compile time can result in compilation and linking errors such as
Undefined symbol Or Undefined function

It is critical to properly test for extensions at compile time if you want your application to be
recompilable on different systems.

4. Run-time extension testing

We must also test for OpenGL extensions at runtime. There are two reasons for this:

1. An OpenGL application may be dynamically linked to the OpenGL library. When the application
is moved to another system with a different OpenGL library there’s no guarantee that this library
will implement the same extensions as the first library.

2. OpenGL on the X Window System supports remote display and there’s no guarantee that any X
server’'s OpenGL renderer will support a given extension.

To test for OpenGL extensions at runtime we mustgtatString(GL_EXTENSIONS) . This function
returns a list of extensions which are supported by the OpenGL renderer. This list can be searched to
determine if a specific extension is supported.

Be awarethatglGetString(GL_EXTENSIONS) must be calledfter we’'ve established an active

OpenGL rendering context. For example, we mustgbellakeCurrent ~ or wgiMakeCurrent before
callinggiGetString . The reason is that OpenGL extensions are dependant on the OpenGL renderer and
the renderer isn’t bound until MakeCurrent is called.

Be carefulwhen searching the extensions litle C library functiorstrstr is not sufficient because it
may match a substring of the extension name you're testing for. For example, if you're testing for the
GL_EXT _texture extension angdiGetString(GL_EXTENSIONS) returns'GL_EXT _texture3D" then

simply usingstrstr ~ will incorrectly tell you thatGL_EXT_texture is supported.

The following function can be used for reliable runtime extension testing:

GLboolean CheckExtension(char *extName)

{
/*
** Search for extName in the extensions string. Use of strstr()
** js not sufficient because extension names can be prefixes of
** other extension names. Could use strtok() but the constant
** string returned by glGetString can be in read-only memory.
*/
char *p = (char *) glGetString(GL_EXTENSIONS);

91

char *end;
int extNamelLen,;

extNamelen = strlen(extName);
end = p + strlen(p);

while (p < end) {
int n = strespn(p, " ");
if ((extNameLen == n) && (strncmp(extName, p, n) == 0)) {
return GL_TRUE;
}
p+=(n+1);

return GL_FALSE;
}

5. An extension sampler

This section lists some OpenGL extensions with short descriptions. Many extensions are implemented in
groups. For example, the blending extensions are interdependent and usually implemented together. See
your OS/OpenGL release notes and man pages for detailed descriptions.

Core extensions
Many of these extensions to OpenGL 1.0 have been incorporated into OpenGL 1.1.
® GL_EXT abgr - adds the GL_ABGR_EXT pixel format to glDrawPixels, glReadPixels, and

glTeximage[12]D. A performance improvement over GL_RGBA on systems designed for IRIS
GL.

® GL_EXT_blend_color - adds blending operations with constant colors

® GL_EXT blend_logic_op - extend#iogicop functionality to RGB blending

® GL_EXT_blend_minmax - adds min/max operators to RGB blending

® GL_EXT blend_equation - adds subtractive blending equations

® GL_EXT_convolution - adds 1 and 2 dimensional image convolution

® GL_EXT_copy_texture - allows one to load texture images directly from the frame buffer

® GL_EXT_histogram - counts occurances of specific color components during rasterization

® GL_EXT_ packed_pixels - adds packed pixel formats for glDrawPixels, gIReadPixels,
glTexImage, etc.

® GL_EXT_ polygon_offset - adds tlyPolygonOffsetEXT function which displaces the Z value
of polygon fragments to facilitate drawing cleanly outlined polygons

® GL_EXT subtexture - allows subregions of texture images to be replaced

® GL_EXT texture - adds many packed texture format data types and the texture proxy mechanism

® GL_EXT texture3D - three dimensional texture image support, useful for volume rendering

® GL_EXT_texture_object - named texture objects; improves performance when multiple textures
are needed.

® GL_EXT_ vertex_array - specifies geometric primitives with arrays of coordinate data as an

alternative to using many glVertex, glColor, gINormal, or glTexCoord calls.

SGIl-specific core extensions

92

GL_SGI_color_matrix - adds another 4x4 transformation matrix which effects RGBA colors
GL_SGI_color_table - extends the color lookup table functionality of OpenGL

GL_SGIX_interlace - causes glDrawPixels and glTexImage to skip rows of pixels (for working
with video data (fields vs frames))

GL_SGIS_sharpen_texture - adds a texture magnification filter which uses extrapolation to
improve sharpness of magnified textures

GL_SGIS_texture_border_clamp - adds a new texture coordinate clamping function which doesn’t
average the border and edge colors when interpolating samples

GL_SGIS_texture_color_table - adds a color lookup table to texturing

GL_SGIS texture_edge_clamp - adds a new texture coordinate clamping function which prohibits
sampling of the texture border color

GL_SGIS_texture_filter4 - adds support for user-defined 4x4 texture sampling functions

GLX Extensions (see section 8)

GLX_EXT_import_context - allows multiple X clients to share an indirect rendering context
GLX_EXT visual_info - extends RGB mode rendering to PseudoColor, StaticColor, GrayScale,
and StaticGray visuals. Also, adds support for transparent overlay pixels.

GLX_EXT visual_rating - classifies GLX visuals according to performance and visual quality

SGl-specific GLX extensions

GLX_SGI_make_current_read - independently set pixel draw and read drawables so, for example,
glCopyPixels can copy from one window into another

GLX_SGIS_multisample - an antialiasing mechanism for high-end hardware
GLX_SGI_swap_control - adds a function to control the rate of giXSwapBuffers and a function

for synchronized swapping of multiple displays

GLX_SGIX_video_source - allows sourcing of pixel data from a video stream
GLX_SGI_video_sync - provides a way to synchronize with the video frame rate

Microsoft OpenGL Extensions

GL_WIN_swap_hint - specify a sub-window to swap, rather than the whole window. This is a
performance improvement. For more information see
http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/ogl/gl/src/glfuncO1_1.htm

6. OpenGL 1.1

Many extensions designed for OpenGL 1.0 have been incorporated into OpenGL 1.1 as standard
features.

A program written for OpenGL 1.0 which uses no extensions will work with OpenGL 1.1 unchanged.
However, a program written for OpenGL 1.0 with extensions may require some modifications to work
with OpenGL 1.1.

93

If you want your program to compile and execute cleanly with either OpenGL 1.0 or OpenGL 1.1 you
will need to observe the following guidelines.

Compile time

To detect whether a particular feature is available at compile time you will need to use the C
preprocessor to test for either an OpenGL 1.0 extension hame or test for the OpenGL 1.1 version
symbol:GL_VERSION_1 1

For example:

#if defined(GL_EXT_texture_object) || defined(GL_VERSION_1_1)
your code
#endif

Sometime in the future you may need

#if defined(GL_EXT _texture_object) || defined(GL_VERSION_1_1) || defined(GL_VERSION_1_2)
your code
#endif

Runtime

At runtime you must check if the renderer supports OpenGL 1.1 or the 1.0 extension:

[* After calling MakeCurrent()! */
char *version = (char*) glGetString(GL_VERSION);
GLboolean HaveTexObjExtension;

if (strncmp(version,"1.1",3)==0
|| CheckExtension("GL_EXT _texture_object")) {
HaveTexObjExtension = GL_TRUE;

else {
HaveTexObjExtension = GL_FALSE;
}

Example
Implementing these checks correctly can be a bit complicated. Here’s an approach you may find useful:
Step 1

Declare a boolean variable for each extension or OpenGL 1.1 feature you would like to use:

GLboolean HaveTextureObjects = GL_FALSE;
GLboolean HavePolygonOffset = GL_FALSE;

Step 2

94

Write a function which tests for each feature at runtime. Call it after your first ogdkécurrent

void check_gl_features(void)

char *version = (char*) glGetString(GL_VERSION);
char *exten = (char*) glGetString(GL_EXTENSIONS);

if (strncmp(version,"1.1",3)==0) {
HaveTextureObjects = GL_TRUE;
HavePolygonOffset = GL_TRUE;

else {
HaveTextureObjects = CheckExtension("GL_EXT_texture_object”);
HavePolygonOffset = CheckExtension("GL_EXT_polygon_offset");

}
Step 3

Write wrapper functions to hide some of the ugliness of dealing with OpenGL 1.1 or 1.0 extensions. For
example:

/* call to allocate a set of texture objects */
void myGenTextures(GLsizei n, GLuint *textures)

if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
glGenTextures(n, textures);
#elif defined(GL_EXT _texture_object)
glGenTexturesEXT(n, textures);
#endif

else {

[* fallback code: use display lists */
GLuint first;
first = glGenLists(n);
if (first>0) {

GLuint i;

for (i=0; i < n; i++) {

textures]i] = first+i;

/* call to start defining a texture object */
void myBeginTexture(GLenum target, GLuint texture)

if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
glBindTexture(target, texture);
#elif defined(GL_EXT _texture_object)
glBindTextureEXT(texture);
#endif

else {

[* fallback code: use display lists */
glNewList(texture, GL_COMPILE);

95

/* call to finish defining a texture object */
void myEndTexture(GLenum target)

if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
glBindTexture(target, 0);
#elif defined(GL_EXT _texture_object)
glBindTextureEXT(texture, 0);
#endif

else {
[* fallback code: use display lists */
glEndList();

/* call to use a texture object */
void myBindTexture(GLenum target, GLuint texture)

if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
glBindTexture(target, texture);
#elif defined(GL_EXT_texture_object)
glBindTextureEXT(target, texture);
#endif

else {
[* fallback code: use display lists */
glCallList(texture);

/* turn polygon offset on/off */
void myPolygonOffset(GLboolean onoff)

if (HavePolygonOffset) {
#if defined(GL_VERSION_1_1)
if (onoff) {
glPolygonOffset(1.0f, 1.0f); /* tune this */
glEnable(GL_POLYGON_OFFSET_FILL);

else {
glDisable(GL_POLYGON_OFFSET_FILL);

#elif defined(GL_EXT _texture_object)
if (onoff) {
glPolygonOffsetEXT(1.0f, 0.0001f); /* tune this */
glEnable(GL_POLYGON_OFFSET_EXT);

else {
glDisable(GL_POLYGON_OFFSET_EXT);

}
#endif

else {

96

/* fallback code: no offset */

}
}

When designing wrapper functions it's usually best to look at the big picture and design simple,
high-level wrappers rather than try to make wrappers which directly corresponds to individual OpenGL
functions.

A collection of wrappers like these may be put in a separate source file and reused in many applications.

7. GLU extensions and versions

There have been several versions of the GLU (GL Utility) library and the library may have extensions.
Again, for safety, the GLU version and extensions should be tested for at compile-time and run-time if
you need their specific features. At this time, there are no known GLU extensions.

Compile-time testing

If a GLU extension is available at runtime tfia.hfile will define a preprocessor symbol with the
prefix GLU_EXT. As with OpenGL extensions, there shouldtaef/#endif tests surrounding any
references to functions or symbols unique to the extension.

Run-time testing

GLU version 1.0 had no function to call at run-time to query the GLU version or extensions list. GLU
version 1.1 added thguGetString function which takes two possible valueslu_EXTENSIONSOr
GLU_VERSION

Therefore, if you want to get a list of GLU extensions you’ll need to use something like this:

char *extensions;

#ifdef GLU_VERSION_ 1 1

extensions = (char *) gluGetString(GLU_EXTENSIONS);
#else

extensions = ",

#endif

Be careful of accidently matching substrings while searching the string.

GLU versions

There have been several versions of the GLU library. As shown above, you can test for the GLU version
at compile-time by checking for preprocessor symbolsdike VERSION_1_1andGLU_VERSION_1_2

At run-time you can determine the GLU version by calilugetString(GLU_VERSION)

Version 1.1 of GLU only added thgGetString function.

97

Version 1.2 of GLU introduced a new polygon tessellator. The new tessellator functions all begin with
the prefixgluTess . For more information about the changes in the GLU tesselator from version 1.0 to
1.1 see http://www.digital.com:80/pub/doc/opengl/opengl_new_glu.html

Note that if thesLU_VERSION_1_2symbol is defined then thi&@.U_VERSION_1_1isymbol is also defined.
One can expect this trend of backward compatibility to continue.

8. GLX extensions

The GLX interface offers extensions in a manner very similar to core OpenGL. Again, extensions must
be tested for both at compile-time and run-time. If a GLX extension is not available there should be a
fall-back strategy.

Compile-time testing
If a GLX extension is available at runtime ti&.hfile will define a corresponding preprocessor

symbol. For example, if theLX_EXT _import_context ~ extension is available, thefx.h (or
glxtokens.hwill contain

#define GLX_EXT_import_context 1

Run-time testing

After we've established a connection to an X server we can determine which GLX extensions are
available by callingxQueryExtensionsString(dpy, screen) . This function returns a list of

supported GLX extensions separated by white space. Again, we have to be careful when searching the
extensions list. A function similar theckExtension should be used.

GLX version testing

There have been several versions of the GLX interface. Version 1.0 was the first version. Version 1.1
added theIxQueryExtensionsString, giXQueryServerString andglXGetClientString

functions. Version 1.2 may include several of the 1.0 and 1.1 GLX extension features.

Testing for the GLX version at runtime involves checking for a preprocessor symbol such as
GLX_VERSION_1_10r GLX_VERSION_1_2

The GLX version can be determined at runtime by callirQueryVersion

9. Fall-back scenarios

Your program should be prepared for the likely situation in which a desired extension is not available.

98

Depending on the nature of the extension you may elect to limit functionality, fall-back to an equivalent
but slower implementation, or to simply abort.

Examples:

o |f the GL_SGIS_multisample extension is not present then antialiasing may simply be disabled.

® |f the GL_EXT vertex_array extension is not available then you should fall-back to the regular
glVertex/glColor/gINormal functions at the expense of performance.

® [f your application is a 3-D volume rendering program based on the 3-D texture map extension
you may have no choice but to abort if hie EXT_texture3D extension is not available.

Aborting when an extension isn’t available is stronly discouraged. In most cases users will prefer
reduced performance/functionality over complete failure. At the very least, the user should be informed
why an OpenGL application can’t operate if an extension isn’t present.

10. Using Extensions with Microsoft OpenGL or SGI Cosmo
OpenGL

Unfortunately, there is a complication in using OpenGL extensions with Microsoft OpenGL or SGI
Cosmo OpenGL.

Instead of simply calling extension functions directly one mustvgi&®tProcAddress to get a pointer
to extension functions.

For example, instead of this:

#if defined(GL_WIN_swap_hint)
if (CheckExtension("GL_WIN_swap_hint")) {
glAddSwapHintRectWIN(x, y, width, height);

#endif
One must use:

#if defined(WIN32) && defined(GL_WIN_swap_hint)
if (CheckExtension("GL_WIN_swap_hint")) {
PFNGLADDSWAPHINTRECTWINPROC glAddSwapHintRectWIN;
glAddSwapHintRectWIN = (PFNGLADDSWAPHINTRECTWINPROC)
wglGetProcAddress("glAddSwapHintRectWIN");
(*glAddSwapHintRectWIN)(x, y, width, height);

b
#endif

By the way, thejlAddSwapHintRectWIN function must be called before eveswyapBuffers call. The
rectangle list is lost afteswapBuffers

99

11. References

Other sources of information about OpenGL extensions can be found at:

® All about OpenGL Extensions from SGl.
(http://www.sgi.com/Technology/openGL/extensions.html)

® Programming OpenGL with the X Window SysksnMark Kilgard.

® wglGetProcAddress documentation from
(http://mwww.microsoft.com/msdn/sdk/platforms/doc/sdk/ogl/winext/src/ntopnglr_14.htm)

® Using Cosmo OpenGL Extensions
(http://www.sgi.com/Products/cosmo/opengl/beta2/OpenGLonWin-17.html)

Last edited on April 19, 1997 by Brian Paul.

100

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

GLX Portability Notes

Contents

. Introduction

. GLX fundamentals
. GLX visuals

. Colormaps

. Double buffering

. GLX Pixmaps

. Mesa-specific

000000
~NOoO O~ WNE

1. Introduction

GLX is the OpenGL interface to the X Window System. GLX defines both an APl and a wire protocol
which allows remote display of OpenGL applications on GLX-capable X servers.

Many OpenGL portability problems can be traced to GLX programming errors. The purpose of this
document is to help the GLX programmer avoid a number of common problems.

Information relevant to using Mesa is also included. Even if an OpenGL developer isn’t targetting Mesa

it's a good idea to be aware of Mesa’s idiosyncrasies since it will expand the range of systems on which
the application can be used.

2. GLX fundamentals

After we’'ve established a connection to an X server (perhapxaignDisplay) we have to check that
the X server actually supports OpenGL and the GLX X server extension.

TheglXxQueryExtension(dpy, errorBase, eventBase) function serves this purpose. The returned
errorBase andeventBase Vvalues are usually ignored.dikQueryExtension returns false then the

101

application should inform the user that the display does not support OpenGL.

Next, we’ll proceed with GLX setup which includes selecting a GLX visual, creating a GLX context,
selecting a colormap and creating a window.

3. GLX visuals

A GLX visual is basically an X visual augmented with ancillary (depth, stencil, accumulation, etc)
buffer information.

A visual is usually chosen witdixChoosevisual . Per the OpenGL GLX specification, if an RGB
mode is requestediXChooseVisual ~ will return either arrueColor or DirectColor visual. Otherwise,
aPseudoColor Or StaticColor visual will be returned for color index mode.

Mesa, however, may potentially return any X visual type for RGB mode. This is because some X
displays on which Mesa may be used do not mawgColor or DirectColor Vvisuals. Mese prefers
visual types in the ord@rueColor , DirectColor , PseudoColor , StaticColor , GrayScale , and
StaticGray ~ and visuals depths from deepest to shallowest. There is one exceptiopsédaiColor

is preferred over 8-bitrueColor . This is a convention many people prefer for low-end displays which
use an 8-bipseudoColor visual for the default and only have one hardware colormap.

Similarly, Mesa may return RseudoColor , StaticColor , GrayScale Or StaticGray visual if color
index mode is requested.

Mesa violates the GLX specification but allows rendering on more types of displays than OpenGL
would.

Dealing with Mesa’s expanded offering of visuals is mostly just a matter of handling colormaps
correctly.

A footnote-
I've lost count of how many people have reported that depth buffering doesn’t work on system XYZ or
doesn’t work with Mesa. In all cases the problem has been that the programmer neglected to

specify/request a depth-buffered visual. Many OpenGL servers have depth buffers associated with all
GLX visuals so even if a depth buffer isn’t requested onegeajuckyand get a depth-buffered visual

anyway.

The point is: be careful that the attribute list passegktthooseVisual really specifies what you need.

4. Colormaps

The best way to handle X colormaps depends on whether one is rendering in RGB or color index mode.

102

4.1 RGB mode colormaps

When rendering in RGB mode the colormap is usually never altered (usiregt@olor visual may

be an exception). In general we want to share read-only colormaps among windows to minimize
colormap flashing. Colormap flashing (aka the technicolor effect) occurs when the demand for
colormaps exceeds the hardware’s capacity. As the mouse is moved from window to window different
colormaps may be installed; some windows will be forced to use the wrong colormap.

The following algorithm should pick a good RGB colormap in most cases:

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP atom */

#if defined(__vms)

#include <X11/StdCmap.h> /* for XmuLookupStandardColormap */
#else

#include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap */
#endif

#include <GL/glx.h>

#include <string.h>

/*
* Return an X colormap to use for OpenGL RGB-mode rendering.
* Input: dpy - the X display
* scrnum - the X screen number
* visinfo - the XVisuallnfo as returned by gIXChooseVisual()
* Return: an X Colormap or 0O if there’s a _serious__ error.
*/
Colormap
get_rgb_colormap(Display *dpy, int scrnum, XVisuallnfo *visinfo)
{
Atom hp_cr_maps;
Status status;
int numCmaps;
inti;
XStandardColormap *standardCmaps;
Window root = RootWindow(dpy,scrnum);
int using_mesa,;

/~k
* First check if visinfo's visual matches the default/root visual.
*
if (visinfo->visual==DefaultVisual(dpy,scrnum)) {
[* use the default/root colormap */
return DefaultColormap(dpy, scrnum);

}

/~k

* Check if we're using Mesa.

*

if (strstr(gIXQueryServerString(dpy, scrnum, GLX_VERSION), "Mesa")) {
using_mesa = 1;

else {
using_mesa = 0;

/*

103

* Next, if we're using Mesa and displaying on an HP with the "Color
* Recovery" feature and the visual is 8-bit TrueColor, search for a
* special colormap initialized for dithering. Mesa will know how to
* dither using this colormap.
*/
if (using_mesa) {
hp_cr_maps = XinternAtom(dpy, "_HP_RGB_SMOOTH_MAP_LIST", True);
if (hp_cr_maps
&& visinfo->visual->class==TrueColor
&& visinfo->depth==8) {
status = XGetRGBColormaps(dpy, root, &standardCmaps,
&numCmaps, hp_cr_maps);
if (status) {
for (i=0; i < numCmaps; i++) {
if (standardCmapsi].visualid==visinfo->visual->visualid) {
Colormap cmap = standardCmaps]i].colormap;
XFree(standardCmaps);
return cmap;

}
XFree(standardCmaps);
}
}
}

/*
* Next, try to find a standard X colormap.
*
#ifndef SOLARIS_BUG
status = XmuLookupStandardColormap(dpy, visinfo->screen,
visinfo->visualid,
visinfo->depth,
XA_RGB_DEFAULT_MAP,
* replace */ False,
[* retain */ True);
if (status == 1) {
status = XGetRGBColormaps(dpy, root, &standardCmaps,
&numCmaps, XA RGB_DEFAULT_MAP);
if (status == 1) {
for (i = 0; i < numCmaps; i++) {
if (standardCmaps]i].visualid == visinfo->visualid) {
Colormap cmap = standardCmaps]i].colormap;
XFree(standardCmaps);
return cmap;

}
XFree(standardCmaps);

L
#endif

/*

* |f we get here, give up and just allocate a new colormap.

*/

return XCreateColormap(dpy, root, visinfo->visual, AllocNone);

}

Basically, we use the default/root colormap if the visual matches the default/root visual. Otherwise we
look for a standard colormap. If that fails we must allocate a new, private colormap. If using Mesa on an

104

8-bit TrueColor HP display then we look for a special "Color Recovery" colormap which helps to
produce high-quality dithered images.

Caveat this algorithm may not work on Sun systems due to a bug ixnttieookupStandardColormap
function. By defining thesOLARIS_BUGsymbol the code in question can be omitted.

Finally, if one intends to render into several different windows with the same RGB context those
window should share the same colormap. This is required with Mesa and helps to reduce colormap
flashing with OpenGL.

4.2 Color index mode colormaps

When designing a color index mode application we must decide if we need a writable colormap and/or
need specific colors associated with specific pixel values. For lighting and fog effects to work in color
index mode one has to store specific colors in consecutive colormap entries. Therefore, a private,
writable colormap is required. It should be allocated/createdX@idateColormap(dpy, win,

visual, AllocAll)

Otherwise, if your GLX visual type and depth matches the default/root visual then you can probably use
the default/root colormap. To allocate a read/write colorcell from the colormaguseolorCells
To allocate read-only cells ugallocColor . In both cases, X will return to you the index of a colorcell.

If XAllocColor fails then you may have to search the colormap for a close match. The following
function will search a colormap for the closest match to your requested color:

#include <X11/Xlib.h>
#include <stdlib.h>

/* A replacement for XAllocColor.
* This function should never fail to allocate a color. When
* XAllocColor fails, we return the nearest matching color. If
* we have to allocate many colors this function isn’'t a great
* solution; the XQueryColors() could be done just once.
*/
static void
noFaultXAllocColor(Display * dpy, Colormap cmap, int cmapSize, XColor * color)
{
XColor *ctable, subColor;
int i, bestmatch;
double mindist; [* 3*2"16”72 exceeds long int precision. */

/* First try just using XAllocColor. */
if (XAllocColor(dpy, cmap, color))
return;

/* Retrieve color table entries. */
[* XXX alloca canidate. */
ctable = (XColor *) malloc(cmapSize * sizeof(XColor));
for (i=0; i < cmapSize; i++)
ctable[i].pixel = i;
XQueryColors(dpy, cmap, ctable, cmapSize);

/* Find best match. */
bestmatch = -1;

105

mindist = 0.0;
for (i=0; i <cmapSize; i++) {
double dr = (double) color->red - (double) ctable[i].red;
double dg = (double) color->green - (double) ctable[i].green;
double db = (double) color->blue - (double) ctable[i].blue;
double dist = dr * dr + dg * dg + db * db;
if (bestmatch < 0 || dist < mindist) {
bestmatch =i
mindist = dist;
}
}

/* Return result. */

subColor.red = ctable[bestmatch].red;

subColor.green = ctable[bestmatch].green;

subColor.blue = ctable[bestmatch].blue;

free(ctable);

if (!XAllocColor(dpy, cmap, &subColor)) {
subColor.pixel = (unsigned long) bestmatch;

*color = subColor;

}

If your application needs several color index mode windows it's a good idea to try to share one
colormap among the windows. Finally, be sure tirathooseVisual ~ returns @seudoColor (or for
Mesa,GrayScale) visual if a writable colormap is needed.

After the colormap has been selected you can create your window, specifying the colormap in the
XSetWindowAttributes structure passed #CreateWindow .

Furthermore, you should inform the window manager if your top-level window contains children with
non-default colormaps. This is done with #8etwMColormapWindows function:

XSetWMColormapWindows(display, top_level_window,
&window_list, num);

5. Double buffering

Surprisingly, double buffered visuals are not required by OpenGlgiXiCaooseVisual request for a
double buffered visual fails you should try to get a single buffered visual. Be suredielgstl to
force completion of rendering whegeXSwapBuffers ~ would have been called.

Similarly, OpenGL does not require single buffered visuals to be offered. If you want a single buffered
window butgiXxChooseVisual fails, you should try again specifying double buffering. Then, issue
glDrawBuffer(GL_FRONT) to direct drawing to the front color buffer.

Be aware that many systems advertised as having 24-bit color, in fact, only offer 12-bit color in double
buffer mode. This is because the 24-bit frame buffer is divided into two 12-bit buffers. Dithering usually
makes up for the loss of color accuracy.

Suppose you want both double buffering and full 24-bit color in this situation. For example, during

106

animation one may want double buffering but to show a static image a full-color single buffered window
would look best.

IRIS GL allowed one to reconfigure a window to single or double buffering on the fly with
doublebuffer , singlebuffer andgconfig . This can’t be done with OpenGL. Instead, you can create
two subwindows contained by a common parent, one window single buffered and the other window
double buffered, and us@tapwidnow/XUnmapWindow to display the one you want to use. Remember to
use separate contexts for each window since they will have different visuals.

6. GLX Pixmaps

GLX pixmaps are used for off-screen OpenGL rendering. A GLX pixmap is basically an X Pixmap
augmented with OpenGL ancillary buffers (depth, stencil, etc). The advantages of GLX pixmaps are
they take no screen space, are never damaged, and not constrained by the size of the screen. The
disadvantage of GLX pixmaps is that 3-D graphics hardware is often unable to render into them; a
software renderer executes the OpenGL instructions.

The usual steps in creating and using a GLX pixmap are:

® Select a visual withhiIXChooseVisual

® Create an X pixmap witkCreatePixmap using the depth of the visual returned by
gIXChooseVisual

® Create the GLX pixmap from the X pixmap wiixCreateGLXPixmap

® Create an OpenGL rendering context wgitkCreateContext ~ , usually specifying the indirect
option.

® Bind the context to the GLX pixmap witiXMakeCurrent

Notes:

@ Since one often wants to render into a GLX pixmap and later copy it to an on-screen window, the
X window should have the same depth as the pixmap.

® |f one wants to use one context for both GLX pixmap rendering and rendering into a window, the
GLX pixmap and window must be created with the same XVisuallnfo.

® Direct rendering contexts are usually not supported for pixmap rendering. The only way to
determine if direct rendering into GLX pixmaps works is to create a direct context then test if
glXMakeCurrent succeeds.

There is a special problem in using GLX pixmaps with Mesa in RGB mode. Since Mesa supports RGB
mode rendering into any kind of X visual it often needs colormap information so that RGB values can be
converted into logical pixel values. The GLX pixmap facility does not provide a way to indicate which

X colormap is associated with a GLX pixmap.

Mesa (version 1.2.8 and later) has a GLX extension which lets the user specify the colormap associated
with a GLX pixmap. The extension provides a new function very similgixteateGLXPixmap

GLXPixmap gIXCreateGLXPixmapMESA(Display *dpy, XVisuallnfo *visual,

107

Pixmap pixmap, Colormap cmap)

Strictly speaking, the colormap argument is only needed when rendering in RGB mode into a GLX
pixmap which uses RseudoColor , StaticColor , GrayScale Ofr StaticGray visual. If the colormap is
not specified but is in fact needed, gheMakeCurrent call will return False.

The proper way to use this function is:

Pixmap p;
GLXPixmap q;

#.ifdef GLX_MESA_pixmap_colormap

g = glXCreateGLXPixmapMESA(display, visual, p, colormap);
#else

g = giXCreateGLXPixmap(display, visual, p);
#endif

Since the GLX_MESA _pixmap_color extension symbol is only defined if using Mesa’s header files this
technique will be portable to any GLX implementation.

7. Mesa-specific

Since Mesa doesn't really implement the GLX protocol it isn’t 100% compliant with the GLX
specification. Most of the significant differences have been explained above. The remaining differences
are discussed here.

7.1 GLX_MESA release_buffers extension

The first time an X window is specified to MesafgMakeCurrent the X window is augmented with
ancillary (back color, depth, stencil, etc) buffers. Unfortunately, Mesa’'s GLX has no way of detecting
when the X window is destroyed witbestroywindow . The best Mesa can do is to check for recently
destroyed windows whenever the client callsgik€reateContext Or giXDestroyContext functions.

This may not be sufficient in all situations though. If many windows are used by the application a great
deal of memory may be wasted.

The solution is to call thgiXReleaseBuffersMESA function just before destroying the X window. For
example:

#ifdef GLX_MESA release_buffers
gIXReleaseBuffersMESA(dpy, window);

#endif

XDestroyWindow(dpy, window);

Last edited on April 13, 1997 by Brian Paul.

108

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL "Gotchas"

Even though OpenGL is a well organized and has a simple API there some common pitfalls which new
(and experienced) programmers can run into.

This document describes many such pitfalls and offers explanations or work-arounds.

glDrawPixels problems.

glDrawPixels draws a skewed image
Be sure the GL_UNPACK_ALIGNMENT value is set correctly. The default is four and if you're
drawing GLubyte GL_RGB images it may have to be set to one.

glDrawPixels() draws the wrong colors
Be sure texture mapping is disabled as texturing is applied even to glDrawPixels. Also, be sure
you’re using the correct data type for your imagery. A common mistake is to use GLuint instead of
GLubyte when drawing images with single-byte red, green, blue and alpha components.

glDrawPixels() of imagery obtained from glReadPixels() looks different than the original image
Try disabling dithering with giDisable(GL_DITHER).

glDrawPixels isn’'t as fast as expected
Some older graphics systems handle ABGR-order pixels faster than RGBA-order. Try the
GL_EXT_abgr extension. Also, be sure to disable rasterization options such as depth testing, fog,
stenciling, scissoring, pixel scaling, dithering and biasing, if you don’t need them.
GL_UNSIGNED_BYTE is typically the fastest data type.

How can | make glDrawPixels() draw an image flipped upside down?
Try glPixelZzoom(1.0, -1.0). Similarly, an image can be flipped left to right with glPixelZoom().
Note that you may have to adjust your raster position to position the image correctly.

glRasterPos Problems

glRasterPos() doesn’t put the raster position at the window coordinate | specify

109

glRasterPos transforms coordinates by the modelview and projection matrices just like vertices.
Set your matrices appropriately.

Why can’t | position a bitmap outside of the window?
If glRasterPos() evaluates to a position outside of the viewport the raster position becomes invalid.
SubsequeniiBitmap() andglDrawPixels() calls will have no effect.

Solution; extend the viewport beyond the window bounds or use gIBitmap() with an NULL bitmap
and your desired delta X,Y movement from the current, valid raster position. Be sure to restore the
viewport to a normal position before rendering other primitives.

The following function will set the raster position to an arbitrary window coordinate:

void window_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
GLfloat fx, fy;

/* Push current matrix mode and viewport attributes */
glPushAttrib(GL_TRANSFORM_BIT | GL_VIEWPORT _BIT);

[* Setup projection parameters */
glMatrixMode(GL_PROJECTION);
glPushMatrix();

glLoadldentity();

glMatrixMode(GL_MODELVIEW);
glPushMatrix();

glLoadldentity();

glDepthRange(z, z);
glViewport((int) x - 1, (int) y -1, 2, 2);

[* set the raster (window) position */
fx = x - (int) x;

fy =y-(int)y;

glRasterPos4f(fx, fy, 0.0, w);

[* restore matrices, viewport and matrix mode */
glPopMatrix();

glMatrixMode(GL_PROJECTION);
glPopMatrix();

glPopAttrib();
}

The sequence of glRasterPos(), glColor(), glBitmap() doesn’t result in the desired bitmap color
Call glColor() before glRasterPos().

Texture Mapping Problems
Texturing just isn’t working
There are several possible explanations.

O If texture minification is happening and the GL_MIN_FILTER is not GL_NEAREST or
GL_LINEAR then you must have a complete set of mipmaps defined. If you don'titis as if

110

texturing were disabled.
O Be sure your texture sizes are powers of two. Some OpenGL implementations fail to
generate an error for this condition.

Textures with borders don’t work
Several implementations of OpenGL have bugs which prevent textures with borders from working
correctly. OpenGL on SGI Infinite Reality systems is an example.

Texturing isn’t working on a Reality Engine 2 system
There’s a known bug which requires glEnable(GL_TEXTURE_2D) be called before
glTeximage2D() in some situations.

Performance Problems

Overall slow performance
Be sure a direct rendering context is being selected so that graphics hardware is accessed directly.

Motif/OpenGL Problems

Problems with glViewport and window resizing with Motif
In the resize callback for your application you should put a cglki@aitx before the
glviewport call to be sure the X server has actually resized the window lgf@seport is
called.

Lighting and Coloring Problems

glColor3b(255, 255, 255) doesn’t give me white
Be careful with color values and data types. The correct function in this case is glColor3ub(255,
255, 255).

When lighting is enabled, the colors are not what's expected
Try glEnable(GL_NORMALIZE) to scale your normal vectors to unit length. glScale() effects
normal vectors, not just vertices.

Lines and points aren’t colored as expected
Lighting may be enabled. All vertices are lit if lighting is enabled, even when drawing points and
lines.

In color index modeglClearindexi(0) doesn’t clear the window to black.

There is no guarantee that color index O corresponds to black in the colormap. It is up to you to be
sure the colormap entries are correctly loaded in your application.

Miscellaneous Problems

111

Nothing is drawn when in single-buffer mode
Call glFlush() after rendering. Your drawing commands may accumulate in a buffer and not be
executed until you explicitly issue a flush.

How do I draw outlined polygons?
If you've tried this you’ve probably seen the "shimmer" effect caused by erroneous depth
buffering of the polygon vs the outline. There are several solutions. The polygon offset extension,
standard in OpenGL 1.1, is one. A slightly more complex solution is to use stenciling as described
in the OpenGL Programming Guide.

Be sure no errors are being generated
Use glGetError() inside your rendering/event loop to catch errors. With Mesa, set the
MESA_ DEBUG environment variable.

Can | restrict SwapBuffers to a subregion of a window?
No. However, you may be able to use glCopyPixels to copy pixels from the back to front buffer or
create subwindows for the regions you want swapped.

Depth testing isn’'t working
If you've calledglEnable(GL_DEPTH_TEST) and depth testing still isn’t happening be sure that
you've requested a visual (GLX) or pixel format (WGL) which has a depth buffer. This is done by
specifying the GLX_DEPTH_SIZE parametergtaChooseVisual() or specifying a non-zero
cDepthBits value in thePIXELFORMATDESCRIPTORtructure passed tthoosePixelFormat()

Last edited on April 20, 1997 by Brian Paul.

112

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Hardcopy

Contents

1. Introduction

2. Bitmap-based Output
3. Vector-based Output
4,

°
°
°
® 4. Microsoft Windows OpenGL Printing

1. Introduction

OpenGL was designed for realtime 3-D raster graphics, which is very different from 2-D printed copy.
Nevertheless, many OpenGL applications need hardcopy output. There are basically two approaches:

1. raster/bitmap-based
2. vector-based

The following two sections describe the raster and vector approaches. Microsoft OpenGL users may
elect to use the built-in printing support described in the last section.

2. Bitmap-based Output

A simple solution to OpenGL hardcopy is to simply save the window image to an image file, convert the
file to Postscript, and print it. Unfortunately, this usually gives poor results. The problem is that a typical
printer has much higher resolution than a CRT and therefore needs higher resolution input to produce an
image of reasonable size and fidelity.

For example, a raster image of size 1200 by 1200 pixels would more than fill the typical 20-inch CRT
but only result in a printed image of only 4 by 4 inches if printed at 300 dpi.

To print an 10 by 8-inch image at 300 dpi would require a raster image of 3000 by 2400 pixels. This is a

113

situation in which off-screen, tiled rendering is useful. For more information see OpenGL/Mesa
Offscreen Rendering and TR, a tile rendering utility library for OpenGL.

Once you have a raster image in memory it needs to be written to a file. If printing is the only intended
purpose for the image than directly writing an Encapsulated Postscript file is best.

Mark Kilgard’s bookProgramming OpenGL for the X Window Systemtains code for generating
Encapsulated Postscript files. The source code may be downloaded from
ftp://ftp.sgi.com/pub/opengl/opengl_for_x/xlib.tar.Z.

3. Vector-based Output

In general, high quality vector-style hardcopy is difficult to produce for arbitrary OpenGL renderings.
The problem is OpenGL may generate arbitrarily complex raster images which have no equivalent
vector representation. For example, how are smooth shading and texture mapping to be converted to
vector form?

Getting the highest quality vector output is application dependant. That is, the application should
probably generate vector output by examining its scene data structures.

If a more general solution is desired there are at least two utilities which may help:

GLP (http://dns.easysw.com/~mike/glp/) is a C++ class library which uses OpenGL’s feedback
mechanism to generate Postscript output. GLP is distributed with a GNU copyright.

GLPrint (http://www.ceintl.com/products/GLPrint/) from Computational Engineering International, Inc.
is a utility library OpenGL printing. The product is currently in beta release.

4. Microsoft Windows OpenGL Printing

Microsoft's OpenGL support printing of OpenGL images via metafiles. The basic steps are:

Callstartboc to associate a print job to your HDC handle
CallstartPage to setup the document

Create a rendering context witbiCreateContext

Bind the context witlwgiMakeCurrent

Do your OpenGL rendering

Unbind the context wittvgiIMakeCurrent(NULL, NULL)
CallendPage to finish the document

CallEndDoc to finish the print job

ONoGA~wWNE

This procedure is raster-based and may require much memory. To circumvent this problem, printing is
done in bands. This however takes more time.

114

Last edited on April 22, 1997 by Brian Paul.

115

116

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Language Bindings

Contents

® 1. Introduction
® 2. Bindings
® 3. Notes

1. Introduction
The OpenGL API is defined in terms of C/C++ but bindings for several other languages exist.

Fortunately, the OpenGL function parameters are all simple types (boolean, integer, floating point,
constants, arrays) so the API translates easily from C to other languages.

The OpenGL Architecture Review Board (ARB) controls the C, C++, Fortran, Pascal and Ada binding
specifications at this time.

2. Bindings

C++
Same as the C bindings. The ARB voted not to use the C++ function overloading facility.
Therefore, the C++ OpenGL interface is identical to that for C.

Fortran
Fortran bindings are shipped by several vendors including SGI. The Fortran API functions are
prefixed with f. For example, glVertex3f() becomes fglVertex3f().

The OpenGL constants are not supposed to be prefixed with F (i.e. GL_POLYGON, not

FGL_POLYGON) but SGI's IRIX 5.3 Fortran header file for OpenGL does use the F prefix. The
GLUT toolkit includes an fgl.h header file with correctly named constants.

117

Finally, the maximum length of identifiers varies among Fortran compilers. Since OpenGL has
several long (+32 character) identifiers they may be truncated in the header file.

Bill Mitchell of the NIST has written fortran 77 and fortran 90 bindings for OpenGL and Mesa.
(http://math.nist.gov/f90gl/)

Ada
Discussed by the ARB, but yet to be implemented by a vendor.

Modula-3
OpenGL bindings for Modula-3 are available from Columbia University.
(http://www.cs.columbia.edu:80/graphics/modula3/opengl/)

Pascal
No Pascal bindings for OpenGL are known to exist.

Tcl/Tk
O TIGER (Tcl-based Interpretative Graphics EnviRonment) is a tool for interpretive
programming of OpenGL with Tcl.
(ftp://metallica.prakinf.tu-ilmenau.de/pub/PROJECTS/TIGERL1.0)
O TKOGL provides Tcl/Tk wrappers for the OpenGL API
(http://aquarius.lcg.ufrj.br/~esperanc/tkogl.html). The following program, for example, draws
a triangle:

pack [OGLwin .gl]

.gl main -clear colorbuffer \
-begin triangle \
-vertex 010\

-vertex -1-1 0\
-vertex 1 -1 0\
-end

O OGLTK is a Tk widget/shell for OpenGL rendering.
(http://www.cs.unm.edu/~bederson/ogl.html)

O Togl is another Tk widget for OpenGL rendering based on OGLTK but with a few more
features. (http://www.ssec.wisc.edu/~brianp/Togl.html)

Python
David Ascher at Brown University has information about Python and OpenGL.
(http://maigret.cog.brown.edu:80/python/opengl/)

Java
At the time these notes were written the status of official OpenGL / 3D support for Java was still
indeterminate. Unfortunatley, It appears that Sun and Silicon Graphiesta@laborating
further on Cosmo3D.

In the mean time, one is probably best off with the unoffical port of OpenGL to Java by Leo Chan
of the University of Waterloo. (ftp://cgl.uwaterloo.ca/pub/software/meta/OpenGL4java.html)

118

STk (Scheme/Tk)
Carnegie Mellon University has OpenGL bindings for StK, a Scheme interpreter with a Tk
interface. Contact James Grandy (jcg@cs.cmu.edu) for more information.

Delphi
Delphi bindings for OpenGL 1.0 (written by Rick Hansen, 71043.2142@compuserve.com) and 1.1
(written by Mike Lischke, Lischke@imib.med.tu-dresden.de) are available from the Delphi Super
Page (http://sunsite.icm.edu.pl/delphi/"). Searctofoengl

3. Notes

While OpenGL’s API is easily adapted to many languages the same can’t be said of most window
system interfaces. For example, a Fortran-based OpenGL application may still need some C code to
interface OpenGL with Xlib since there’s no Fortran interface to Xlib.

In some cases, such as Tcl/Tk, a special interface layer written in C may encapsulate the details of the
OpenGL window system interface. Another example is GLUT. GLUT hides the details of OpenGL
window system integration, providing a simple, window system-independent interface with both C and
Fortran bindings.

Last edited on April 14, 1997 by Brian Paul.

119

120

The Mesa 3-D Graphics Library

A White Paper
Brian Paul

Second Edition, April 1997

Abstract

Mesa is a free 3-D graphics library which uses the OpenGL API and semantics. It works on most
modern computers allowing people without OpenGL to write and use OpenGL-style applications. This
paper gives an overview of Mesa and describes a bit of its implementation.

Contents

1. Introduction
2. Mesa vs. OpenGL
3. Implementation
O 3.1 Library State
O 3.2 Point, Line and Polygon Rendering
O 3.3 Fragment Processing
O 3.4 Device Driver Functions
O 3.5 The X Device Driver
® 4. Extensions
O 4.1 OpenGL extensions
O 4.2 Mesa extensions
5. Future Plans
6. Summary
® A. Obtaining Mesa

1. Introduction

Mesa began as an experiment in writing a 3-D graphics library. After about a year of "spare time"
development it was released on the Internet. It has since evolved with the help of many contributors to
the point where it is a viable and popular alternative to OpenGL.

In the spirit of free software, Mesa is distributed under the terms of the GNU library copyright.

The Mesa distribution includes implementations of the core OpenGL library functions, the GLU utility

121

functions, the aux and tk toolkits, Xt/Motif widgets, drivers for X11, Microsoft Windows '95/NT and
DOS, NeXTStep, and many demonstration programs. Macintosh and Amiga drivers are available
separately.

Mesa compiles easily, requiring only an ANSI C compiler and standard development headers and
libraries.

From the application programmer’s point of view, Mesa is a nearly seemless replacement for OpenGL.
The Mesa header files are named the same as OpenGL'’s (GL/gl.h, GL/glu.h, GL/glIx.h, etc) and contain
equivalent datatypes, constants and function prototypes. The Mesa library files may be renamed to
match the typical OpenGL library names and locations. On some operating systems Mesa may be built
as a shared library.

After Mesa has been installed most OpenGL applications should compile and execute without
modification.

Since version 2.0 of Mesa the OpenGL 1.1 API is implemented.

2. Mesa vs. OpenGL

While Mesa uses the OpenGL API and follows the OpenGL specification very closely, it is important to
understand that Mesa is not a true implementation of OpenGL. Official OpenGL products are licensed
and must completely implement the OpenGL specification and pass a suite of conformance tests. Mesa
meets none of these requirements.

At first, Mesa may seem to be a competitor to official OpenGL products. Actually, Mesa has helped to
promote the OpenGL API by expanding the range of computers which may execute OpenGL programs.
There are many systems which are not supported by OpenGL vendors but can run Mesa instead. People
who are curious about OpenGL may try Mesa at no cost and later purchase an OpenGL implementation
which perhaps utilizes 3-D graphics hardware. Mesa has been very popular in computer graphics
courses. Many students and colleges without the resources to obtain commercial OpenGL
implementations successfully use Mesa instead.

Mesa does not implement the full OpenGL specification. For example, antialiasing, trimmed NURBS,
and a few glGet* functions are not yet implemented. The GLX interface is only an emulation; it does not
generate GLX protocol. It is expected that these features will eventually be implemented.

Mesa doesn’t typically perform as well as commercial OpenGL implementations for several reasons.
First, portability to a wide range of computers is considered more important than optimizing for a
particular architecture. Second, the features of the underlying hardware can’t be directly accessed since
Mesa exists as a software library above the operating system and window system programming
interfaces. And finally, Mesa'’s development is not supported by any sort of development team. Only so
much can be accomplished by people working in their spare time.

In other respects Mesa has some advantages over OpenGL.

122

Mesa is free.

Mesa works on many computers which lack real OpenGL implementations.

There is a simple built-in profiling facility which can measure and report performance information.

There is an option to enable immediate error message reporting. As soon as an error is generated it

is printed to the stdout stream.

® Mesa can warn the user when attempting to do illogical things (such as enabling depth testing
without a depth buffer).

® Users may attempt to optimize Mesa'’s source code in areas which impact the performance of their

particular application.

3. Implementation

Mesa is written in ANSI C. The core library contains no operating system or window system dependent
code which makes it extremely portable. A special device driver interface insulates the core Mesa library
from the underlying operating/window system.

3.1 Library State

OpenGL is designed around the concept of a state machine. In Mesa this state is stored in a large C
structure. Much of the state is stored in substructures which directly correspond to the attribute groups
such as the polygon group, lighting group and texture group. Pushing and popping of attribute groups is
just a matter of copying C structs to and from a stack.

Many API functions simply modify state values and produce no output. Before rendering functions are
invoked it is often necessary to evaluate the current state to compute derived state values and setup
pointers to specific instances of rendering functions. Lazy evaluation is used to updated the state.

For example, Mesa has many instances of specialized polygon drawing functions. The function to use
depends on the state of smooth vs flat shading, dithering, depth testing, texturing, etc. When any of these
state values are changed tieav statdlag is set. WheniBegin is called thenew statdlag is tested and

if set, the state is evaluated to select the specialized polygon function and the flag is cleared.

3.2 Point, Line and Polygon Rendering

Arguably the most important feature of Mesa is efficient point, line and polygon rendering. The two
major components of this are vertex transformation and rasterization.

Vertices specified betweegBegin andglEnd are accumulated in a vertex buffer. When the buffer is
full or glEnd is called the buffer is processed. Processing the vertex buffer includes transforming
vertices from object coordinates to eye coordinates, lighting, transforming eye coordinates to clip
coordinates, clip testing, and mapping clip coordinates to window coordinates.

Each transformation and clip test stage is implemented in a tight loop which compilers can unroll for
efficient executution. The size of the vertex buffer was chosen so that all vertex data touched in the

123

transformation loops will fit in a 16KB CPU data cache.

Several optimization are used during transformation. The modelview and projection matrices often have
particular elements with values of zero or one. These elements are tested to determine if simplified
vector/matrix multiplications can be used. Depending on the current lighting parameters, either a
full-featured or specialized, optimized lighting function is used. Lookup tables are used to compute the
exponential spotlight and material shininess functions.

After a vertex buffer has been processed it is rendered as a set of points, lines or polygons as specified
by gIBegin

Arrays of points are rendered by either calling a specialized device driver function or by falling back to a
core Mesa drawing function. Points whose clip flag is set are discarded.

Line segments are clipped if either endpoint’s clip flag is set. Then, the line is rasterized by calling either
a specialized device driver function or a fallback Mesa line drawing function. Different line drawing
functions are called for flat or smooth shading, RGB or color index mode, texturing, etc.

Polygons are clipped with the Sutherland-Hodgman algorithm if any of the vertex clip flags are set.
Next, the equation of the plane containing the polygon is computed. The coefficients of the plane
equation ax+by+cz=d are used for determining front/back orientation and implementing the polygon
offset feature.

Polygons with more than three vertices are decomposed into triangles. Then, as with line segments, the
triangle is rasterized either by a specialized device driver function or by a core fall-back function.

The specialized device driver functions for point, line and triangle rendering take vertices as input and
directly modify the frame buffer. Alternatively, the fallback rendering functions in Mesa handle
rendering of primitives with arbitrary raster operations. Point, line and bitmap functions generate
fragments which are stored in a pixel buffer. The triangle rasterizexgtandPixels generate

horizontal runs of pixels called spans. The pixel buffer and spans are subjected to fragment processing
before being written to the frame buffer.

3.3 Fragment processing

Fragments are the pixels generated by rasterization augmented with auxiliary information such as color,
depth (2) and texture coordinates. OpenGL defines an extremely flexible fragment processing pipeline
which includes texturing, fogging, clipping, scissoring, alpha testing, stenciling, depth testing, blending,
dithering, bitwise logic operations, and masking.

Pixel buffer and span-based fragment processing are very similar, the only difference is that the pixel
buffer stores fragments with arbitrary window coordinates while spans are continuous horizontal runs of
fragments.

Since fragments may be culled during processing, each fragment has a write flag associated with it.
Initially, all fragments have their write flags set to true. Clipping, scissoring, alpha testing, stenciling,
and depth testing may set a flag to false to indicate that it should not be considered in further stages. In
the end, only those fragments with their flags set are written to the color buffer.

124

Each stage of fragment processing is implemented in succession with code similar to:

if (stage is enabled) {
for (each fragment in the buffer or span) {
apply the fragment operation,
possibly setting some write flags to false

}

Finally, fragments are written to the color buffer by device driver functions similar to:

for (each fragment) {
if (fragment flag is true) {
write fragment color to color buffer

}
}

The special cases of all write flags set to true or false are handled appropriately. Also, optimized code is
used when all fragments have the same color.

The only fragment operation which must be handled below the device driver level is dithering. Depth
testing, bitwise logic operators and masking may optionally be implemented by the device driver.

3.4 Device Driver Functions
A Mesa driver implements two things:

1. A public OpenGL/window system API (the GLX API, for example)
2. A set of priver driver functions (line and triangle drawing functions, for example)

The device driver interface is a set of function pointers which point to implementations specific to the
window system. It includes functions for:

setting theiClear color or index

clearing the color buffer

setting the current drawing color or index

selecting the front or back color buffer as current source or destination
returning the dimensions of the current color buffer
drawing points, lines, triangles in specific situations
implementinggiDrawPixels for specific situations
drawing horizontal runs of pixels

reading horizontal runs of pixels

drawing arrays of randomly positioned pixels
reading arrays of randomly positioned pixels
implementingglFlush andglFinish

setting the index and color component write masks
setting the pixel logic operator

enabling/disabling dithering

implementing depth buffer facilities

125

Some device driver functions are optional. If a particular function isn’t implemented by the device driver
then we fall back to an internal Mesa function.

The next section explains this in more detail for the X device driver.

3.5 The X Device Driver

The X device driver is the most mature of the Mesa device drivers so it is the example we elaborate
upon.

3.5.1 GLX Emulation

Mesa’s interface to the X Window System is defined by the X/Mesa interface. There are X/Mesa
functions for creating rendering contexts, destroying contexts, binding contexts to windows and
pixmaps, swapping color buffers and querying the current context. This interface is not intented for use
by application programmers. It's purpose is to support Mesa’s GLX emulation.

Mesa only emulates the GLX interface since a true implementation requires hooks into the X server.
Mesa and its GLX can be though of as a translator which converts OpenGL API functions to Xlib
commands. The nice side-effect of this is that Mesa can remotely render to any X server, even if the X
server does not have the GLX server extension. Operating systems which support shared libraries can
substitute Mesa for OpenGL at runtime, allowing OpenGL applications to be displayed on non-GLX
capable X servers without recompiling.

Since it's an emulation, Mesa’s GLX is not 100% compatible with OpenGL’s GLX. In several ways is
actually superior. For example, while OpenGL only supports RGB rendering into TrueColor or
DirectColor X visuals, Mesa allows RGB rendering into virtually any type and depth of X visual. This is
an important feature since many X servers don'’t offer TrueColor or DirectColor visuals. Other visuals
are supported by dithering or converting RGB values to gray levels.

This introduces two potential incompatibilities with OpenGL’s GLX.
® Rendering into GLX pixmaps requires information about the colormap which isn’t normally
associated with the pixmap.
® OpenGL applications expecting only TrueColor or DirectColor visuals may fail when Mesa
returns a different visual type through dmeChoosevisual ~ function.

The first problem is solved with a special Mesa extension to GLX. The second problem can usually be
fixed by modifying the application’s GLX code.

3.5.2 Pixmaps vs Xlmages
Images in X can be stored in one of two formats. Pixmaps are stored in the X server and cannot be

directly addressed by an X client. XImages are stored in the client’s address space and may be directly
addressed.

126

When operating in single buffered mode, rendering is directed into an X window. When operating in
double buffered mode, rendering is directed into either a Pixmap or XImage. A Pixmap can be accessed
in the same way as a window (both are considered tlodveable$. Whether a Pixmap or XImage gives

best performance depends on a number of factors.

Using a Pixmap can be quite efficient for rendering plain, flat-shaded points, lines and polygons since
the intrinsic X point, line and polygon drawing functions can be used. Performance is relatively good
whether displaying locally or remotely. However, when using smooth shading or per-pixel fragment
operations pixels must be drawn individually witbetForeground andxDrawPoint calls. The amount

of data transferred from the client to X server is directly proportional to the number of X calls made. For
XSetForeground/XDrawPoint rendering this is usually unacceptably slow.

In most cases using an Xlmage yields best performance in double buffer mode. The reason is individual
pixels can be directly "poked" into the image since it resides in the client’'s address space. Front/back
buffer swapping is implemented by copying the XImage to the X window. The X Shared Memory
extension is used when displaying on the local host to accelerate this operation. In the case of remote
display, the amount of data transferred from the client to the X server is directly proportional to the
window size and not the number of pixels generated during rendering.

Programmers should note that double buffering using an XImage can be faster than single buffering.

3.5.3 Pixel Processing

The most important factor in device driver performance is efficient access to the frame/image buffer for
reading and writing fragments.

The code for writing RGB pixels to the color buffer could be expressed as:

for (each pixel i) {
pixel_value = convert_rgb_to_pixel(red[i], greenli], blue[i]);
put_pixel(x[i], y[i], pixel_value);

However, this would be very inefficient since the convert_rgb_to_pixel and put_pixel functions must
cope with many types of X visuals and depths. The best method to convert RGB values to pixel values
depends on the X visual. The best method to write pixels to the color buffer depends on whether the
buffer is implemented as an X Pixmap or XImage. Therefore, almost all inner-loops in the X device
driver are optimized for special pixel formats.

For example, there are specialized span and pixel-array writing functions for 24-bit TrueColor, 16-bit
TrueColor, 8-bit PseudoColor, N-bit GrayScale, etc. Furthermore, there are many line and triangle
rasterizer functions optimized for these pixels formats with popular combination of flat/smooth shading,
depth-tested/non-depth-tested rasterization modes.

When the device drivergpdateState state function is called the driver’s pointers for span, line and
triangle functions are updated to point to the appropriate optimized function. If no optimized function
satisfies the current library state then a core Mesa fall-back function is used instead.

The device driver’s point, line and triangle functions are also used for hardware acceleration. In this case

127

the driver function will simply set hardware registers and trigger an interupt or DMA to make the
hardware render the primitive.

4. Extensions

Mesa implements several popular OpenGL extensions and adds a few of its own.

4.1 OpenGL Extensions
Mesa has the following OpenGL extensions:

GL_EXT_blend_color
GL_EXT_blend_minmax
GL_EXT_blend_logic_op
GL_EXT_blend_subtract
GL_EXT_polygon_offset
GL_EXT _vertex_array
GL_EXT_texture_object
GL_EXT _texture3D

Several, such as texture objects and vertex arrays, are also standard OpenGL 1.1 (Mesa 2.x) features.
Implementing them both as standard features and as extensions is simply a portability convenience to
programmers.

4.2 Mesa Extensions
Like OpenGL, Mesa can have extensions. At this time, Mesa has four unique extensions.
GL_MESA_window_pos

This extension adds th@VindowPos*MESA functions. These functions are convenient alternatives to
glRasterPos* because they set the current raster position to a specific window coordinate, bypassing
the usual modelview, projection and viewport transformations. This is especially useful for setting the
position forgiDrawPixels ~ OrgiBitmap to a desired window coordinate.

For glwindowPosMESA4f(x,y,z,w) thex, y, z, andw parameters directly set the current raster position
except that is clamped to the range [0,1]. The current raster position valid flag is always set to true.
The current raster distance is set to zero. The current raster color and texture coordinate are updated in
the same manner as iPRasterPos . In selection mode a hit record is always generated.

Programs using OpenGL, not Mesa, may also usgwhedowPos*MESA functions since an
implementation of it in terms of standard OpenGL functions is included with Mesa.

128

Perhaps the GL_MESA_ window_pos extension may be incorporated into a future version of OpenGL
since it is so convenient.

GL_MESA resize_buffers

Mesa can’t determine when a window is resized. When the on-screen window is resized the ancillary
(depth, stencil, accumulation) buffers should be resized. The work-around is for Mesa to query the
window size whenever glViewport is called. This is usually sufficient since glViewport is usually called
soon after a window has been resized. When this isn’t sufficent the programmer can include a call to
glResizeBuffersMESA() which forces Mesa to query the current window size and resize the ancillary
buffers if needed.

GLX_MESA release_buffers

Mesa can’t determine when an X window has been destroyed. When a window is destroyed the
associated ancillary buffers should also be destroyed. As a work-around, Mesa maintains a list of known
rendering windows and whenever glXCreateContext or giXDestroyContext are called checks if any of
those windows as been recently destroyed. Since this isn’t sufficient in all situations a programmer can
explicitly tell Mesa to free the ancillary buffers by calling giXReleaseBuffersMESA just before calling
XDestroyWindow.

GLX_MESA_pixmap_colormap

This extension adds the GLX function:

GLXPixmap glXCreateGLXPixmapMESA(Display *dpy, XVisuallnfo *visual, Pixmap pixmap,
Colormap cmap)

It is an alternative to the standayiEiCreateGLXPixmap function. Since Mesa supports RGB rendering
into any X visual, not just TrueColor or DirectColor, Mesa needs colormap information to convert RGB
values into pixel values. An X window carries this information but a pixmap does not. This function
associates a colormap to a GLX pixmap.

An application using GLX pixmaps should use the following code to associate a colormap with the GLX
pixmap when using Mesa.

#ifdef GLX_MESA_pixmap_colormap
glxpixmap = gIXCreateGLXPixmapMESA(display, xvisualinfo,
xpixmap, colormap);
#else
glxpixmap = giXCreateGLXPixmap(display, xvisualinfo, xpixmap);
#endif

5. Future Plans

129

There are a number of things planned in the future for Mesa.
More optimization
Each Mesa release has usually been a bit faster then the previous one. Optimization is an on-going

process. Most recently, optimization of vertex transformation, clipping and lighting has been the focus
since the rasterization bottleneck is greatly reduced when 3-D hardware is used.

GLX protocol encoding

Steven Parker (sparker@taz.cs.utah.edu) of the University of Utah has written free GLX
encoder/decoder software. By integrating the encoder into Mesa, an application linked with Mesa could
send true GLX protocol data to a GLX-equipped X server or send ordinary Xlib protocol to non-GLX X
servers.

If the GLX X server has 3-D acceleration hardware the Mesa-linked application would use it.

X server integration
Work is underway to integrate Mesa into the XFree86 X server. This implies implementing the GLX

decoder and integrating Mesa so that GLX client applications could render to computers running the
XFree86 X server.

Hardware acceleration

Recently, 3-D acceleration hardware for personal computers has become very common and affordable.
There have been several efforts to support 3-D hardware with Mesa.

The first was a driver for the GLint chipset written by Ken Adams while at Clemson University.
Development is now maintained by others at the university. Dr. Robert Geist (rmg@cs.clemson.edu) is
the current contact.

The second was a driver for the Cirrus Logic CL5464 chipset written by Peter McDermott while at the
University of Texas at Austin. Again, development continues at the university. Contact Adam Seligman
(adams@cs.utexas.edu).

The most recent hardware support is for the 3Dfx VooDoo chipset written by David Bucciarelli
(tech.hnmw@plus.it). This driver is implemented on the 3Dfx GLide rasterization library.

More hardware acceleration projects will probably follow when Mesa has been integrated with XFree86.
Other possibilities
Other long term items for Mesa development include free versions of the GLS (GL Stream

encoder/decoder) library, GLC (GL Character rendering) library and the OpenGL debugger. Work has
not yet begun on these projects.

130

6. Summary

Mesa has turned out to be a very useful and popular 3-D library. Its success can be attributed to the fact
that the library is free, full featured, reliable, portable and compatible with OpenGL. Many volunteers
have contributed to this success.

Mesa has a bright future with many new features planned. No doubt, much of this work will be done by
volunteers who share an enthusiasm for computer graphics and free software.

Appendix A

Obtaining Mesa

Mesa can be downloaded via the Mesa home page at
http://www.ssec.wisc.edu/~brianp/Mesa.html

Last edited on April 19, 1997 by Brian Paul.

131

132

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL/Mesa Off-screen Rendering

Contents

. Introduction

. Microsoft OpenGL Off-Screen Rendering
. GLX Pixmaps

. SGI pbuffers

. Aux Buffers

. Mesa

. Tiled Rendering

000000
~NOoO O~ WNE

1. Introduction

Normally, OpenGL is used for rendering into a window which is displayed on your computer’s screen.
But sometimes it's useful to render into an image buffer which is not displayed. This is called off-screen
rendering.

Some uses of off-screen rendering include:

® Generation of intermediate images such as textures

® Batch rendering of non-interactive animations

® High-resolution image generation for hardcopy
Generaly, off-screen rendering is not a core part of OpenGL,; it's provided by an OpenGL window
system interface such as GLX or WGL. Some systems have more than one facility for off-screen
rendering, each with its own advantages and disadvantages.

The following sections describe the off-screen rendering facilities for WGL, GLX and Mesa with an
emphasis on portablity and performance trade-offs.

2. Microsoft OpenGL Off-Screen Rendering

133

OpenGL for Windows supports off-screen rendering into Winddevsce-independent bitmaps
Pros:
® A standard WGL feature
Cons:
® Only usable with Windows 95/NT OpenGL
Basically, a bitmap is created witleateDIBSection . A pixel format with thee’FD_DRAW_TO_BITMAP,

PFD_SUPPORT_OPENGL, PFD_SUPPORT_Gflags must be chosen. After creating a WGL context and
binding it, OpenGL rendering can proceed.

3. GLX Pixmaps

A GLX pixmap is an X Pixmap augmented with a set of ancillary buffers such as a depth buffer, stencil
buffer or accumulation buffer.

Pros:
® Buffer contents are retained; cannot be damaged like on-screen windows
® GLX pixmaps are a standard part of GLX
® GLX pixmaps can sometimes be larger than an on-screen window
Cons:
® Rendering into GLX pixmaps may not be accelerated with graphics hardware and, in fact, may be
rather slow
® Size may be limited to the screen’s size
® Connection to X server is required even though rendering is off-screen
The basic steps to create a GLX pixmap are:
1. CallxopenDisplay to open an X display connection.
2. Select an X visual witBiXxChooseVisual
3. Create an X pixmap witkCreatePixmap specifying the depth of the X visual.
4. Create the GLX pixmap witlixCreateGLXPixmap

TheGLXPixmap handle returned byiXCreateGLXPixmap may be passed tiXMakeCurrent to bind an
OpenGL rendering context to the GLX pixmap. Rendering into the GLX pixmap may then begin.

The contents of a GLX pixmap may be read back wibadPixels or XGetimage .

134

4. SGI pbuffers

Pbuffers are an OpenGL extension available on recent SGI systems. It is an experimental extension- it
may be changed in the future. The purpose of pbuffers is to allow hardware accelerated rendering to an
off-screen buffer, possibly with pixel formats which aren’t normally supported by the X display.

Pros:

® Hardware accelerated
® May offer pixel formats not available for ordinary windows

Cons:

® Currently only available on recent SGI systems

® May require special X server configuration

® pbuffers contents may be arbitrarily lost at any time

® Connection to X server is required even though rendering is off-screen

® More difficult to use than GLX pixmaps

® Maximum size may be contrained to screen size

If you are using an SGI system and naedeleratedff-screen rendering then pbuffers should be
considered. Otherwise, GLX pixmaps are a more attractive off-screen rendering solution.

With that in mind let us consider pbuffers in more detail.

The pbuffers extension namedsx_SGIX_pbuffers . Prerequisite to the pbuffers extension is the
exerimental fbconfig extensioI(X_SGIX_fbconfig).

The fbconfig extension was introduced for several reasons:

® |t introduces a new way to describe the capabilities of a GLX drawable, that is, to describe the
resolution of color buffer components and the type and size of ancillary buffers by providing a
GLXFBConfig construct.

® [t relaxes the "similarity” requirement when associating a current context with a drawable.

® |t supports RGBA rendering to one- and two-component windows and GLX pixmaps as well as
pbuffers.

For more information about the fbconfig extension see the fbconfig.txt file.
Pbuffer applications must test for both the GLX_SGIX_pbuffers and GLX_SGIX_fbconfig extensions.
See the Using OpenGL Extensions document for details on extension testing. If either extension is not
available the application should fall back to using GLX pixmaps.
The basic steps for creating a pbuffer are:

1. CallxopenbDisplay to open an X display connection.

2. Get aGLXFBConfigSGIX handle by callinglXChooseFBConfigSGIX
3. Create a pbuffer by callirggxCreateGLXPbuffer

135

Several difficulties may arise during these seemingly simple steps:

® gIXChooseFBConfigSGIX returns a sorted list of foconfigs which match your attribute list.
However, some or all of the fbconfigs may not be usable for making a pbuffer.

® TheglXCreateGLXPbuffer ~ call may fail, generating an X protocol error. You must set up an X
error handler to catch this error so your program doesn’t exit abnormally.

® You may have to try several different foconfig attribute lists before you're able to find one which
works.

These difficulties basically boil down to the fact that pbuffers are allocated from the frame buffer which
is, in general, of fixed size. Also, the fbconfigs may be staticly configured- a particular combination of
buffer attributes may not be supported.

As an example, suppose you need a single-buffered RGB pbuffer with a depth buffer.
gIXChooseFBConfigSGIX may return a list of several fbconfig candidates. However, there may not be
enough memory available in the frame buffer for some or any of those fbconfigs. There may be enough
memory for the color buffer but not the depth buffer, for example. Or, it may not be possible to allocate
a single buffered pbuffer; only double buffered pbuffers may exist.

The best approach is a nested loop:

let fbAttribs = list of fbconfig attribute lists
foreach fbAttrib in fbAttribs do
let fbConfigs = list returned by gIXChooseFBConfigSGIX(fbAttrib)
foreach fbConfig in foConfigs do
let pBuffer = gIXCreateGLXPbufferSGIX(fbConfig)
if pBuffer then
SUCCESS!
endif
endfor
endfor

The course notes CD-ROM includes sample pbuffer code in the pbuffer.trz filpb@keno.grogram
illustrates this approach. See thakePbuffer function.

The pbutil.cfile contains several pbuffer utility functions. TeatePbuffer ~ handles the X protocol
error problem.

The pbinfo.cprogram is similar tglxinfo. It prints a list of fbconfigs available on your system and
whether or not a pbuffer of that config can be created.

System Configuration

Some SGI systems require reconfiguring the display / X server to enable pbuffers (or at least useful
pbuffer configurations).

On SGI Impact systems, for example, if you look in/tlsggfx/ucode/MGRAS/vof/ directory you

will find a list of video output formats supported by the Impact architecture. Look for ones with the
_pbuf suffix. Use thesetmon -x utility to configure your X server to use a pbuffer-enabled video
format.

136

5. Auxiliary Buffers

The OpenGL specification includasixillary buffers. These are buffers intended for off-screen
rendering. They are addressed viadibeawBuffer ~ andglReadBuffer ~ functions. Up to four auxiliary
buffers namedL_AUX0, GL_AUX1, GL_AUX2, andGL_AuUX3are available. The actual number of
auxiliary buffers available can be queried wjthetintegerv(GL_AUX_BUFFERS, numBuffers)
Pros:

® A simple off-screen facility standard to OpenGL.
Cons:

® Aux buffers are optional and few implementations of OpenGL support them.

6. Mesa

Mesa includes a special off-screen rendering interface called OSMesa. It's unique in that the interface
has no dependencies on any operating system or window system.

Pros:
® No window system or operating system dependencies
Cons:

® Only available in Mesa
® Probably no chance of hardware accelerated rendering

Mesa’s off-screen rendering interface is quite simple. Documentation for it may be found in the Mesa
README file and there is an example program in the Mesa distribution (demos/osdemo.c).

7. Tiled Rendering

Tiled rendering is a technique in which a large image is produced by tiling together smaller, individually
rendered images. It's useful for generating images which are larger than what OpenGL would normally
permit.

OpenGL and/or window systems limit the size of rendered imagery in several ways:

137

® The window system may not allow one to create windows, pixmaps or pbuffers which larger than
the screen’s size. Typical limits are 1280 by 1024 pixels.

® glviewport 's width and height parameters are silently clamped to an implementation-dependant
limit. These limits can be queried \yesetintegerv with the argumentL_MAX_VIEWPORT_DIMS
Typical limits are 2048 by 2048 pixels.

The basic technique of tiled rendering is to draw your entire scene for each tile, adjusting the projection
and viewport parameters such that when the tiles are assembled there are no seams. Unfortunately, this
is easier said than done. To make tiled rendering easier | have developed a tile rendering utility library
for this course.

Here is a modified excerpt of ttrelemol.cexample program which demonstrates how to use the tr (tile
rendering) library:

static void Display(void)
{
GLubyte *image;
TRcontext *tr;

[* allocate final image buffer */
image = malloc(WindowWidth * WindowHeight * 4 * sizeof(GLubyte));
if (limage) {

printf("Malloc failed\n");

return;

}

[* Setup tiled rendering. Each tile is TILESIZE x TILESIZE pixels. */
tr = trNew();

trTileSize(tr, TILESIZE, TILESIZE);

trimageSize(tr, WindowWidth, WindowHeight);

trimageBuffer(tr, GL_RGBA, GL_UNSIGNED_BYTE, image);

if (Perspective)

trFrustum(tr, -1.0, 1.0, -1.0, 1.0, 5.0, 25.0);
else

trOrtho(tr, -3.0, 3.0, -3.0, 3.0, -3.0, 3.0);

[* Draw tiles */

do{
trBeginTile(tr);
DrawScene();

} while (trEndTile(tr));

trDelete(tr);

[*’image’ buffer now contains the final image.
* You could now print it, write it to a file, etc.
*

}

The basic steps are:

1. Allocate memory for the final image.

2. Create atile rendering context witikew .

3. CalluTileSize to specify the tile size.

4. CalltrimageSize to specify the final image size.

138

5. CalltrimageBuffer to specify where the final image is to be stored.

6. Setup a perspective or orthographic projection whthstum or trOrtho

7. Call thetrBeginTile andirEndTile functions inside a loop which surrounds your scene drawing
function untiltrEndTile returns zero.

8. Free the tile rendering context witbelete

The final image is typically written to a file or sent to a printer.

There is one caveat to this utility libragyRasterPos, glDrawPixels andgiBitmap may be

troublesome. The problem is thagiikasterPos specifies a coordinate which falls outside the current
viewport, the current raster position becomes invalid. If the current raster position is invalid subsequent
calls togiDrawPixels orglBitmap Will have no consequence.

The solution to this problem is tl@asterPos3f function. It works just likejRasterPos3f but
doesn't suffer from the invalid raster position problem. Seértleenol.qprogram for example usage.

Thetrdemo2.cexample demonstrates how to generate very large image files without allocating a
full-size image buffer.

Last edited on April 29, 1997 by Brian Paul.

139

140

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Performance Optimization

Contents

® 1. Hardware vs. Software
® 2. Application Organization
O 2.1 High Level Organization
O 2.2 Low Level Organization
® 3. OpenGL Optimization
3.1 Traversal
3.2 Transformation
3.3 Rasterization
3.4 Texturing
3.5 Clearing
3.6 Miscellaneous
3.7 Window System Integration
3.8 Mesa-specific
® 4. Evaluation and tuning
O 4.1 Pipeline tuning
O 4.2 Double buffering
O 4.3 Test on several implementations

O0OO0O0O0O00O0

1. Hardware vs. Software

OpenGL may be implemented by any combination of hardware and software. At the high-end, hardware
may implement virtually all of OpenGL while at the low-end, OpenGL may be implemented entirely in
software. In between are combination software/hardware implementations. More money buys more
hardware and better performance.

Intro-level workstation hardware and the recent PC 3-D hardware typically implement point, line, and
polygon rasterization in hardware but implement floating point transformations, lighting, and clipping in
software. This is a good strategy since the bottleneck in 3-D rendering is usually rasterization and
modern CPU'’s have sufficient floating point performance to handle the transformation stage.

141

OpenGL developers must remember that their application may be used on a wide variety of OpenGL
implementations. Therefore one should consider using all possible optimizations, even those which have
little return on the development system, since other systems may benefit greatly.

From this point of view it may seem wise to develop your application on a low-end system. There is a
pitfall however; some operations which are cheep in software may be expensive in hardware. The moral
is: test your application on a variety of systems to be sure the performance is dependable.

2. Application Organization

At first glance it may seem that the performance of interactive OpenGL applications is dominated by the
performance of OpenGL itself. This may be true in some circumstances but be aware that the
organization of the application is also significant.

2.1 High Level Organization

Multiprocessing

Some graphical applications have a substantial computational component other than 3-D rendering.
Virtual reality applications must compute object interactions and collisions. Scientific visualization
programs must compute analysis functions and graphical representations of data.

One should consider multiprocessing in these situations. By assigning rendering and computation to
different threads they may be executed in parallel on multiprocessor computers.

For many applications, supporting multiprocessing is just a matter of partitioning the render and
compute operations into separate threads which share common data structures and coordinate with
synchronization primitives.

SGI's Performer is an example of a high level toolkit designed for this purpose.
Image quality vs. performance

In general, one wants high-speed animation and high-quality images in an OpenGL application. If you
can’'t have both at once a reasonable compromise may be to render at low complexity during animation
and high complexity for static images.

Complexity may refer to the geometric or rendering attributes of a database. Here are a few examples.

® During interactive rotation (i.e. mouse button held down) render a reduced-polygon model. When
drawing a static image draw the full polygon model.

@ During animation, disable dithering, smooth shading, and/or texturing. Enable them for the static
image.

® |[f texturing is required, useL_NEARESTsampling anglHint(
GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST)

142

® During animation, disable antialiasing. Enable antialiasing for the static image.
® Use coarser NURBS/evaluator tesselation during animationgletsgyonMode(
GL_FRONT_AND_BACK, GL_LINE) to inspect tesselation granularity and reduce if possible.

Level of detail management and culling

Objects which are distant from the viewer may be rendered with a reduced complexity model. This
strategy reduces the demands on all stages of the graphics pipeline. Toolkits such as Inventor and
Performer support this feature automatically.

Objects which are entirely outside of the field of view may be culled. This type of high level cull testing
can be done efficiently with bounding boxes or spheres and have a major impact on performance. Again,
toolkits such as Inventor and Performer have this feature.

2.2 Low Level Organization

The objects which are rendered with OpenGL have to be stored in some sort of data structure. Some datz
structures are more efficient than others with respect to how quickly they can be rendered.

Basically, one wants data structures which can be traversed quickly and passed to the graphics library in
an efficient manner. For example, suppose we need to render a triangle strip. The data structure which
stores the list of vertices may be implemented with a linked list or an array. Clearly the array can be
traversed more quickly than a linked list. The way in which a vertex is stored in the data structure is also
significant. High performance hardware can process vertexes specified by a pointer more quickly than
those specified by three separate parameters.

An Example

Suppose we’re writing an application which involves drawing a road map. One of the components of the
database is a list of cities specified with a latitude, longitude and name. The data structure describing a
city may be:

struct city {
float latitute, longitude; /* city location */
char *name; [* city’s name */
int large_flag; /*0 =small, 1 =large */

k

A list of cities may be stored as an array of city structs.

Our first attempt at rendering this information may be:

void draw_cities(int n, struct city citylist[])
{
inti;
for (i=0; i < n; i++) {
if (citylist[i].large_flag) {
glPointSize(4.0);
}
else {
glPointSize(2.0);

143

}
glBegin(GL_POINTS);
glVertex2f(citylist[i].longitude, citylist[i].latitude);
glEnd();
glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
glCallLists(strlen(citylist[i].name),
GL_BYTE,
citylist[i].name);
}
}

This is a poor implementation for a number of reasons:

® glPointSize is called for every loop iteration.
® only one point is drawn betweegIBegin andglEnd
® the vertices aren’t being specified in the most efficient manner

Here’s a better implementation:

void draw_cities(int n, struct city citylist[])
{

inti;

/* draw small dots first */

glPointSize(2.0);

glBegin(GL_POINTS);

for (i=0; i < n;i++) {

if (citylist[i].large_flag==0) {
glVertex2f(citylist[i].longitude, citylist[i].latitude);

}
glEnd();
[* draw large dots second */
glPointSize(4.0);
glBegin(GL_POINTS);
for (i=0; i< n;i++){

if (citylist[i].large_flag==1) {

glVertex2f(citylist[i].longitude, citylist[i].latitude);

glEnd();
/* draw city labels third */
for (i=0; i < n;i++) {
glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
glCallLists(strlen(citylist[i].name),
GL_BYTE,

citylist[il.name);
}
}
In this implementation we’re only calling glPointSize twice and we’re maximizing the number of
vertices specified betweeiBegin andglEnd .

We can still do better, however. If we redesign the data structures used to represent the city information
we can improve the efficiency of drawing the city points. For example:

struct city _list {
int num_cities; /* how many cities in the list */

144

float *position; [* pointer to lat/lon coordinates */
char **name; [* pointer to city names */
float size; [* size of city points */

3

Now cities of different sizes are stored in separate lists. Position are stored sequentially in a dynamically
allocated array. By reorganizing the data structures we’ve eliminated the need for a conditional inside
thegiBegin/glEnd loops. Also, we can render a list of cities using@heEXT_vertex_array

extension if available, or at least use a more efficient versigiveafex andglRasterPos

[* indicates if server can do GL_EXT_vertex_array: */
GLboolean varray_available;

void draw_cities(struct city_list *list)

inti;
GLboolean use_begin_end;

/* draw the points */
glPointSize(list->size);

#ifdef GL_EXT_vertex_array
if (varray_available) {
glVertexPointerEXT(2, GL_FLOAT, 0, list->num_cities, list->position);
glDrawArrayseXT(GL_POINTS, 0, list->num_cities);
use_begin_end = GL_FALSE;
}
#else
use_begin_end = GL_TRUE;
#endif

if (use_begin_end) {
for (i=0; i < list->num_cities; i++) {
glVertex2fv(&position[i*2]);

}

[* draw city labels */
for (i=0; i < list->num_cities ;i++) {
glRasterPos2fv(list->position[i*2]);
glCallLists(strlen(list->nameli]),
GL_BYTE, list->name]i]);

}
}

As this example shows, it's better to know something about efficient rendering techniques before
designing the data structures. In many cases one has to find a compromize between data structures
optimized for rendering and those optimized for clarity and convenience.

In the following sections the techniques for maximizing performance, as seen above, are explained.

3. OpenGL Optimization

There are many possibilities to improving OpenGL performance. The impact of any single optimization

145

can vary a great deal depending on the OpenGL implementation. Interestingly, items which have a large
impact on software renderers may have no effect on hardware rendecevs;e versiaFor example,

smooth shading can be expensive in software but free in hardwaregwgbite can be cheap in

software but expensive in hardware.

After each of the following techniques look for a bracketed list of symbols which relates the significance
of the optimization to your OpenGL system:

® H - beneficial for high-end hardware

® L - beneficial for low-end hardware

® S - beneficial for software implementations

® all - probably beneficial for all implementations

3.1 Traversal

Traversal is the sending of data to the graphics system. Specifically, we want to minimize the time taken
to specify primitives to OpenGL.

Use connected primitives
Connected primitives such @s_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN andGL_QUAD_STRIPrequire fewer vertices to describe an object than
individual line, triangle, or polygon primitives. This reduces data transfer and transformation
workload. [all]

Use the vertex array extension
On some architectures function calls are somewhat expensive so replacing many
glVertex/glColor/gINormal calls with the vertex array mechanism may be very beneficial. [all]

Store vertex data in consecutive memory locations
When maximum performance is needed on high-end systems it’'s good to store vertex data in
contiguous memory to maximize through put of data from host memory to graphics subsystem.
[H.L]

Use the vector versions gifvertex , glColor , giNormal andglTexCoord
Theglvertex , glColor , etc. functions which take a pointer to their arguments such as
glVertex3fv(v) may be much faster than those which take individual arguments such as
glVertex3f(x,y,z) on systems with DMA-driven graphics hardware. [H,L]

Reduce quantity of primitives
Be careful not to render primitives which are over-tesselated. Experiment with the GLU
primitives, for example, to determine the best compromise of image quality vs. tesselation level.
Textured objects in particular may still be rendered effectively with low geometric complexity.
[all]

Display lists
Use display lists to encapsulate frequently drawn objects. Display list data may be stored in the
graphics subsystem rather than host memory thereby eliminating host-to-graphics data movement.
Display lists are also very beneficial when rendering remotely. [all]

146

Don’t specify unneeded per-vertex information
If lighting is disabled don’t caliiNormal . If texturing is disabled don’t cadlTexCoord , etc.

Minimize code betweegiBegin/glEnd
For maximum performance on high-end systems it's extremely important to send vertex data to the
graphics system as fast as possible. Avoid extraneous code bgiBegerglEnd

Example:

glBegin(GL_TRIANGLE_STRIP);
for (i=0; i < n; i++) {
if (lighting) {
gINormal3fv(normli]);
glVertex3fv(vert[i]);

glEnd();

This is a very bad construct. The following is much better:

if (lighting) {
glBegin(GL_TRIANGLE_STRIP);
for (i=0; i < n;i++) {
glNormal3fv(norm([i]);
glVertex3fv(vert[i]);

}
glEnd();

else {
glBegin(GL_TRIANGLE_STRIP);
for (i=0; i < n;i++) {
glVertex3fv(vert[i]);

}
glEnd();

Also consider manually unrolling important rendering loops to maximize the function call rate.

3.2 Transformation

Transformation includes the transformation of vertices fgtvartex to window coordinates, clipping
and lighting.

Lighting
O Avoid using positional lights, i.e. light positions should be of the form (x,y,z,0) [L,S]
O Avoid using spotlights. [all]
O Avoid using two-sided lighting. [all]
O Avoid using negative material and light color coefficients [S]
O Avoid using the local viewer lighting model. [L,S]
O Avoid frequent changes to tiee_SHININESS material parameter. [L,S]
O Some OpenGL implementations are optimized for the case of a single light source.

147

O Consider pre-lighting complex objects before rendering, ala radiosity. You can get the effect
of lighting by specifying vertex colors instead of vertex normals. [S]

Two sided lighting
If you want both the front and back of polygons shaded the same try using two light sources
instead of two-sided lighting. Position the two light sources on opposite sides of your object. That
way, a polygon will always be lit correctly whether it's back or front facing. [L,S]

Disable normal vector normalization when not needed
glEnable/Disable(GL_NORMALIZE) controls whether normal vectors are scaled to unit length
before lighting. If you do not usgScale you may be able to disable normalization without ill
effects. Normalization is disabled by default. [L,S]

Use connected primitives
Connected primitives such @s_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN andGL_QUAD_STRIPdecrease traversal and transformation load.

glRect usage
If you have to draw many rectangles consider ugiBepin(GL_QUADS) ...glEnd() instead. [all]

3.3 Rasterization

Rasterization is the process of generating the pixels which represent points, lines, polygons, bitmaps and
the writing of those pixels to the frame buffer. Rasterization is often the bottleneck in software
implementations of OpenGL.

Disable smooth shading when not needed
Smooth shading is enabled by default. Flat shading doesn’t require interpolation of the four color
components and is usually faster than smooth shading in software implementations. Hardware may
perform flat and smooth-shaded rendering at the same rate though there’s at least one case in
which smooth shading is faster than flat shading (E&S Freedom). [S]

Disable depth testing when not needed
Background objects, for example, can be drawn without depth testing if they’'re drawn first.
Foreground objects can be drawn without depth testing if they’re drawn last. [L,S]

Disable dithering when not needed
This is easy to forget when developing on a high-end machine. Disabling dithering can make a big
difference in software implementations of OpenGL on lower-end machines with 8 or 12-bit color
buffers. Dithering is enabled by default. [S]

Use back-face culling whenever possible.
If you're drawing closed polyhedra or other objects for which back facing polygons aren’t visible
there’s probably no point in drawing those polygons. [all]

The GL_SGI_cull_vertex extension

SGI's Cosmo GL supports a new culling extension which looks at vertex normals to try to improve
the speed of culling.

148

Avoid extra fragment operations
Stenciling, blending, stippling, alpha testing and logic ops can all take extra time during
rasterization. Be sure to disable the operations which aren’t needed. [all]

Reduce the window size or screen resolution
A simple way to reduce rasterization time is to reduce the number of pixels drawn. If a smaller
window or reduced display resolution are acceptable it's an easy way to improve rasterization
speed. [L,S]

3.4 Texturing

Texture mapping is usually an expensive operation in both hardware and software. Only high-end
graphics hardware can offer free to low-cost texturing. In any case there are several ways to maximize
texture mapping performance.

Use efficient image formats
TheGL_UNSIGNED_BYTEOmMponent format is typically the fastest for specifying texture images.
Experiment with the internal texture formats offered by@heEXT_texture extension. Some
formats are faster than others on some systems (16-bit texels on the Reality Engine, for example).
[all]

Encapsulate texture maps in texture objects or display lists
This is especially important if you use several texture maps. By putting textures into display lists
or texture objects the graphics system can manage their storage and minimize data movement
between the client and graphics subsystem. [all]

Use smaller texture maps
Smaller images can be moved from host to texture memory faster than large images. More small
texture can be stored simultaneously in texture memory, reducing texture memory swapping. [all]

Use simpler sampling functions
Experiment with the minification and magnification texture filters to determine which performs
best while giving acceptable results. Generally, GL_NEAREST is fastest and GL_LINEAR is
second fastest. [all]

Use a simpler texture environment function
Some texture environment modes may be faster than others. For example ptbeALor
GL_REPLACE_EXTunctions for 3 component textures is a simple assignment of texel samples to
fragments whilesL_MODULATE a linear interpolation between texel samples and incoming
fragments. [S,L]

Combine small textures
If you are using several small textures consider tiling them together as a larger texture and modify
your texture coordinates to address the subtexture you want. This technique is a good way to
eliminate texture binding time.

Use glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST)
This hint can improve the speed of texturing when perspective- correct texture coordinate

149

interpolation isn’t needed, such as when using a glOrtho() projection.

Animated textures
If you want to use an animated texture, perhaps live video textures, dogitaxs@age2D to
repeatedly change the texture. |ds@xSublmage2D Or giTexCopyTexSubimage2D . These
functions are standard in OpenGL 1.1 and available as extensions to 1.0.

3.5 Clearing

Clearing the color, depth, stencil and accumulation buffers can be time consuming, especially when it
has to be done in software. There are a few tricks which can help.

UsegiClear carefully [all]
Clear all relevant color buffers with ogelear

Wrong:

glClear(GL_COLOR_BUFFER_BIT);
if (stenciling) {
glClear(GL_STENCIL_BUFFER_BIT);

Right:

if (stenciling) {
glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

else {
glClear(GL_COLOR_BUFFER_BIT);

Disable dithering
Disable dithering before clearing the color buffer. Visually, the difference between dithered and
undithered clears is usually negligable.

Use scissoring to clear a smaller area
If you don't need to clear the whole buffer yg&issor() to restrict clearing to a smaller area.

L.

Don’t clear the color buffer at all

If the scene you're drawing opaquely covers the entire window there is no reason to clear the color
buffer.

Eliminate depth buffer clearing
If the scene you're drawing covers the entire window there is a trick which let’s you omit the
depth buffer clear. The idea is to only use half the depth buffer range for each frame and alternate
between using GL_LESS and GL_GREATER as the depth test function.

Example:

150

int EvenFlag;

/* Call this once during initialization and whenever the window
*is resized.

*/

void init_depth_buffer(void)

{

glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
glDepthRange(0.0, 0.5);
glDepthFunc(GL_LESS);
EvenFlag = 1;

}

/* Your drawing function */
void display_func(void)

if (EvenFlag) {
glDepthFunc(GL_LESS);
glDepthRange(0.0, 0.5);

else {
glDepthFunc(GL_GREATER);
glDepthRange(1.0, 0.5);

EvenFlag = !|EvenFlag;

/* draw your scene */

}

Avoid gIClearDepth(d) where d!=1.0
Some software implementations may have optimized paths for clearing the depth buffer to 1.0. [S]

3.6 Miscellaneous

Avoid "round-trip" calls
Calls such asiGetFloatv, glGetintegerv, glisEnabled, giGetError, glGetString
require a slow, round trip transaction between the application and renderer. Especially avoid them
in your main rendering code.

Note that software implementations of OpenGL may actually perform these operations faster than
hardware systems. If you're developing on a low-end system be aware of this fact. [H,L]

Avoid glPushAttrib
If only a few pieces of state need to be saved and restored it's often faster to maintain the
information in the client programlPushAttrib(GL_ALL_ATTRIB_BITS) in particular can be
very expensive on hardware systems. This call may be faster in software implementations than in
hardware. [H,L]

Check for GL errors during development
During development cadiiGetError inside your rendering/event loop to catch errors. GL errors
raised during rendering can slow down rendering speed. Remoyiedtmror call for
production code since it’s a "round trip" command and can cause delays. [all]

151

UseglColorMaterial instead otiMaterial
If you need to change a material property on a per vertex hasisyMaterial may be faster
thangiMaterial . [all]

glDrawPixels
O glDrawPixels often performs best withL_UNSIGNED_BYTEOlor components [all]
O Disable all unnecessary raster operations before calbngyvPixels . [all]
O Use the GL_EXT_abgr extension to specify color components in alpha, blue, green, red order on
systems which were designed for IRIS GL. [H,L].

Avoid using viewports which are larger than the window
Software implementations may have to do additional clipping in this situation. [S]

Alpha planes
Don’t allocate alpha planes in the color buffer if you don’'t need them. Specifically, they are not
needed for transparency effects. Systems without hardware alpha planes may have to resort to a
slow software implementation. [L,S]

Accumulation, stencil, overlay planes
Do not allocate accumulation, stencil or overlay planes if they are not needed. [all]

Be aware of the depth buffer's depth
Your OpenGL may support several different sizes of depth buffers- 16 and 24-bit for example.
Shallower depth buffers may be faster than deep buffers both for software and hardware
implementations. However, the precision of of a 16-bit depth buffer may not be sufficient for some
applications. [L,S]

Transparency may be implemented with stippling instead of blending
If you need simple transparent objects consider using polygon stippling instead of alpha blending.
The later is typically faster and may actually look better in some situations. [L,S]

Group state changes together
Try to mimimize the number of GL state changes in your code. When GL state is changed, internal
state may have to be recomputed, introducing delays. [all]

Avoid usingglPolygonMode
If you need to draw many polygon outlines or vertex pointgBegin with GL_POINTS,
GL_LINES, GL_LINE_LOOP orGL_LINE_STRIP instead as it can be much faster. [all]

3.7 Window System Integration

Minimize calls to thenake currentall
TheglxMakeCurrent call, for example, can be expensive on hardware systems because the
context switch may involve moving a large amount of data in and out of the hardware.

Visual / pixel format performance

Some X visuals or pixel formats may be faster than others. On PCs for example, 24-bit color
buffers may be slower to read/write than 12 or 8-bit buffers. There is often a tradeoff between

152

performance and quality of frame buffer configurations. 12-bit color may not look as nice as 24-bit
color. A 16-bit depth buffer won’t have the precision of a 24-bit depth buffer.

TheGLX_EXT_visual_rating extension can help you select visuals based on performance or
quality. GLX 1.2’svisual caveatttribute can tell you if a visual has a performance penalty
associated with it.

It may be worthwhile to experiment with different visuals to determine if there’s any advantage of
one over another.

Avoid mixing OpenGL rendering with native rendering
OpenGL allows both itself and the native window system to render into the same window. For this
to be done correctly synchronization is needed. The @kWaitx andgliXwaitGL functions
serve this purpose.

Synchronization hurts performance. Therefore, if you need to render with both OpenGL and native
window system calls try to group the rendering calls to minimize synchronization.

For example, if you're drawing a 3-D scene with OpenGL and displaying text with X, draw all the
3-D elements first, cafixwaitGL to synchronize, then call all the X drawing functions.

Don’t redraw more than necessary
Be sure that you’re not redrawing your scene unnecissarily. For example, expose/repaint events
may come in batches describing separate regions of the window which must be redrawn. Since one
usually redraws the whole window image with OpenGL you only need to respond to one
expose/repaint event. In the case of X, look at the count field of the XExposeEvent structure. Only
redraw when it is zero.

Also, when responding to mouse motion events you should skip extra motion events in the input
gueue. Otherwise, if you try to process every motion event and redraw your scene there will be a
noticable delay between mouse input and screen updates.

It can be a good idea to put a print statement in your redraw and event loop function so you know
exactly what messages are causing your scene to be redrawn, and when.

SwapBuffer calls and graphics pipe blocking
On systems with 3-D graphics hardware the SwapBuffers call is synchronized to the monitor’s
vertical retrace. Input to the OpenGL command queue may be blocked until the buffer swap has
completed. Therefore, don’t put more OpenGL calls immediately after SwapBuffers. Instead, put
application computation instructions which can overlap with the buffer swap delay.

3.8 Mesa-specific

Mesa is a free library which implements most of the OpenGL API in a compatible manner. Since it is a
software library, performance depends a great deal on the host computer. There are several
Mesa-specific features to be aware of which can effect performance.

Double buffering

153

The X driver supports two back color buffer implementations: Pixmaps and Xlmages. The
MESA BACK_BUFFER environment variable controls which is used. Which of the two that’s
faster depends on the nature of your rendering. Experiment.

X Visuals
As described above, some X visuals can be rendered into more quickly than others. The
MESA_RGB_VISUAlenvironment variable can be used to determine the quickest visual by
experimentation.

Depth buffers
Mesa may use a 16 or 32-bit depth buffer as specified in the src/config.h configuration file. 16-bit
depth buffers are faster but may not offer the precision needed for all applications.

Flat-shaded primitives
If one is drawing a number of flat-shaded primitives all of the same colgidfler command
should be put before thgBegin call.

Don’t do this:

glBegin(...);
glColor(...);
glVertex(...);

glENd();

Do this:

glColor(...);

glBegin(...);
glVertex(...);

glENd();

glColor*() commands
TheglColor[34]ub[v] are the fastest versions of #hieolor command.

Avoid double precision valued functions
Mesa does all internal floating point computations in single precision floating point. API functions
which take double precision floating point values must convert them to single precision. This can
be expensive in the case of glVertex, gINormal, etc.

4. Evaluation and Tuning

To maximize the performance of an OpenGL applications one must be able to evaluate an application to
learn what is limiting its speed. Because of the hardware involved it's not sufficient to use ordinary
profiling tools. Several different aspects of the graphics system must be evaluated.

154

Performance evaluation is a large subject and only the basics are covered here. For more information see
"OpenGL on Silicon Graphics Systems".

4.1 Pipeline tuning
The graphics system can be divided into three subsystems for the purpose of performance evaluation:

® CPU subsystem application code which drives the graphics subsystem
® Geometry subsystem transformation of vertices, lighting, and clipping
® Rasterization subsystem drawing filled polygons, line segments and per-pixel processing

At any given time, one of these stages will be the bottleneck. The bottleneck must be reduced to improve
performance. The strategy is to isolate each subsystem in turn and evaluate changes in performance. Fot
example, by decreasing the workload of the CPU subsystem one can determine if the CPU or graphics
system is limiting performance.

4.1.1 CPU subsystem

To isosulate the CPU subsystem one must reduce the graphics workload while presevering the
application’s execution characteristics. A simple way to do this is to replacex() andgiNormal
calls withgliColor calls. If performance does not improve then the CPU stage is the bottleneck.

4.1.2 Geometry subsystem

To isoslate the geometry subsystem one wants to reduce the number of primitives processed, or reduce
the transformation work per primitive while producing the same number of pixels during rasterization.
This can be done by replacing many small polygons with fewer large ones or by simply disabling
lighting or clipping. If performance increases then your application is bound by geometry/transformation
speed.

4.1.3 Rasterization subsystem

A simple way to reduce the rasterization workload is to make your window smaller. Other ways to
reduce rasterization work is to disable per-pixel processing such as texturing, blending, or depth testing.
If performance increases, your prograniilidimited.

After bottlenecks have been identified the techniques outlined in section 3 can be applied. The process
of identifying and reducing bottlenecks should be repeated until no further improvements can be made
or your minimum performance threshold has been met.

4.2 Double buffering

For smooth animation one must maintain a high, constant frame rate. Double buffering has an important
effect on this. Suppose your application needs to render at 60Hz but is only getting 30Hz. It's a mistake
to think that you must reduce rendering time by 50% to achive 60Hz. The reason is the swap-buffers
operation is synchronized to occur during the display’s vertical retrace period (at 60Hz for example). It
may be that your application is taking only a tiny bit too long to meet the 1/60 second rendering time
limit for 60Hz.

155

Measure the performance of rendering in single buffer mode to determine how far you really are from
your target frame rate.

4.3 Test on several implementations

The performance of OpenGL implementations varies a lot. One should measure performance and test
OpenGL applications on several different systems to be sure there are no unexpected problems.

Last edited on April 14, 1997 by Brian Paul.

156

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Portability Notes

Contents

® 1. Introduction
® 2. OpenGL Limits
® 3. OpenGL Bugs

1. Introduction

Though OpenGL is an extremely portable 3-D graphics API there are some things to be careful of.
OpenGL has some built-in limits and there are a number of too-common implementation errors that
OpenGL developers should be aware of to ensure portability.

2. OpenGL Limits

The OpenGL specification calls for certain minimum requirements in any OpenGL implementation.
These limits may be extended in some implementations but to be safe, developers should be aware of the
minimum requirements.

Limits may be queried with theGetinteger ~ and related functions.

Texture Size
Implementations must support textures of at least 64 by 64 texels. Larger textures are usually
supported but consider the possibility that you may be limited to 64 by 64. 512 by 512 is a
common limit.

The maximum texture size can also depend on whether you're using texture borders or
mipmapping. OpenGL 1.1 and the GL_EXT_texture extension offer proxy textures which better
indicate the maximum texture size thf@et .

Pixel Maps
Pixel mapsdiPixelMap) must support at least 32 entries. Larger maps of 256 or 4096 entries are

157

common.

Selection stack
The selection stack may be as small as 64 names.

Evaluators
Evaluators may be limited to 8 control points. A larger number of control points is frequently
supported.

Stacks Depths
The MODELVIEW matrix stack size is at least 32 matrices.

The PROJECTION matrix stack size is at least 2 matrices.
The TEXTURE matrix stack size is at least 2 matrices.

The attribute stack size is at least 16. Similarly, the client attribute stack (OpenGL 1.1) size is at
least 16.

Point and line sizes
Maximum point size may be 1 pixel. Maximum line width may be 1 pixel. Antialiased points and
lines are often limited to one size.

Viewports
The maximum viewport size may be limited to your screen size. Frequently, the maximum
viewport size is 2048 by 2048.

Lights
At least eight light sources must be available. Seldom are more supported.

Clipping Planes
At least six user-definable clipping planes must be available. Seldom are more supported.

3. OpenGL Bugs

Unfortunately, OpenGL implementations often have some minor (and occasionally, major) bugs.
Typically, these bugs are found in the more obscure corners of OpenGL so they don’t effect most
applications.

In some cases the hardware is at fault and the likelihood of a fix is slim, short of hardware redesign. In
other cases a subsequent OpenGL software release may fix the problem.

Here are some tips on dealing with OpenGL bugs:
® Read your system’s OpenGL release notes. They often include lists of known bugs and

work-arounds.

158

® Read the man pages for OpenGL commands which you suspect may have bugs. They're often
document at the end.

® |f you've found an undocumented OpenGL bug check if a new release of the software is available.

® Finally, if you've really found a new bug you should report it to your OpenGL vendor. If you can
provide a simple test case with the bug report you’ll make it much easier for the vendor to verify
and hopefully fix the bug.

Here is a small collection of known OpenGL problems discovered from personal experiease.
notethat the following information may become obsolete at any time upon the release of updated
software.

Texture borders
Texture borders are not supported on some systems such as the SGI Infinite Reality system.
Luckily, the functionality provided by texture borders can be achieved with the
GL_SGIS_texture_border_clamp and GL_SGIS_texture_edge_clamp extensions.

It's probably best to avoid using OpenGL texture borders in general.

Texture formats
Several SGI systems (Impact and possibly Reality Engine) don’t support GL_ALPHA (internal
format) textures.

glTeximage error checking
glTeximage[12]D doesn’t generate an error if the texture sizes are not powers of two on some SGI
systems.

Line Stippling
The line stipple counter isn’t reset upon glBegin() on SGI Impact and IR systems.

Texture objects
Texture objects which are shared by several rendering contexts don’t work correctly on SGI
Impact systems.

Last edited on April 14, 1997 by Brian Paul.

159

160

Togl - a Tk OpenGL widget

Version 1.2

Copyright (C) 1996 Brian Paul and Ben Bederson

Introduction

Togl is a Tk widget for OpenGL rendering. Togl is originally based on OGLTK, written by Benjamin
Bederson at the University of New Mexico. Togl adds the new features:

® color-index mode support including color allocation functions

® support for requesting stencil, accumulation, alpha buffers, etc

® multiple OpenGL drawing widgets

® OpenGL extension testing from Tcl

® simple, portable font support
Togl allows one to create and manage a special Tk/OpenGL widget with Tcl and render into it with a C
program. That is, a typical Togl program will have Tcl code for managing the user interface and a C
program for computations and OpenGL rendering.

Togl is copyrighted by Brian Paul (brianp@elastic.avid.com) and Benjamin Bederson
(bederson@cs.unm.edu). See the LICENSE file for details.

The Togl WWW page is available from:

® Wisconsin at http://www.ssec.wisc.edu/~brianp/Togl.html
® New Mexico at http://www.cs.unm.edu/~bederson/Togl.html

Prerequisites
You should have Tcl and Tk installed on your computer, including the Tk source code files. Togl has

been tested with Tcl 7.4/Tk 4.0, Tcl 7.5/Tk 4.1 and Tcl 7.6/Tk 4.2 at this time. It is currently configured
for Tcl7.6/Tk4.2.

You must also have OpenGL or Mesa (a free alternative to OpenGL) installed on your computer.

One should be familiar with Tcl, Tk, OpenGL, and C programming to use Togl effectively.

Getting Togl

161

The current version of Togl is 1.2. You may download it from either:

® \Wisconsin at ftp://iris.ssec.wisc.edu/pub/misc/Togl-1.2.tar.gz
® New Mexico at ftp://ftp.cs.unm.edu/pub/bederson/Togl-1.2.tar.gz

Togl may also be obtained manually with ftp:

® Host: iris.ssec.wisc.edu

® Login: anonymous

® Password: your email address
® Directory: pub/misc

® File: Togl-1.2.tar.gz

The Makefile included with Togl is configured for SGI systems. It shouldn’t be hard to adapt it for
others. In practice, you'll just add togl.c to your application’s Makefile.

Using Togl With Your Application

Since the Togl code is in just three files (togl.c, togl.h and tkint.h) it's probably most convenient to just
include those files with your application sources. The Togl code could be made into a library but that's
not necessary.

C Togl Functions

These are the Togl commands one may call from a C program.

#include "togl.h"

Setup and Initialization Functions

int Togl_Init(Tcl_Interp *interp)
Initializes the Togl module. This is typically called from the Tk_Main() callback function.

void Togl_CreateFunc(Togl_Callback *proc)
void Togl_DisplayFunc(Togl_Callback *proc)
void Togl_ReshapeFunc(Togl_Callback *proc)
void Togl_DestroyFunc(Togl_Callback *proc)

Register C functions to be called by Tcl/Tk when a widget is realized, must be redrawn, is resized,
or is destroyed respectively.

Each C callback must be of the form:

void callback(struct Togl *togl)
{

...your code...

162

void Togl_CreateCommand(char *cmd_name, Togl_CmdProc *cmd_proc)
Used to create a new Togl sub-command. The C function which implements the command must be
of the form:

int callback(struct Togl *togl, int argc, char *argv[])

...your code...
return TCL_OK or TCL_ERROR;

}

Drawing-related Commands

void Togl_PostRedisplay(struct Togl *togl)
Signals that the widget should be redrawn. When Tk is next idle the user’s C render callback will
be invoked. This is typically called from within a Togl sub-command which was registered with
Togl_CreateCommandy().

void Togl_SwapBuffers(struct Togl *togl)
Swaps the front and back color buffers for a double-buffered widget. glFlush() is executed if the
window is single-buffered. This is typically called in the rendering function which was registered
with Togl_DisplayFunc().

Query Functions

char *Togl_ldent(struct Togl *togl)
Returns a pointer to the identification string associated with an Togl widget or NULL if there’s no
identifier string.

int Togl_Width(struct Togl *togl)
Returns the width of the given Togl widget. Typically called in the function registered with
Togl_ReshapeFunc().

int Togl_Height(struct Togl *togl)
Returns the height of the given Togl widget. Typically called in the function registered with
Togl_ReshapeFunc().

Tcl_Interp *Togl_Interp(struct Togl *togl)
Returns the Tcl interpreter associated with the given Togl widget.

Color Index Mode Functions

These functions are only used for color index mode.

unsigned long Togl_AllocColor(struct Togl *togl, float red, float green, float blue

)
Allocate a color from a read-only colormap. Given a color specified by red, green, and blue return
a colormap index (aka pixel value) whose entry most closely matches the red, green, blue color.
Red, green, and blue are values in [0,1]. This function is only used in color index mode when the

163

-privatecmap option is false.

void Togl_FreeColor(struct Togl *togl, unsigned long index)
Free a color in a read-only colormap. Index is a value which was returned by the
Togl_AllocColor() function. This function is only used in color index mode when the
-privatecmap option is false.

void Togl_SetColor(struct Togl *togl, int index, float red, float green, float blue

)
Load the colormap entry specified by index with the given red, green and blue values. Red, green,
and blue are values in [0,1]. This function is only used in color index mode when the -privatecmap
option is true.

Font Functions

GLuint Togl_LoadBitmapFont(struct Togl *togl, const char *fontname)
Load the named font as a set of gIBitmap display Ifststhamemay be one of

TOGL_BITMAP_8 BY_13

TOGL_BITMAP_9 BY_15

TOGL_BITMAP_TIMES_ROMAN_10

TOGL_BITMAP_TIMES_ROMAN_24

TOGL_BITMAP_HELVETICA_10

TOGL_BITMAP_HELVETICA_12

TOGL_BITMAP_HELVETICA_18

or any X11 font name

Zero is returned if this function fails.

After Togl_LoadBitmapFont() has been called, returrimigtbase you can render a strirggwith:
glListBase(fontbase);
glCallLists(strlen(s), GL_BYTE, s);

(ONoNoNoNONONONG)

void Togl_UnloadBitmapFont(struct Togl *togl, GLuint fontbase)
Destroys the bitmap display lists created by by Togl LoadBitmapFont().

Client Data Functions

void Togl_SetClientData(struct Togl *togl, ClientData clientData)
clientDatais a pointer to an arbitrary user data structure. Each Togl struct has such a pointer. This
function set’s the Togl widget's client data pointer.

ClientData Togl_GetClientData(const struct Togl *togl)

clientDatais a pointer to an arbitrary user data structure. Each Togl struct has such a pointer. This
function returns the Togl widget’s client data pointer.

Overlay Functions
These functions are modelled after GLUT’s overlay sub-API.

void Togl_UseLayer(struct Togl *togl, int layer)

164

Select the layer into which subsequent OpenGL rendering will be diréatedmay be either
TOGL_OVERLAYr TOGL_NORMAL

void Togl_ShowOverlay(struct Togl *togl)
Display the overlay planes, if any.

void Togl_HideOverlay(struct Togl *togl)
Hide the overlay planes, if any.

void Togl_PostOverlayRedisplay(struct Togl *togl)
Signal that the overlay planes should be redraw. When Tk is next idle the user’s C overlay display
callback will be invoked. This is typically called from within a Togl sub-command which was
registered with Togl CreateCommand().

void Togl_OverlayDisplayFunc(Togl_Callback *proc)
Registers the C callback function which should be called to redraw the overlay planes. This is the
function which will be called in response to Togl PostOverlayRedisplay(). The callback must be
of the form:

void RedrawOverlay(struct Togl *togl)

{

...your code...

}

Tcl Togl commands

These are the Togl commands one may call from a Tcl program.
togl pathName [options]

Creates a new togl widget with narpathNameand an optional list of configuration options.
Options include:

Option Default Comments

-width 400 Width of widget in pixels.
-height 400 Height of widget in pixels.

-ident " A user identification string ignored by togl.
This can be useful in your C callback functions
to determine which Togl widget is the caller.

-rgba true |If true, use RGB(A) mode
If false, use Color Index mode
-double false If false, request a single buffered window
If true, request double buffered window
-depth false If true, request a depth buffer
-accum false |If true, request an accumulation buffer

165

-alpha false If true and -rgba is true, request an alpha
channel

-stencil false If true, request a stencil buffer

-privatecmap false Only applicable in color index mode.
If false, use a shared read-only colormap.
If true, use a private read/write colormap.

-overlay false If true, request overlay planes.

-stereo false If true, request a stereo-capable window.

pathName configure
Returns all configuration records for the named togl widget.

pathName configure -option

Returns configuration information for the specitggtionwhich may be one of:
-width

Returns the width configuration of the widget in the form:

-width width Width ww

whereW is the default width in pixels amvdis the current width in pixels
-height

Returns the height configuration of the widget in the form:

-height height Height H h

whereH is the default height in pixels ahds the current height in pixels
-extensions

Returns a list of OpenGL extensions available. For examBpl&EXT_polygon_offset
GL_EXT_vertex_array

pathName configure -option value
Reconfigure an togl widgedptionmay be one of:
-width
Resize the widget tealuepixels wide
-height
Resize the widget tealuepixels high

pathName render
Causes the render callback function to be callegpdnName

pathName swapbuffers
Causes front/back buffers to be swapped if in double buffer mode.

pathName makecurrent
Make the widget specified hyathNamehe current one.

Demo programs

There are three demo programs:

166

® double - compares single vs double buffering with two Togl widgets
® texture - lets you play with texture mapping options
® index - demo of using color index mode

To compile the demos, edit the Makefile to suit your system, then type "make". The Makefile currently
works with Linux. To run a demo just type "double" or "texture" or "index".

Reporting Bugs
If you find a bug in Togl please report it to both Ben and Brian. When reporting bugs please provide as

much information as possible. Also it's very helpful to us if you can provide an example program which
demonstrates the problem.

Version History

Version 1.0, March 1996

® Initial version

Version 1.1 (never officially released)

® Added Togl_LoadBitmapFont function
® Fixed a few bugs

Version 1.2, November 1996

® added swapbuffers and makecurrent Tcl commands
® More bug fixes

® Upgraded to suport Tcl 7.6 and Tk 4.2

® Added stereo and overlay plane support

® Added Togl_Get/SetClientData() functions

® Added Togl_DestroyFunc()

Future plans

® Port to Windows NT

Last edited on December 14, 1996 by Brian Paul.

167

168

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

OpenGL Toolkit Choices

Contents

. Introduction

. GLX and Xlib

. AGL, PGL and WGL (GLX-like) interfaces
. Xt/Motif

. GLUT

. aux/tk

. Tel/Tk

. XForms

. Inventor

10. Performer

11. OpenGL Optimizer

12. OpenGL++ / OpenGL Scene Graph
13. Others

OCO~NOOITDA,WNPEF

1. Introduction

A 3-D graphics application has two important components: the graphics library and user interface
toolkit. While choosing OpenGL as the graphics library may be an easy choice, the decision of which
GUI toolkit to use is not.

A number of factors influence the toolkit selection:

® Size, complexity and purpose of applicationa simple graphics demo will have different user
interface requirements than a 3-D modeller, for example.

® Target platform: few toolkits work on more than one operating system or window system.

® Free vs commercial applicationa commercial application may have more stringent GUI
requirements than a free program.

® Free vs commercial toolkit some toolkits are free, others aren't.

This document presents a survey of toolkit options for the OpenGL application programmer. For each
toolkit the following attributes are discussed:

169

Overview: Basic information about the toolkit or interface.
OpenGL integration method: How does the toolkit/interface work?
Appropriate uses When is this toolkit most appropriate to use?
Advantages What are the pros of this toolkit?

DisadvangesWhat are the cons of this toolkit?

ReferencesWhere to find more information.

2. GLX and Xlib

Overview
GLX is the OpenGL extension to X. It provides the "glue" functions for integrating OpenGL with
the X window system in C or C++. GLX is also the protocol which allows remote display of
OpenGL on X suitable X servers. While Xlib is not a user interface toolkit, it is a means of
integrating OpenGL into an X application.

OpenGL integration method
Functions are provided to select OpenGL-enhanced visuals, create rendering contexts, bind
contexts to X windows, synchronize with X, swap color buffers, etc.

Appropriate uses
Any X-based application may use the GLX interface. Toolkits build on X such as Xt/Motif and
GLUT are built on top of GLX and hide its details.

Advantages
O Low level: complete access to unique facilities of the hardware (stereo, overlay planes,
multi-sampling, etc)
O It's the standard low level X/OpenGL interface.

Disadvantages
O Low level: does not provide GUI elements such as menus and buttons
O limited to X-based (and usually Unix-based) systems
O requires considerable Xlib knowledge

References:
O Appendix D of the OpenGL Programming Guide from Addison-Wesley
O Introduction to OpenGL and X, Part 1: An Introduction by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.intro/intro.html)
O Introduction to OpenGL and X, Part 2: Using OpenGL with Xlib by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.xlib/xlib.html)

3. AGL, PGL and WGL (GLX-like) interfaces

Overview

170

There are OpenGL glue libraries for other window systems such as IBM’s Presentation Manager
(PGL), Macintosh (AGL), and Microsoft Windows (WGL for NT and '95). These interfaces are
similar to GLX in functionality and API design. Function bindings are typically only availabe for

C and C++.

OpenGL integration method
Again, functions are provided to select visual/pixel formats, create/bind rendering contexts,
synchronize with the window system, swap color buffers, etc.

Appropriate uses
These low level interfaces are often needed for any OpenGL application on a PC or Mac since
higher level toolkits don’t encapsulate them. Caveat: There is an effort among OS/2 developers to
write a PGL wrapper for PM.

Advantages
O provide access to all OpenGL/window system integration features (off-screen rendering, font
handling, etc.)

Disadvantages
O requires knowledge of details specific to the window system

References

O IBM's OpenGL for OS/2 (http://www.austin.ibm.com/software/OpenGL/)

O OpenGL for OS/2 FAQ (http://www.utsi.com/~kgl/os2-opengl/fag.html)

O IBM'’s The OpenGL libraries for OS/2
(ftp://ftp.austin.ibm.com/pub/developer/os2/OpenGL/)

O OpenGL for Microsoft Windows '95 and NT
(http://www.sgi.com/Technology/openGL/vendor/microsoft.html)

O OpenGL for the Macintosh from Conix Graphics (http://www.conix3d.com/)

4. Xt/Motif

Overview
Xt is the X Toolkit Instrinsics, a library built on Xlib designed to support user interface toolkits.
Motif is a popular widget set built on Xt. Xt and Motif may be used with C/C++.

OpenGL integration method
The special GLwMDrawingArea widget supports OpenGL rendering. The IRIS ViewKit library
provides a framework which offers an OpenGL widget as well.

Appropriate uses
Commercial, professional applications for the X environment.

Advantages

O Motif is standardized and full featured.
O Other widget sets are available: Athena, OPEN LOOK.

171

Disadvantages
O Xt/Motif is large and complicated
O Probably overkill for small applications
O Motif is not free

References
O OpenGL and X, Part 3: Integrating OpenGL with Motif by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.motif/motif.html)
O Programming OpenGL with the X Window SyskgnMark Kilgard

5. GLUT

Overview
The GL Utility Toolkit, written by Mark Kilgard, is a free, portable toolkit which provides
functions for creating windows, pop-up menus, event handling, drawing simple geometric
primitives and much more.

GLUT will replace aux in the next edition of the OpenGL Programming Guide.

OpenGL integration method
GLUT is built on top of OpenGL and the underlying window system. It has a simple C/C++ API.
Simply make GLUT calls to create windows and setup event handling then make OpenGL calls to
draw your imagery.

Appropriate uses
O applications which don’t require a sophisticated GUI
O teaching, instruction, experimentation
O demos

Advantages

O free

O simple

O portable; operating system and window system independent. Available for Xlib, Windows
'95/NT, and OS/2.

O provides access to advanced input devices, stereo viewing, overlay planes, etc

O the GLUT source code provides excellent examples of programming advanced OpenGL and
window system features.

Disadvantages
O doesn’t provide the user interface elements such as buttons and sliders needed for many
applications

References

O GLUT 3.0 WWW page by Mark Kilgard
(http://reality.sgi.com/employees/mijk_asd/glut3/glut3.html)

172

O Programming OpenGL with the X Window SysbgnMark Kilgard
O GLUT for Windows '95/NT by Nate Robins. (http://www.cs.utah.edu/~narobins/opengl.html)

6. aux/tk

Overview
aux and tk (not to be confused with Tcl/Tk) are simple OpenGL toolkits developed by SGI for the
OpenGL Programming Guide (first edition) and for OpenGL demos. They are very similar to each
other, often only different in function prefixes. The major features of aux/tk are window creation
and event handling.

These toolkits are very limited in functionality and are not intended for any sort of application
development. The GLUT toolkit does everything that aux/tk does plus much more and should be
prefered over aux/tk in any situation.

OpenGL integration method
tk is built on top of Xlib/GLX. aux has been implemented on several window systems and in the
case of X, implemented on top of tk.

Appropriate uses
Small demo programs and examples from the OpenGL programming Glidd.is a much
better choice

Advantages
O small and simple
O aux is available on several operating systems

Disadvantages
O very limited funtionality
O several different APl implementations of aux exist
O has no features which GLUT doesn’t also provide

References
O OpenGL Programming Guide (first edition) from Addison-Wesley
O A README documentat is included with most implementations

7. Tcl/Tk

Overview
Tcl is a popular, free, interpreted "script" language invented by John Ousterhout. Tk is a graphics
user interface toolkit for Tcl. Tcl/Tk handles user interface and event processing while C is used
for computation and rendering. Originally designed for X, both are now available for Windows
and Macintosh systems.

173

OpenGL integration method
1. A number of free OpenGL/Tk widgets are available which allow one to create OpenGL
"canvases" from Tk. Rendering is done from C code calling the OpenGL API.
2. Another approach taken by several people is to provide Tcl/Tk wrappers for all OpenGL
function so an application may be written with Tcl/Tk alone.

Appropriate uses
O Good for demos through large applications.
O Good for experimentation, learning and small programs.

Advantages
O Free
O Easy to learn
O Full featured GUI
O Quick prototyping
O Tcl/Tk applications are portable across Unix, Windows, and Mac.
O hides low level details of GUI/OpenGL integration

Disadvantages
O OpenGL/Tk support not available on Windows or Macintosh at this time.
O Since Tcl is interpreted it may not meet the demands of high performance applications.

References

O TIGER by Ekkehard Beier of the Technical University of Imenau, Germany
(ftp://metallica.prakinf.tu-ilmenau.de/pub/PROJECTS/TIGER1.0)

O TKOGL - a Tk OpenGL widget by Claudio Esperanca of Brazil
(http://aquarius.lcg.ufrj.br/~esperanc/tkogl.html)

O OGLTK by Benjamin Bederson of the University of New Mexico
(http://www.cs.unm.edu/~bederson/ogl.html)

O Togl (http://www.ssec.wisc.edu/~brianp/Togl.html)

8. XForms

Overview
XForms is a free X-based GUI toolkit written by T. C. Zhao based on the original Forms library by
Mark Overmars.

OpenGL Integration method
A special OpenGL canvas can be created for OpenGL rendering.

Appropriate use
Small to large applications and demos.

Advantages
O Free

174

O Easy to use
O Available for most Unix/X workstations

Disadvantages
O OpenGL integration is minimal, one would have to modify the OpenGL canvas code if you
need anything more than double buffered RGB rendering.
O May not be as powerful as Motif

References
O XForms home page (http://bragg.phys.uwm.edu/~zhao/xforms_home.html)

9. Inventor

Overview
A high-level 3-D graphics toolkit for C and C++ built on top of OpenGL. Inventor provides
object-oriented database construction, rendering, interaction, file 1/0, etc.

OpenGL Integration method
Inventor provides library functions for creating OpenGL- rendering windows. However, lower
level window system integration (Xt) is also allowed.

Appropriate uses
Interactive, "object"-oriented graphical applications, possibly in conjuction with a GUI toolkit
such as Motif.

Advantages
O provides powerful high-level graphics structures and interaction
O object/model file 110
O now available on many platforms from vendors such as Template Graphics Software and
Portable Graphics

Disadvantages
O not free
O doesn't in itself provide all the GUI elements needed for full applications

References
O Open Inventor home page at SGI (http://www.sgi.com/Technology/Inventor/)
O Open Inventor Products from Template Graphics Software, Inc. (http://www.sd.tgs.com/)
O The Visual 3Space Browser Control from Template Graphics Software is a 3D/VRML OLD
Custom Control for Win32, allowing VRML/Inventor integration into OCX container
applications. (http://www.tgs.com/Products/v3space.htm)

10. SGI Performer

175

Overview
A high-level graphics library built on top of OpenGL designed for high-performance realtime
applications such as virtual reality, visual simulation, entertainment. C/C++ language bindings.

OpenGL integration method
Performer 2.0 is built on OpenGL. It also privides a simple set of window management routines
(pfWindow).

Appropriate uses
Applications which require maximum interactive performance.

Advantages
O provides high-level graphics structures, interaction, multi-CPU support, scene (LOD)
management
O object description file /0

Disadvantages
O Proprietary
O Targeted to high-end hardware
O doesn’t provide GUI elements

References
O Performer information from SGI (http://www.sgi.com/Technology/Performer/)

11. OpenGL Optimizer

Overview
The OpenGL Optimizer is a toolkit built on top of OpenGL. It's designed for CAD/CAE and
visualization applications which deal with large, complex models. The OpenGL Optimizer offers
advanced culling, occlusion testing and NURBS tesselation features.

OpenGL integration method
The OpenGL Optimizer is a C++ toolkit layered upon OpenGL.

Appropriate uses
Applications which deal with large, complicated object models can use the OpenGL Optimizer to
simplify their models for faster interactive rendering.

Advantages
O provides performance advantages over straight OpenGL rendering
O adopted as a standard among CAD/CAE vendors/developers

Disadvantages
O The OpenGL Optimizer is a very new product and may not be widely available at this time.

176

References
O The OpenGL Optimizer home page (http://www.sgi.com/Technology/OpenGL/optimizer/).

12. OpenGL++ / OpenGL Scene Graph

Overview
At the time of this writing, OpenGL++ (aka the OpenGL Scene Graph) is under development by
the OpenGL ARB. The purpose of OpenGL++ is to provide a higher-level toolkit for OpenGL
which manages a scene graph with facilities for interaction, compilation, culling, multi-processing,
sorting, etc.

OpenGL integration method
OpenGL++ will likely have C++ and Java APIs built upon OpenGL (or possibly other low-level
3-D APIs).

Appropriate uses
OpenGL++, like Open Inventor or Performer, will be appropriate for applications which require
higher-level functionality than what OpenGL provides.

Advantages
O Will relieve the application programmer of low-level OpenGL concerns.
O Will provide high-level 3-D features such as scene-graph management, interaction, culling,
LOD management, etc.

Disadvantages
O May not be available for some time.

References
O OpenGL ARB meeing notes from February 17-19, 1997
(http://www.sgi.com/Technology/openGL/arb-feb.html)

13. Others

Python
While still a work in progress there is some information available from Brown University
regarding OpenGL/Python integration. (http://maigret.cog.brown.edu:80/python/opengl/)

Java
There is an unofficial port of OpenGL to Java.
(ftp://cgl.uwaterloo.ca/pub/software/meta/OpenGL4java.html)

MET++
MET++ is an extension to the ET++ Application Framework, an object-oriented class library that

177

integrates interface building blocks, basic data structures, input/output, printing, and high-level
application framework components. The MET++ extensions include PEX, GL, and OpenGL
support. (http://www.ifi.unizh.ch/groups/mml/projects/met++/met++.html)

On a related note, Steven Baum maintains a nice list of free GUI development systems
(http://www-ocean.tamu.edu/~baum/graphics-GUI.htmly@udhics/visualization software
(http://www-ocean.tamu.edu/~baum/ocean_graphics.html) at Texas A&M University.

Last edited on April 14, 1997 by Brian Paul.

178

TR - OpenGL Tile Rendering Library

Version 1.0

Copyright (C) 1997 Brian Paul

Introduction

The TR (Tile Rendering) library is an OpenGL utility library for doing tiled rendering. Tiled rendering
is a technique for generating large images in pieces (tiles).

TR is memory efficient; arbitrarily large image files may be generated without allocating a full-sized
image buffer in main memory.

The TR library is copyrighted by Brian Paul. See the LICENSE file for details.
You may download TR 1.0 by SHIFT-clicking on one of the following:

® tr-1.0.tar.gz (10Kbytes)
® tr-1.0.zip (10Kbytes)

Prerequisites

TR works with any version of OpenGL or Mesa. No extensions are necessary and there are no
dependencies on GLX, WGL or any other window system interface.

TR is written in ANSI C and may be used from C or C++.
The TR demo programs require Mark Kilgard's GLUT.

Users should have intermediate experience with OpenGL.

Example

The following image is divided into four rows and three columns of tiles. Note that the image does not
have to be divided into equally sized tiles. The TR library handles the situation in which the top row and
right column are a fraction of the full tile size.

Also note that the tiles do not have to be square.

179

This is a small example. In reality, one may use tiles of 512 by 512 pixels and the final image may be
4000 by 3000 pixels (or larger!).

Using the Library

Ordinarily, OpenGL can’t render arbitrarily large images. The maximum viewport size is typically 2K
pixels or less and the window system usually imposes a maximum color buffer size.

To overcome this limitation we can render large images in pieces (tiles).

To render each tile we must carefully set the viewport and projection matrix and render the entire scene.
The TR library hides the details involved in doing this. Also, TR can either automatically assemble the
final image or allow the client to write the image, row by row, to a file.

The basic steps in using TR are as follows:
1. Determine where you'll render the tiles
Tiles may be rendered either in a window (front or back buffer) or in an off-screen buffer. The choice

depends on your application. It doesn’t matter to the TR library since TR just retrieves image tiles with
glReadPixels . Just be surgiDrawBuffer =~ andglReadBuffer — are set to the same buffer.

2. Determine the destination for the final image

The final, large image may either be automatically assembed in main memory by TR or you may elect to
process tiles yourself, perhaps writing them to an image file.

3. Centralize your drawing code
It should be a simple matter to completely re-render your OpenGL scene. ldeally, inside the tile
rendering loop you should be able to make one function call which clears the color (and depth, etc)

buffer(s) and draws your scene. If you're using a double buffered window you should not call
SwapBuffers sinceglReadBuffer , by default, specifies the back buffer.

4. Allocate a TR context

Every TR function takes BrRcontext pointer. A TR context encapsulates the state of the library and
allows one to have several TR contexts simultaneously. TR contexts are allocatexewith

5. Set the image and tile sizes

180

CalltrimageSize to set the final image size, in pixels. Optionally, ealleSize to set the tile size.
Currently, the default tile size is 256 by 256 pixels. Generally, larger tiles are better since fewer tiles
(and rendering passes) will be needed.

6. Specify an image or tile buffer

If you want TR to automatically assemble the final image you mustiealyeBuffer to specify an
image buffer, format, and pixel type. The format and type parameters directly correspond to those used
by gIReadPixels

Otherwise, if you want to process image tiles yourself you musiTeBuffer to specify a tile
buffer, format, and pixel type. TheendTile function will copy the tile image into your buffer. You
may then use or write the tile to a file, for example.

7. Optional: set tile rendering order

Since OpenGL specifies that image data are stored in bottom-to-top order TR follows the same model.
However, when incrementally writing tiles to a file we usually want to do it in top-to-bottom order since
that’s the order used by most file formats.

ThetrRowOrder function allows you to specify that tiles are to be renderinm@RimrorP_TO_BOTTOM
order orTR_BOTTOM_TO_Toerder. The later is the default.

8. Specify the projection

The projection matrix must be carefully controlled by TR in order to produce a final image which has no
cracks or edge artifacts.

OpenGL programs typically cajlFrustum , glOrtho oOr gluPerspective to setup the projection

matrix. There are three corresponding functions in the TR library. One ohtlustbe called to specify

the projection to use. The arguments to the TR projection functions exactly match the arguments to the
corresponding OpenGL functions.

9. Tile rendering loop

After the tile size and image size are specified the TR library computes how many tiles will be needed to
produce the final image.

The tiles are rendered inside a loop similar to this:

int more = 1;
while (more)

trBeginTile(tr);

DrawScene();
more = trEndTile(tr);

}

This should be self-explanatory. Simply aeBkeginTile , render your entire scene, and e&@hdTile

181

inside a loop untilrEndTile returns zero.

10. Query functions
ThetrGet function can be called to query a number of TR state variables such as the number of rows

and columns of tiles, tile size, image size, currently rendered tile, etc. See the detailed description of
trGet below.

11. glRasterPos problem

TheglRasterPos function is troublesome. The problem is that the current raster position is invalidated
if glRasterPos results in a coordinate outside of the window. Subsegl®aivPixels andglBitmap
functions are ignored. This will frequently happen during tiled rendering resulting in flawed images.

TR includes a substitute functiarrasterPos3f which doesn’t have this problem. Basically, replace
calls toglRasterPos with trRasterPos . See the included demo programs for example usage.

12. Compilation
Include thetr.h header file in your client code.

Compile and link with thér.c library source file. There is no need to compile TR as a separate library
file.

API Functions

Creating and Destroying Contexts

TRcontext *trNew(void)
Return a pointer to a new TR context and initialize it. Returns NULL if out of memory.

void trDelete(TRcontext *tr)
Deallocate a TR context.

Image and Tile Setup Functions

void trTileSize(TRcontext *tr, GLint width, GLint height)
Specifies size of tiles to generate. This is generally the size of your window or off-screen image
buffer.

void trimageSize(TRcontext *tr, GLint width, GLint height)
Specifies size of final image to generate.

void trTileBuffer(TRcontext *tr, GLenum format, GLenum type, GLvoid *image);
This is an optional function. After a tile is rendered (afterd) it will be copied into the buffer

182

specified by this function.

image must point to a buffer large enough to hold an image equal to the tile size specified by
trTileSize

format andtype are interpreted in the same way#eadPixels

void trimageBuffer(TRcontext *tr, GLenum format, GLenum type, GLvoid *image);
This is an optional function. This specifies a buffer into which the final image is assembled.
As tiles are generated they will automatically be copied into this buffer. The image will be
complete after the last tile has been rendered.
image must point to a buffer large enough to hold an image equal to the size specified by
trimageSize
format andtype are interpreted in the same wayy#eadPixels

Note trimageBuffer ~ andtrTileBuffer are the means by which image data is obtained from the TR
library. You must call one (or both) of these functions in order to get output from TR.

void trRowOrder(TRcontext *tr, TRenum order)
Specifies the order in which tiles are generated.
order may take one of two values:
O TR_BOTTOM_TO_TOPrender tiles in bottom to top order (the default)
O TR_TOP_TO_BOTTOMrender tiles in top to bottom order

Projection Setup Functions

void trOrtho(TRcontext *tr, GLdouble left, GLdouble right, GLdouble bottom, GLdouble
top, GLdouble near, GLdouble far)

Specify an orthographic projection as witbrtho

Must be called before rendering first tile.

void trFrustum(TRcontext *tr, GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far)

Specify a perspective projection as withrustum

Must be called before rendering first tile.

void trPerspective(TRcontext *tr, GLdouble fovy, GLdouble aspect, GLdouble zNear,
GLdouble zFar);

Specify a perspective projection as withPerspective

Must be called before rendering first tile.

Tile Rendering Functions

trBeginTile(TRcontext *tr)
Begin rendering a tile.

int trEndTile(TRcontext *tr)
End rendering a tile.
Return O if finished rendering image.
Return 1 if more tiles remain to be rendered.

183

ThetrBeginTile ~ andtrEndTile functions are meant to be used in a loop like this:

int more = 1;
while (more)

trBeginTile(tr);
DrawScene();
more = trEndTile(tr);

}

DrawScene is a function which renders your OpenGL scene. It should inglater but not
SwapBuffers

Miscellaneous Functions

GLint trGet(TRcontext *tr, TRenum param)

Query TR stateparam may be one of the following:
TR_TILE_WIDTH - returns tile buffer width
TR_TILE_HEIGHT - returns tile buffer height
TR_IMAGE_WIDTH returns image buffer width
TR_IMAGE_HEIGHT- returns image buffer height
TR_ROW_ORDER€tUrnsTR_TOP_TO_BOTTONIr TR_BOTTOM_TO_TOP
TR_ROWS returns number of rows of tiles in image
TR_COLUMNS returns number of columns of tiles in image
TR_CURRENT_ROWreturns current tile row. The bottom row is row zero.
TR_CURRENT_COLUMNeturns current tile column The left column is column zero.
TR_CURRENT_TILE_WIDTH returns width of current tile
TR_CURRENT_TILE_HEIGHT returns height of current tile

(ONoNoNoNONONONONONONG)

Note the difference betwea@r_TILE_WIDTH/HEIGHT andTR_CURRENTTILE_WIDTH/HEIGHT . The
former is the size of the tile buffer. The later is the size oftineenttile which can be less than or
equal to theaR_TILE_WIDTH/HEIGHT. Unless the final image size is an exact multiple of the tile
size, the last tile in each row and column will be smaller tirRamILE_WIDTH/HEIGHT .

void trRasterPos3f(TRcontext *tr, GLfloat x, GLfloat y, GLfloat z)
This function is a replacement fgiRasterPos3f . The problem with the OpenGL RasterPos
functions is that if the resulting window coordinate is outside the view frustum then the raster
position is invalidated anglBitmap becomes a no-op.
This function avoids that problem.

You should replace calls tiRasterPos with this function. OtherwiseyjRasterPos/gIBitmap
sequences won'’t work out correctly during tiled rendering.

Unfortunatley trRasterPos3f ~ can’t be saved in a display list.

Demonstration Programs

184

The TR distribution includes two GLUT-based demo programs:

® trdemol - renders a window-size image in tiles
® trdemo2 - produces a large PPM file incrementally

You'll probably have to edit the Makefile for your computer. Compiling the demos is very simple
though since they only require OpenGL and GLUT.

Contributors

® Robin Syllwasschy - provided much helpful feedback for the initial version of TR.

Version History

Version 1.0 - April 1997

@ I|nitial version

Last edited on April 27, 1997 by Brian Paul.

185

186

SIGGRAPH 97

Course 24: OpenGL and Window System
Integration

Graphics Library Transition Notes

Contents

® 1. Introduction
® 2. PEX to OpenGL
® 3. IRIS GL to OpenGL

1. Introduction

OpenGL is now the predominate 3-D graphics library and there are reasons to port many existing
applications from older libraries:

® To take advantage of new graphics hardware
® To keep up with evolving operating systems
® To broaden the range of system supported

Porting graphics applications can take a lot of effort; there are no silver bullets. This document outlines
several techniques and hints.

2. PEX to OpenGL

PEX is a 3-D graphics extension to the X Window System. The API is similar to Xlib in that there are
many pointers, structures and complicated function calls. OpenGL by comparison is much cleaner and
simpler. Feature-wise, PEX offers much of the functionality of OpenGL 1.0.

Here are the highlights of PEX vs OpenGL and porting:

® PEX is more of a protocol specification than API specification. That is, there are several interfaces
to PEX functionality. OpenGL on the other hand, is defined in terms of an APl and not a protocol.

187

Since PEX relies on the same Xlib window management and event handling code as OpenGL for
X (GLX), much of the user interface code may be quite portable.

PEX’s data structures for describing geometry are of coarse granularity while OpenGL geometry
is described in in fine granularity. That is, the data structures for PEX can be easily rendered by
OpenGL since OpenGL specifies primitives a vertex at a time rather than as large arrays or
structures.

One may be able to continue using PEX-style data structures in your application and render them
using OpenGL commands.

PEX’s notion of attribute "bundles” can be replaced with OpenGL display lists.

The problem of dealing with PEX subsetting largly disappears with since the OpenGL
specification mandates full implementation.

A PEX application which uses multiple rendering contexts may be especially difficult to port to
OpenGL since most PEX API functions explicitly specify the context while in OpenGL the
context is implicit. Context switching in OpenGL may be considerably more expensive than it is
with PEX.

PEX has a lot of support for fonts and text drawing which may be difficult to translate to OpenGL.

PEX has several primitive such as quadrilateral meshes which aren’t directly offered by OpenGL
but can be implemented without too much trouble.

PEX supports editable display lists while OpenGL doesn’t. Nested OpenGL display lists may be a
suitable work around.

Though PEX and GLX both are built on Xlib, visual selection and window creation code will have
to be reimplemented for OpenGL.

3. IRIS GL to OpenGL

Since OpenGL's roots are in IRIS GL one may expect porting from IRIS GL to OpenGL to be easy.
Conceptually, IRIS GL and OpenGL are very similar, but in practice porting is not an easy job. Many of
the IRIS GL function calls directly map to OpenGL. On the other hand, many features such as lighting
and texturing are implemented quite differently.

SGI's OpenGL Porting Guide is a good place to begin a porting projectodgleutility partially
automates the conversion of programs from IRIS GL to OpenGL. It is included with the IRIX IDO
option.

Below are the highlights of the similarities and differences in OpenGL and IRIS GL.

188

3.1 Similarities

Basic Rendering
OpenGL and IRIS GL are very similar in how they specify geometric primitives; both use the
begin/vertex/color/normal/end paradigm. In many cases, IRIS GL drawing commands directly
map to OpenGL equivalents.

Transformation and viewing
OpenGL and IRIS GL use similar functions for coordinate transformation and viewing. Both have
modelview and projection matrices which can be built up from simple transformation calls (scale,
translate, rotate). Be aware that OpenGL’s projection functions such as glOrtho() and glFrustum()
are multiplied onto the projection matrix rather than replace the projection matrix as IRIS GL'’s
ortho() and window() do. You should first load an identity matrix.

Immediate mode rendering and display lists
Immediate mode rendering and display list are supported by both libraries. OpenGL, however,
does not support editing display lists as IRIS GL does. Nested/hierarchal OpenGL display lists
may replace editing.

Picking and feedback
Picking (selection) works similar in OpenGL and IRIS GL; both use a name stack. Feedback in
OpenGL is nicer than IRIS GL because OpenGL feedback is identical on all implementations,
while IRIS GL implemented it differently on some systems.

Depth testing, blending, stenciling, accumulation
Depth (Z) buffering, alpha blending, stencil buffers and accumulation buffers are all implemented
similarly in OpenGL and IRIS GL. In many cases there is a direct mapping of functions between
the libraries.

2.2 Differences

OpenGL contains no window system functions like IRIS GL
If your IRIS GL program is a "mixed model" program, using IRIS GL for rendering but X for
window/event handling, then most of your even processing code should work fine with OpenGL.

If your IRIS GL program makes heavy use of IRIS GL'’s input devices, window management,
pop-up menus, etc porting will be more difficult. One possibility is to use GLUT. GLUT provides
much of the IRIS GL functionality which OpenGL lacks.

Lighting
While OpenGL and IRIS GL lighting are functionally similar, the implementations are quite
different. IRIS GL’s Imdef() and Imbind() functions are replaced by separate functions for setting
light, material, and lighting model parameters in OpenGL. The tables of IRIS GL lighting
parameters one might be using can be replaced by display lists in OpenGL.

Texture mapping

IRIS GL supports defining tables of textures, one of which can be bound at a time with texbind().
OpenGL only directly supports one texture map definition at a time. However, the texture object

189

extension or display lists can be used to simulate the IRIS GL texture system.

No subsetting of OpenGL
One especially nice difference between IRIS GL and OpenGL is the fact that OpenGL does not
allow subsetting. That is, the entire functionality of OpenGL will always be implemented. IRIS
GL unfortunately implemented different features on different systems.

These points only describe the high-level differences in the graphics libraries. As mentioned above, the
OpenGL Porting Guide goes into much more detail.

Last edited on April 13, 1997 by Brian Paul.

190

PUBLISHED IN THE
JANUARY/FEBRUARY 1994 ISSUE OF The X Journal.

OPENGL ™ AND X, PART 2:
USING OPENGL WITH XLIB

Mark J. Kilgard *
Slicon Graphics Inc.
Revision : 1.22

May 7, 1997

Abstract

This is the second article in a three-part series about using
the OpenGL™ graphics system and the X Window System.
A moderately complex OpenGL program for X is presented.
Depth buffering, back-face culling, lighting, display list mod-
eling, polygon tessdllation, double buffering, and shading are
al demonstrated. The program adheres to proper X conven-
tions for colormap sharing, window manager communication,
command line argument processing, and event processing. Af-
ter the example, advanced X and OpenGL issues are discussed
including minimizing colormap flashing, handling overlays, us-
ing fonts, and performing animation. The last articlein this se-
ries discusses integrating OpenGL with the Motif toolkit.

1 Introduction

In the first article in this series, the OpenGL™ graphics sys-
tem was introduced. Along with an explanation of the sys-
tem’sfunctionality, asimple OpenGL X programwas presented
and OpenGL was compared to the X Consortium’s PEX ex-
tension. In this article, a more involved example of program-
ming OpenGL with X is presented. The example is intended
to demonstrate both sophisticated OpenGL functionality and
proper integration of OpenGL with the X Window System.

Thisarticleisintended to answer questions from two classes
of programmers. first, the X programmer wanting to see
OpenGL used in aprogram of substance; second, the OpenGL
or IRIS GL programmer likely to be unfamiliar with the more
mundane window system setup necessary when using the X
Window System at the Xlib layer.

The example program caled gl xdi no renders a 3D di-
nosaur model using OpenGL. Hidden surfaces are removed us-
ing depth buffering. Back-face culling improves rendering per-

*Mark graduated with B.A. in Computer Science from Rice University and
isa Member of the Technical Staff at Silicon Graphics. He can be reached by
electronic mail addressedtonj k@gi . com

formance by not rendering back-facing polygons. Hierarchi-
ca modeling is used to construct the dinosaur and render it
viaOpenGL display lists. The OpenGL Utility Library (GLU)
polygontessd | ation routinesdivide complex polygonsintosim-
pler polygons renderable by OpenGL. Sophisticated lighting
lends realism to the dinosaur. If available, double buffering
smoothes animation.

The programintegrateswell withthe X Window System. The
program accepts some of the standard X command line options:
-di spl ay, -geonetry, and -i coni c. The user can ro-
tate the model using mouse motion. Top-level window prop-
erties specified by the Inter-Client Communication Convention
Manua (ICCCM) are properly set up to communicate with the
window manager. Colormap sharing is done vialCCCM con-
ventions. And the proper way of communicating to the window
manager a desire for a constant aspect ratio is demonstrated.

A walk through of thegl xdi no source codeis presented in
Section 2. While gl xdi no tries to demonstrate a good num-
ber of OpenGL features and many of theissues concerning how
X and OpenGL integrate, it isonly an example. Section 3 ex-
ploresmore of theissues encountered when writing an advanced
OpenGL program using Xlib. The third and last article in this
seriesdiscusseshow tointegrate OpenGL withthe Motif toolkit.

2 ExampleWalk Through

The source code for gl xdi no can be found in Appendix A. |
will refer to the code repeatedly throughout this section. Figure
1 shows a screen snapshot of gl xdi no.

21

The program’s initialization proceeds through the following
steps:
1. Process the standard X command line options.

Initialization

2. Open the connection to the X server.

191

Figure 1: Screen snapshot of gl xdi no.

3. Determineif OpenGL's GLX extensionis supported.
4. Find the appropriate X visua and colormap.
5. Create an OpenGL rendering context.

6. Create an X window with the selected visual and properly
specify the right ICCCM properties for the window man-
ager to use.

7. Bind the rendering context to the window.
8. Makethedisplay list hierarchy for the dinosaur model.
9. Configure OpenGL rendering state.

10. Map the window.

11. Begin dispatching X events.
Commentsin the code correspond to these enumerated steps.

In the program’snai n routine, thefirst task isto processthe
supported command line arguments. Users of the X Window
System should befamiliar with - di spl ay which specifies the
X servertouse, - geomnet r y which specifiestheinitial sizeand
location of the program’s main window, and - i coni ¢ which
requests the window be initially iconified. Programmers used
tothe IRIS GL (the predecessor to OpenGL) may not be famil-
iar with these options. While nothing requires an X program to
accept standard X options, most do as a matter of consistency
and convenience. Most X toolkitsautomatically understand the
standard set of X options

The - keepaspect option is not a standard X command
line option. When specified, it requests that the window man-
ager ensure that the ratio between the initial width and height

of the window be maintained. Often for 3D programs, the pro-
grammer would like a constant aspect ratio for their rendering
window. InIRISGL, acal named keepaspect isavailable.
Maintaining the aspect ratio of a window is something for the
window system to do so thereisno call analogousto IRISGL's
keepaspect in OpenGL. Remember that the core OpenGL
ApplicationProgrammer | nterface (API) attemptsto bewindow
system independent. IRIS GL programmers used to the IRIS
GL interface will need to become aware of X functionality to
do thingsthat used to be donewith IRISGL calls.

Normally gl xdi no tries to use a double buffered window
but will use a single buffered window if a double buffered vi-
sual isnot available. Whenthe- si ngl e optionispresent, the
program will look only for a single buffered visual. On many
machines with hardware double buffering support, color reso-
lution can be traded for doubl e buffering to achieve smooth an-
imation. For example, a machine with 24 bits of color resolu-
tion could support 12 bitsof color resolutionfor doublebuffered
mode. Half the image bit-planes would be for the front buffer
and half for the back buffer.

Next, a connection to the X server is established using
XOpenDi spl ay. Since gl xdi no requires OpenGL's GLX
extension, the program checks that the extension exists using
gl XQuer yExt ensi on. Theroutineindicatesif the GLX ex-
tensionissupported or not. Asisconventionfor X routinesthat
guery extensions, theroutine can a so return thebaseerror code
and base event codefor the GLX extension. Thecurrent version
of GLX supportsno extension events (but does define eight pro-
tocol errors). Most OpenGL programswill need neither of these
numbers. You can passin NULL asgl xdi no doesto indicate
you do not need the event or error base.

OpenGL is designed for future extensibility. The
gl XQuer yVer si on routine returns the maor and mi-
nor version of the OpenGL implementation. Currently, the
major version is 1 and the minor version is 0. gl xdi no
does not use gl XQuer yVer si on but it may be useful for
programsin the future.

211 Choosing a Visual and Colormap

The GLX extension overloads X visuds to denote supported
framebuffer configurations. Beforeyou create an OpenGL win-
dow, you should select a visua which supportsthe frame buffer
festures you intend to use. GLX guarantees at least two visua
will be supported. An RGBA mode visua with a depth buffer,
stencil buffer, and accumulation buffer must be supported. Sec-
ond, a color index mode visual with a depth buffer and sten-
cil buffer must be available. More and less capable visuals are
likely to also be supported depending on the implementation.
To make it easy to sdect a visua, gl XChooseVi sual
takes a list of the capabilities you are requesting and returns
an XVi sual | nf o* for a visual meeting your requirements.
NULL isreturned if a visua meeting your needs is not avail-
able. To ensure your application will run with any OpenGL
GLX server, your program should be written to support the base

192

line required GLX visuals. Also you should only ask for the
minimum set of frame buffer capabilities you require. For ex-
ample, if your program never uses astencil buffer, you will pos-
sibly waste resources if you request one anyway.

Since gl xdi no rotates the dinosaur in response to user in-
put, the program will run better if double bufferingisavailable.
Double buffering allows a scene to be rendered out of view and
then displayed nearly instantly to eliminate the visua artifacts
associated with watching a 3D scene render. Double buffer-
ing helps create the illusion of smooth animation. Since dou-
ble buffering support is not required for OpenGL implementa-
tions, gl xdi no resorts to single buffering if no double buffer
visuals are available. The program’s confi gur ati on inte-
ger array tells what capabilities gl XChooseVi sual should
look for. Notice how if adouble buffer visual isnot found, an-
other attempt is made which does not request double buffering
by starting after the GLX_DOUBL BUFFERtoken. And when the
- si ngl e optionis specified, the code only looksfor asingled
buffered visua.

gl xdi no does require a depth buffer (of at least 16 bits
of accuracy) and uses the RGBA color model. The RGBA
base line visua must support at least a 16 bit depth buffer so
gl xdi no should awaysfind ausable visua.

You should not assume the visual you need isthe default vi-
sual. Using a non-default visual means windows created using
the visua will require a colormap matching the visua. Since
the window we are interested in uses OpenGL's RGBA color
model, we want a colormap configured for using RGB. The IC-
CCM establishes a means for sharing RGB col ormaps between
clients. XmuLookupSt andar dCol or mapisusedtoset upa
colormap for the specified visud. Theroutinereadsthel CCCM
RGB_DEFAULT_MAP property on the X server’s root window.
If the property does not exist or does not have an entry for the
specified visual, anew RGB colormap is created for the visual
and the property is updated (creating it if necessary). Once the
colormap has been created, XGet RGBCol or maps finds the
newly created colormap. The work for finding a colormap is
done by theget Col or map routine.

If a standard colormap cannot be dlocated, gl xdi no will
create an unshared colormap. For some servers, it is possible
(though unlikely) a Di r ect Col or visuad might be returned
(though the GLX specification requires a Tr ueCol or visual
be returned in precedence toaDi r ect Col or visua if possi-
ble). To shorten the example code by only handling the most
likely case, thecode bailsif aDi r ect Col or visual isencoun-
tered. A more portable (and longer) program would be capable
of initializingan RGB Di r ect Col or colormap.

212 Creating a Rendering Context

Once a suitable visual and colormap are found, the pro-
gram can creste an OpenGL rendering context using
gl XCr eat eCont ext. (The same context can be used
for different windows with the same visual .)

The last parameter alows the program to request a direct

rendering context if the program is connected to a local X
server. An OpenGL implementation is not required to support
direct rendering, but if it does, faster rendering ispossible since
OpenGL will render directly to the graphics hardware. Direct
rendered OpenGL requestsdo not havetobe sent tothe X server.
Even when on the local machine, you may not want direct ren-
dering in some cases. For example, if you want to render to X
pixmaps, you must render through the X server.

GLX rendering contexts support sharing of display lists
among one another. To this end, the third parameter to
gl XCr eat eCont ext isanother already created GLX render-
ing context. NULL can be specified to create an initial rendering
context. If an already existent rendering context isspecified, the
display listindexes and definitionsare shared by thetwo render-
ing contexts. The sharing is transitive so a share group can be
formed between awhol e set of rendering contexts.

To share, al therendering contextsmust exist inthe same ad-
dress space. This means direct renderers cannot share display
lists with renderers rendering through the X server. Likewise
direct renderersin separate programs cannot share display lists.
Sharing display listsbetween rendererscan hel pto minimizethe
memory requirements of applicationsthat need the same display
lists.

213 Setting Up aWindow

Because OpenGL uses visuds to distinguish various frame
buffer capabilities, programmers using OpenGL need to be
aware of the required steps to create a window with a non-
default visual. As mentioned earlier a colormap created for the
visual is necessary. But the most irksome thing to remember
about creating a window with a non-default visua is that the
border pixel value must be specified if the window’s visual is
not the same as its parent’s visual. Otherwise aBadMat ch is
generated.

Before actualy creating the window, the argument
to the -geonetry option should be parsed using
XPar seCeonetry to obtain the user's requested size
and location. The size will be needed when we create the
window. Both the size and location are needed to set up the
ICCCM size hints for the window manager. A fixed aspect
ratio is also requested by setting up the right size hints if the
- keepaspect optionis specified.

Once the window is Created,
XSet St andar dProperti es sets up the various stan-
dard ICCCM properties including size hints, icon name, and
window name. Then the ICCCM window manager hints are
set up to indicate the window's initia state. The -i coni c
option sets the window manager hints to indicate the window
should be initially iconified. XAl | ocWWHi nt s alocates a
hintsstructure. Oncefilled in, XSet WWHi nt s sets up the hint
property for the window.

The fina addition to the window is the WWPROTOCOLS
property which indicates window manager protocolsthe client
understands. The most commonly used protocol defined by

193

ICCCM is WWMLDELETE W NDOW If this atom is listed in the
WMPROTOCOLS property of a top-level window, then when
the user selects the program be quit from the window manage,
thewindow manager will politely send aWMLDEL ETE_W NDOW
message to the client instructing the client to del ete the window.
If thewindow isthe application’smain window, theclient isex-
pected to terminate. If thisproperty isnot set, the window man-
ager will simply ask the X server to terminate the client’s con-
nection without notice to the client. By default, thisresultsin
Xlib printing an ugly message like:

:0.0 broken
or server shutdown).

X connection to
(explicit kill

Asking to participate in the WWL.DEL ETE_W NDOWprotocol a-
lowstheclient to safely handl e requeststo quit from thewindow
manager.

The property has another advantage for OpenGL programs.
Many OpenGL programs doing animation will use XPendi ng
to check for pending X events and otherwise draw their ani-
mation. But if all a client’s animation is direct OpenGL ren-
dering and the client does not otherwise do any X requests,
the client never sends requests to the X server. Due to a
problem in XPendi ng’s implementation on many Unix op-
erating systems,' such an OpenGL program might not no-
tice its X connection was terminated for sometime. Using
the WWLDEL ETE_W NDOWprotocol eliminates this problem be-
cause the window manager notifies the client via a message
(tripping XPendi ng) and theclient isexpected to drop the con-
nection.

Using the WWLDELETE_W NDOW protocol is good practice
even if you do not use XPendi ng and the Xlib message does
not bother you.

All these steps (besides creating awindow with anon-default
visual) are standard for creating atop-level X window. A top-
level window is a window created as a child of the root win-
dow (the window manager may choose to reparent the window
when it ismapped to add aborder). Notethat the propertiesdis-
cussed are placed on the top-level window, not necessarily the
same window that OpenGL rendersinto. Whilegl xdi no cre-
ates a single window, a more complicated program might nest
windows used for OpenGL rendering inside the top-level win-
dow. The ICCCM window manager properties belong on top-
level windowsonly.

An IRIS GL programmer not familiar with X will probably
find these details cumbersome. Most of the work will be done
for you if you use atoolkit layered on top of Xlib.

Now a window and an OpenGL rendering context exist. In
OpenGL (unlike Xlib), you do not pass the rendering destina-
tion into every rendering call. Instead a given OpenGL render-
ing context is bound to a window using gl XMakeCur r ent .

1 Operating systems using FI ONREAD i oct | calls on file descriptors us-
ing Berkeley non-blocking I/O cannot differentiate no data to read from a bro-
ken connection; both conditions cause the FI ONREAD i oct | to return zero.
MIT’s standard implementation of XPendi ng usesBerkeley non-blocking 1/O
and FI ONREAD i oct | s. Eventually, Xlib will do an explicit check on the
socket to seeif it closes but only after a couple hundred callsto XPendi ng.

Once bound, al OpenGL rendering calls operate using the cur-
rent OpenGL rendering context and the current bound window.
A thread can only be bound to one window and one rendering
context at atime. A context can only be boundto asinglethread
atatime. If youcall gl XMakeCur r ent again, it unbindsfrom
the old context and window and then binds to the newly speci-
fied context and window. You can unbind a thread from awin-
dow and a context by passing NULL for the context and None
for the drawable.

2.2 TheDinosaur Modd

Thetask of figuring out how to describe the 3D object you wish
torender iscalled moddling. Much asaplasticairplanemodel is
constructed out of little pieces, acomputer generated 3D scene
must also be built out of little pieces. In the case of 3D render-
ing, the pieces are generally polygons.

The dinosaur model to be displayed is constructed out of a hi-
erarchy of display lists. Rendering thedinosaur isaccomplished
by executing asingle display list.

The strategy for modeling the dinosaur is to construct solid
pieces for the body, arms, legs, and eyes. Figure 2 shows the
2D sides of the solids to construct the dinosaur. Making these
pieces solid is done by extruding the sides (meaning stretching
the 2D sidesinto athird dimension). By correctly situating the
solid pieces relative to each other, they form the complete di-
nosaur.

The work to build the dinosaur model is done by
the routine named nakeDi nosaur. A helper routine
ext rudeSol i dFr onPol ygon is used to construct each
solid extruded object.

2.2.1 TheGLU Tessdlator

The polygonsin Figure2 areirregular and complex. For perfor-
mance reasons, OpenGL directly supportsdrawing only convex
polygons. The complex polygonsthat make up the sides of the
dinosaur need to be built from smaller convex polygons.

Since rendering complex polygons is a common need,
OpenGL supplies a set of utility routinesin the OpenGL GLU
library which make it easy to tessellate complex polygons. In
computer graphics, tessellationistheprocess of breaking acom-
plex geometric surface into simple convex polygons.

The GLU library routinesfor tessellation are;

gl uNewTess - create anew tessellation object.

gl uTessCal | back - defineacallback for atessellation ob-
ject.

gl uBegi nPol ygon - begin a polygon description to tessdl-
late.

gl uTessVert ex - specify avertex for the polygon to tessel-
late.

gl uNext Cont our - mark the beginning of another contour
for the polygon to tessdllate.

194

Figure 2: 2D complex polygons used to mode the dinosaur’s
arm, leg, eye, and body sides.

gl uEndPol ygon - finish apolygon being tessellated.
gl uDel et eTess - destroy atessdllation object.

These routines are used in the example code to tessdllate the
sides of the dinosaur. Notice at the beginning of the program
static arraysof 2D verticesare specified for thedinosaur’ sbody,
arm, leg, and eye polygons.

To use the tessdlation package, you first create a tes
sellation object with gl uNewTess. An object of type
GLUt ri angul at or Obj * isreturned whichispassed intothe
other polygon tessdllation routines. You do not need atessella
tion object for every polygon you tessdllate. You might need
more than one tessdllation object if you were trying to tessel-
late more than one polygon at atime. In the sample program,
asingle tessellation object is used for al the polygons needing
tessellation.

Once you have atessdlation object, you should set up cal-
back routines using gl uTessCal | back. The way that the
GLU tesselation package works is that you feed in vertices.
Then thetessdllationis performed and your registered callbacks
are called to indicate the beginning, end, and all the vertices for
the convex polygons which correctly tessellate the points you
feed to the tessdllator.

Look at theext r udeSol i dFr onPol ygon routinewhich
uses the GLU tessdllation routines. To understand exactly why
the callbacks are specified asthey are, consult the OpenGL Ref-
erence Manual [4]. The point to notice is how a single tessal-
lation object is set up once and callbacks are registered for it.
Then gl uBegi nPol ygon is used to start tessellating a new
complex polygon. The vertices of the polygon are specified

using gl uTessVert ex. The polygon is finished by calling
gl uEndPol ygon.

Notice the code for tessellating the polygon lies between
a gl NewLi st and gl EndLi st ; these routines begin and
end the creation of adisplay list. The callbacks will generate
gl Vert ex2f v calls specifying the vertices of convex poly-
gonsneeded to represent the complex polygonbeing tessel lated.
Once completed, a display list is available that can render the
desired complex polygon.

Consider the performance benefits of OpenGL’s polygontes-
sellator compared with a graphics system that supplies a poly-
gon primitivethat supports non-convex polygons. A primitive
which supported complex polygonswould likely need to tessel -
late each complex polygon on the fly. Calculating atessellation
isnotwithout cost. If youweredrawing the same complex poly-
gon more than once, it isbetter to do the tessellation only once.
This is exactly what is achieved by creating a display list for
the tessellated polygon. But if you are rendering continuously
changing complex polygons, the GLU tessellator isfast enough
for generating vertices onthefly forimmediate-mode rendering.

Having a tessellation object not directly tied to rendering is
also more flexible. Your program might need to tessdlate a
polygon but not actually render it. The GLU’s system of call-
backs just generate vertices. You can call OpenGL gl Ver t ex
callsto render the vertices or supply your own specid callbacks
to save the vertices for your own purposes. The tessellation al-
gorithmis accessible for your own use.

The GLU tessdllator al so supportsmultiplecontoursallowing
digoint polygons or polygonswith holes to be tessellated. The
gl uNext Cont our routine beginsanew contour.

The tessellation object isjust one example of functionality in
OpenGL’'s GLU library which supports 3D rendering without
complicating the basic rendering routines in the core OpenGL
API. Other GLU routines support rendering of curves and sur-
faces using Non-Uniform Rationa B-Splines (NURBS) and
tessellating boundaries of solids such as cylinders, cones, and
spheres. All the GLU routines are a standard part of OpenGL.

2.2.2 Hierarchical Display Lists

After generating the complex polygon display list for the sides
of asolid object, theext r udeSol i dFr onPol ygon routine
creates another display list for the “edge”’ of the extruded solid.
The edge is generated using a QUAD_STRI P primitive. Along
withthevertices, normalsare cal culated for each quad along the
edge. Later these normalswill be used for lighting the dinosaur.
The normals are computed to be unit vectors. Having nor-
mals specified as unit vectors is important for correct lighting.
Analternativewould betousegl Enabl e(GL_NORMALI ZE)

which ensures al normals are properly normalized before use
in lighting calculations. Specifying unit vectors to begin with
and not using gl Enabl e(GL_NORMALI ZE) saves time dur-
ing rendering. Be careful when using scaling transformations
(often set up using gl Scal e) since scaing transformations
will scale normalstoo. If you are using scaling transformations,

195

gl Enabl e(GL_NORMALI ZE) is almost always required for
correct lighting.

Once the edge and side display lists are created, the solid
is formed by calling the edge display list, then filling in the
solid by calling the side display list twice (once trand ated over
by the width of the edge). The makeDi nosaur routine will
useext r udeSol i dFr omPol ygon to create solidsfor each
body part needed by the dinosaur.

Then makeDi nosaur combines these display listsinto a
singledisplay list for the entire dinosaur. Translations are used
to properly position the display lists to form the complete di-
nosaur. The body display list is called; then arms and legs for
theright side are added; then arms and legs for the | eft side are
added; then the eye isadded (it is one solid which pokes out ei-
ther side of the dinosaur’shead alittle bit on each side).

2.2.3 Back-face Culling

A common optimization in 3D graphics is a technique known
as back-face culling. Theideaistotreat polygonsas essentially
one-sided entities. A front facing polygon needsto be rendered
but a back-facing polygon can be eliminated.

Consider the dinosaur model. When the model is rendered,
the back side of the dinosaur will not bevisible. If thedirection
each polygon “faced” was known, OpenGL could simply dim-
inate approximately half of the polygons(the back-facing ones)
without ever rendering them.

Noticethe callsto gl Fr ont Face when each solid display
listis created in ext r udeSol i dFr onPol ygon. The argu-
ment to the cal is either GL_CWor GL_CCWmeaning clock-
wise and counter-clockwise. If the vertices for a polygon are
listed in counter-clockwise order and gl Fr ont Face is set to
GL_CCW then the generated polygonis considered front facing.
The static data specifying the vertices of the complex polygons
islisted in counter-clockwise order. To make the quads in the
quad strip face outwards, gl Fr ont Face(GL_CW is speci-
fied. The same mode ensures the far side faces outward. But
gl Front Face(GL_.CCW isneeded to make sure the front of
the other side faces outward (logically it needs to be reversed
from the opposite side since the vertices were laid out counter-
clockwise for both sides since they are from the same display
list).

When the datic OpenGL sate is set up,
gl Enabl e(GL_.CULL_FACE) is used to enable back-
face culling. As with al modes enabled and disabled using
gl Enabl e and gl Di sabl e, it is dissbled by default.
Actualy OpenGL is not limited to back-face culling. The
gl Cul | Face routine can be used to specify either the back
or the front should be culled when face culling is enabled.

When you are developing your 3D program, it is often help-
ful to disable back-face culling. That way both sides of every
polygon will be rendered. Then once you have your scene cor-
rectly rendering, you can go back and optimize your program to
properly use back-face culling.

Do not be left with the misconception that enabling or dis-

abling back-face culling (or any other OpenGL feature) must be
done for the duration of the scene or program. You can enable
and disable back-face culling at will. It is possible to draw part
of your scene with back-face culling enabled, and then disable
it, only to later re-enable culling but thistime for front faces.

2.3 Lighting

The redlism of a computer generated 3D scene is greatly en-
hanced by adding lighting. Inthefirst article’'s sample program,
gl Col or 3f wasused to add color to the faces of the 3D cube.
Thisadds color to rendered objects but does not use lighting. In
the example, the cube moves but the colors do not vary the way
areal cube might asit is affected by real world lighting. In this
article’'sexample, lightingwill be used to add an extradegree of
realism to the scene.

OpenGL supports a sophisticated 3D lighting modd to
achieve higher realism. When you look at areal object, itscolor
isaffected by lights, thematerial propertiesof theobject, and the
angleat which thelight shineson the object. OpenGL'slighting
model approximatesthe real world.

Complicated effects such as the reflection of light and shad-
owsare not supported by OpenGL'slightingmode thoughtech-
niques and agorithms are available to simulate such effects.
Environment mapping to ssimulate reflection is possible using
OpenGL's texturing capability. OpenGL's stencil buffers and
blending support can be used to create shadows, but an expla
nation of these techniques is beyond the scope of this article.
(Seethetopicsinthefinal chapter of the OpenGL Programming
Guide).

23.1 Typesof Lighting

Theeffects of light are complex. InOpenGL, lightingisdivided
into four different components. emitted, ambient, diffuse, and
specular. All four components can be computed independently
and then added together.

Emitted light is the simplest. It islight that originates from
an object and is unaffected by any light sources. Self-luminous
objects can be modeled using emitted light.

Ambient light is light from some source that has been scat-
tered so much by the environment that its direction isimpossi-
ble to determine. Even a directed light such as a flashlight may
have some ambient light associated withiit.

Diffuse light comes from some direction. The brightness of
the light bouncing off an object depends on the light’s angle
of incidence with the surface it is striking. Once it hits a sur-
face, thelight is scattered equally in all directions so it appears
equally bright independent of where the eyeislocated.

Specular light comes from some direction and tends to
bounce off the surface in a certain direction. Shiny metal or
plastic objects have a high specular component. Chalk or car-
pet have almost none. Specularity corresponds to the everyday
notion of how shiny an object is.

A single OpenGL light source has a single color and some
combination of ambient, diffuse, and specular components.

196

green dinosaur *Y axis (out of page)

with red eye

centered at (0,0,0) +X axis
-
bright,
d reen—tinted
y - g

light (10,4,10)

dim, red—tinted
light at infinite
distance on
vector (1,-2,1)

eye at (0,0,30)
looking at dinosaur

O

v +Z axis

Figure 3: Arrangement of lights, eye, and dinosaur in modeling
space.

OpenGL supportsmultiplelightssimultaneously. The program-
mer can control the makeup of alight aswell asitsposition, di-
rection, and attenuation. Attenuation refersto how alight’sin-
tensity decreases as distance from the light increases.

2.3.2 Lightingin the Example

The example uses two lights. Both use only the diffuse com-
ponent. A bright, dightly green-tinted positional light isto the
right, front of the dinosaur. A dim, red-tinted directional light
is coming from the left, front of the dinosaur. Figure 3 shows
how the dinosaur, the lights, and the eye-point are arranged.
A positional light is located at some finite position in mode-
ing space. A directional light is considered to be located in-
finitely far away. Using a directional light allows the OpenGL
to consider the emitted light raysto be paralld by the time the
light reaches the object. Thissimplifiesthelightingcal culations
needed to be done by OpenGL.

The | i ght Zer oPosi tion and | i ght OnePosi ti on
static variables indicate the position of the two lights. You will
notice each has not three but four coordinates. Thisis because
thelight location is specified in homogeneous coordinates. The
fourth value divides the X, Y, and Z coordinates to obtain the
true coordinate. Notice how | i ght OnePosi ti on (the infi-
nitelight) hasthefourthvalueset to zero. Thisishow aninfinite
light is specified.?

2Actually all coordinates are logically manipulated by OpenGL as three-
dimensional homogeneous coordinates. The OpenGL Programming Guide's

The dinosaur can rotate aroundthe Y axisbased onthe user’s
mouse input. The idea behind the example's lighting arrange-
ment is when the dinosaur is oriented <o its side faces to the
right, it should appear green due to the bright light. When its
side faces leftward, the dinosaur should appear poorly lighted
but the red infinite light should catch the dinosaur’sred eye.

Section 9 of the program initialization shows how lightingis
initialized. The gl Enabl e(GL_LI GHTI NG turns on light-
ing support. The lights' positions and diffuse components are
set using via callsto gl Li ght f v using the GL_POSI TI ON
and GL_DI FFUSE parameters. The lightsare each enabled us-
ing gl Enabl e.

The attenuation of the green light is adjusted. This deter-
mines how the light intensity fades with distance and demon-
strates how individual lighting parameters can be set. It would
not make sense to adjust the attenuation of thered light since it
isaninfinitelight which shineswith uniform intensity.

Neither ambient nor specular lighting are demonstrated in
this example so that the effect of the diffuse lighting would be
clear. Specular lighting might have been used to give the di-
nosaur’'seye aglint.

Recall when the edge of each solid was generated, normals
were calculated for each vertex along the quad strip. And a
single norma was given for each complex polygon side of the
solid. Thesenormalsare used inthediffuselighting cal culations
to determine how much light should be reflected. If you rotate
the dinosaur, you will notice the color intensity changes as the
angleincidencefor thelight varies.

Also noticethe callsto gl ShadeModel . OpenGL's shade
model determines whether flat or smooth shading should be
used on polygons. The dinosaur model uses different shading
depending on whether a side or edge is being rendered. There
isagood reason for this. The G._SMOOTH mode is used on the
sides. If flat shading were used instead of smooth, each convex
polygon composing thetessel lated complex polygon sidewould
beasinglecolor. The viewer could notice exactly how thesides
has been tessdllated. Smooth shading prevents this since the
colors are interpol ated across each polygon.

But for the edge of each solid, GL_FLAT isused. Becausethe
edgeisgenerated asaquad strip, quadsa ong thestrip share ver-
tices. If we used a smooth shading model, each edge between
two quads would have a single normal. Some of the edges are
very sharp (like the claws in the hand and the tip of the tail).
Interpolating across such varying normaswould lead to an un-
desirable visual effect. The fingers would appear rounded if
looked at straight on. Instead, with flat shading, each quad gets
itsown normal and there is no interpolation so the sharp angles
are clearly visible.

Appendix G [3] briefly explains homogeneous coordinates. A more involved
discussion of homogeneous coordinates and why they are useful for 3D com-
puter graphics can be found in Foley and van Dam [1].

197

Far plane
(40 units from eye)

One to one
aspect ratio

40 degree S,

field of view /

q

///
Near plane
(2 unit from eye)

Eye—point

Origin
(0,0,30)

(0,0,0)

Figure 4: Static view for gl xdi no.

2.4 View Selection

In 3D graphics, viewing is the process of establishing the per-
spective and orientation with which the scene should be ren-
dered. Like a photographer properly setting up his camera, an
OpenGL programmer should establish a view. Figure 4 shows
how theview is set up for the example program.

In OpenGL, establishing aview means|oading the projection
and model -view matrices with theright contents. To modify the
projectionmatrix, cal gl Mat ri xMode(GL_PRQIECTI ON) .
Calculating the right matrix by hand can be tricky. The GLU
library has two useful routinesthat make the process easy.

GLU’s gl uPer spect i ve routine allows you to specify
a field of view angle, an aspect ratio, and near and far clip-
ping planes. It multiplies the current projection matrix with
one crested according to the routine's parameters. Since ini-
tially the projection matrix is an identity matrix, gl xdi no’s
gl uPer specti ve cdl effectively loads the projection ma-
trix.

Another GLU routine, gl uLookAt, can be used to ori-
ent the eye-point for the model-view matrix. Notice how
gl Mat ri xMode(GL_MODELVI EW is used to switch to the
model-view matrix. Using gl uLook At requires you to spec-
ify the eye-point’s location, a location to look at, and a nor-
mal to determine which way isup. Likegl uPer specti ve,
gl uLookAt multipliesthematrix it constructsfromits param-
eters with the current matrix. The initial model-view matrix is
the identity matrix so gl xdi no’s call to gl uLookAt effec-
tively loads the model-view matrix.

After the gl uLookAt cal, gl PushMatri x is called.
Both the model-view and projection matrices exist on stacks
that can be pushed and popped. Caling gl PushMat ri x
pushes a copy of the current matrix onto the stack. When
a rotation happens, this matrix is popped off and another
gl PushMat ri x isdone. This newly pushed matrix is com-
posed with a rotation matrix to reflect the current absolute ori-
entation. Every rotation pops off the top matrix and replaces it
with a newly rotated matrix.

Noticethat thelight positionsare not set until after the mode -
view matrix has been properly initialized.

Because the location of the viewpoint affects the cal cul ations
for lighting, separate the projection transformation in the pro-
jection matrix and the modeling and viewing transformationsin
the model -view matrix.

2.5 Event Dispatching

Now the window has been created, the OpenGL renderer has
been bound to it, the display lists have been constructed, and
OpenGL's state has been configured. All that remainsisto re-
quest the window be mapped using XMapW ndow and begin
handling any X events sent to the program.

When the window was created, four types of window events
were requested to be sent to our application: Expose events
reporting regions of the window to be drawn, But t onPr ess
events indicating mouse button status, KeyPr ess events in-
dicating a keyboard key has been presed, Moti onNoti fy
eventsindicating mouse movement, and Conf i gur eNot i fy
events indicating the window’ s size or position has changed.

X event dispatching is usually donein an infiniteloop. Most
X programsdo not stop dispatching eventsuntil the program ter-
minates. XNext Event can be used to block waiting for an X
event. When an event arrives, itstypeis examined to tell what
event has been received.

251 ExposeHandling

For an Expose event, the example program just sets aflag in-
dicating the window needs to be redrawn. The reason is that
Expose eventsindicate a single sub-rectangle in the window
that must be redrawn. The X server will send a number of
Expose eventsif acomplex region of thewindow has been ex-
posed.

For anormal X program using 2D rendering, you might be
able to minimize the amount needed to redraw the window by
carefully examining therectanglesfor each Expose event. For
3D programs, thisisusually too difficult to be worthwhilesince
it is hard to determine what would need to be done to redraw
some sub-region of the window. In practice thewindow is usu-
aly redrawn in itsentirety. For the dinosaur example, redraw-
ing involvescalling the dinosaur display list with theright view.
Itis not helpful to know only a sub-region of the window actu-
ally needs to be redrawn. For thisreason, an OpenGL program
should not begin redrawing until it has received al the expose
eventsmost recently sent to thewindow. Thispracticeisknown
as expose compression and hel psto avoid redrawing more than
you should.

Notice that al that is done to immediately handle an expose
isto set the needRedr awflag. Then XPendi ng is used to
determineif thereare more eventspending. Not until thestream
of events pauses isthe r edr aw routinereally called (and the
needRedr awflag reset).

The r edr aw routine does three things: it clears the image
and depth buffers, executes the dinosaur display list, and either
callsgl XSwapBuf f er s onthewindow if double buffered or

198

calsgl Fl ush. The current model-view matrix determinesin
what orientation the dinosaur is drawn.

252 Window Resizing

The X server sendsaConf i gureNot i fy eventtoindicatea
window resize. Handling the event generally requires changing
the viewport of OpenGL windows. The sample program calls
gl Vi ewpor t specifying the window’snew width and height.
A resize also necessitates a screen redraw so the code “fals
through” to the expose code which setstheneedRedr awflag.

When you resi ze the window, the aspect ratio of the window
may change (unless you have negotiated a fixed aspect ratio
with the window manager asthe - keepaspect option does).
If you want the aspect ratio of your final image to remain con-
stant, you might need to respecify the projection matrix with an
aspect ratio to compensate for the window’s changed aspect ra-
tio. The example does not do this.

25.3 Handling Input

The example program alows the user to rotate the dinosaur
while moving the mouse by holding down the first mouse
button. We record the current angle of rotation whenever a
mouse button state changes. As the mouse moves while the
first mouse button is held down, the angle is recalculated. A
recal cModel Vi ewflag isset indicating the scene should be
redrawn with the new angle.

When thereisalull in events, the model-view matrix isre-
calculated and then the needRedr awflag is set, forcing are-
draw. Ther ecal cModel Vi ewflag iscleared. Asdiscussed
earlier, recal culating the modd -view isdone by popping off the
current top matrix using gl PopMat r i x and pushing on anew
meatrix. Thisnew matrix iscomposed with arotation matrix us-
ing gl Rot at ef to reflect the new absolute angle of rotation.
An alternative approach woul d be to multiply the current matrix
by a rotation matrix reflecting the change in angle of rotation.
But such arelative approach to rotation can lead to inaccurate
rotations due to accumul ated floating point round-off errors.

254 Quitting

Because the WM DELETE W NODWatom was specified on the
top-level window’slist of window manager protocols, the event
loop should also be ready to handle an event sent by the win-
dow manager asking the programto quit. If gl xdi no receives
ad i ent Message event with the first data item being the
WMWML.DEL ETE_ W NDOWatom, the program callsexi t .

Inmany IRIS GL demonstration programs, the Escape key is
used by convention to quit the program. So gl xdi no showsa
simple means to quit in response to an Escape key press.

3 Advanced Xlib and OpenGL

Thegl xdi no example demonstrates agood deal of OpenGL's
functionality and how to integrate OpenGL with X but thereare
anumber of issuesthat programmerswanting to write advanced
OpenGL programs for X should be aware of.

3.1 Colormaps

Already amethod has been presented for sharing col ormaps us-
ing the ICCCM conventions. Most OpenGL programs do not
use the default visual and therefore cannot use the default col-
ormap. Sharing colormaps is therefore important for OpenGL
programs to minimize the amount of colormaps X servers will
need to create.

Often OpenGL programs reguire more than one colormap. A
typical OpenGL program may do OpenGL rendering in a sub-
window but most of the program’suser interfaceisimplemented
using normal X 2D rendering. If the OpenGL window is 24 bits
deep, it would be expensiveto required| the user interface win-
dows also to be 24 bits deep. Among other things, pixmaps for
the user interface windows would need to be 32 bits per pixel
instead of the typical 8 bits per pixel. So the program may use
the server’s (probably default) 8 bit PseudoCol or visua for
its user interface but use a 24 bit Tr ueCol or visua for its
OpenGL subwindow. Multiple visuas demand multiple col-
ormaps. Many other situationsmay arise when an OpenGL pro-
gram needs multiple colormaps within a single top-level win-
dow hierarchy.

Normally window managers assume the col ormap that atop-
level window and al its subwindows need isthe col ormap used
by the top-level window. A window manager automeatically no-
tices the colormap of the top-level window and tries to ensure
that that colormap isinstalled when the window is being inter-
acted with.

With multiple colormaps used inside a single top-level
window, the window manager needs to be informed
of the other colormaps being used. The Xlib routine
XSet WMCol or mapW ndows can be used to place astandard
property on your top-level window to indicate all the colormaps
used by the top-level window and its descendants.

Be careful about using multiple colormaps. It is possible
a server will not have enough colormap resources to support
the set of visuas and their associated colormaps that you de-
sire. Unfortunately, there is no standard way to determine
what sets of visuas and colormaps can be simultaneoudy in-
stalled when multiple visuals are supported. Xlib providestwo
cals, XMaxCrrapsOf Scr een and XM nCnapsOf Scr een,
but these do not express hardware conflicts between visuals.

Here are some guidelines:

o If XMaxCrmapsOF Scr een returns one, you are guaran-
teed a single hardware colormap. Colormap flashing is
quitelikely. You shouldwriteyour entireapplicationto use
asinglecolormap at atime.

199

e If an 8 bhit PseudoCol or visuad and a 24 bit
TrueCol or visua are supported on a single screen,
itis extremely likely a different colormap for each of the
two visuas can be installed simultaneoudly.

o If XMaxCmapsOf Scr een returns a number higher than
one, it is possible that the hardware supports multiple col-
ormaps for the same visual. A rule of thumb isthe higher
the number, the more likely. If the number is higher than
thetotal number of visualsonthe screen, it must betruefor
at least onevisua (but you cannot know which one).

Hopefully multiple hardware colormaps will become more
preva ent and perhaps astandard mechani sm to detect colormap
and visua conflictswill become available.

3.2 DoubleBuffering

If you are writing an animated 3D program, you will probably
want double buffering. It isnot always available for OpenGL.
You have two choices: run in single-buffered mode or render
to a pixmap and copy each new frame to the window using
XCopyAr ea.

Note that when you use gl XChooseVi sual , booleans
are matched exactly (integersif specified are considered min-
imums). This means if you want to support double buffering
but be able to fall back to single buffering, two calls will be
neededtogl XChooseVi sual . If an OpenGL application has
sophisticated needs for selecting visuals, gl XGet Confi g can
be called on each visua to determine the OpenGL attributes of
each visual.

3.3 Overlays

X has a convention for supporting overlay window via specia
visuals [2]. OpenGL can support rendering into overlay vi-
suals. Even if an X server supports overlay visuals, you will
need to make sure those visuals are OpenGL capable. The
gl XChooseVi sual routine does allow you to specify the
frame buffer layer for the visua you are interested in with the
GLX_LEVEL attribute. Thismakesit easier to find OpenGL ca-
pable overlay visuals.

IRIS GL programmers are used to assuming the trans-
parent pixel in an overlay visua is aways zero. For X
and OpenGL, this assumption is no longer vaid. You
should query the transparent mode and pixel specified by the
SERVER OVERLAY_VI SUALS property to ensure portability.

IRIS GL programmers are also used to considering overlay
planes as being “built-in” to IRIS GL windows. The X model
for overlay planes considersan overlay window to be aseparate
window withitsownwindow ID. To use overlaysas onedoesin
IRISGL, you heed to create anormal planewindow, then create
a child window in the overlay planes with the child’s origin lo-
cated at the origin of the parent. The child should be maintai ned
to have the same size as the parent. Clear the overlay window

to the transparent pixel value to see through to the parent nor-
mal plane window. Switching between the overlay and normal
planes windowsrequiresagl XMakeCur r ent cal.

Itislikely that the overlay visuals will not support the same
frame buffer capabilities as the norma plane visuds. You
should avoid assuming overlay windowswill have frame buffer
capabilities such as depth buffers, stencil buffers, or accumula-
tion buffers.

3.4 Mixing Xlib and OpenGL Rendering

InIRISGL, rendering intoan X window using core X rendering
after IRIS GL was bound to thewindow isundefined. Thispre-
cluded mixing core X rendering with GL rendering in the same
window. OpenGL allowsitsrendering to be mixed with core X
rendering into the same window. You should be careful doing
so since X and OpenGL rendering requests are logically issued
in two digtinct streams. |f you want to ensure proper rendering,
you must synchronize the streams. Calling gl XWai t GL will
make sure all OpenGL rendering has finished before subsequent
X rendering takes place. Calling gl XWai t X will make sure
all core X rendering has finished before subsequent OpenGL
rendering takes place. These reguests do not require a protocol
round trip to the X server.

The core OpenGL APl aso includes gl Fi ni sh and
gl Fl ush commands useful for rendering synchronization.
gl Fi ni sh ensures all rendering has appeared on the screen
when the routine returns (similar to XSync). gl Fl ush only
ensures the queued commands will eventually be executed
(similar to XFI ush).

Reslize that mixing OpenGL and X is not normally neces-
sary. Many OpenGL programs will use atoolkit like Motif for
their 2D user interface component and use adistinct X window
for OpenGL rendering. Thisrequires no synchronization since
OpenGL and core X rendering go to distinct X windows. Only
when OpenGL and core X rendering are directed at the same
window is synchronization of rendering necessary.

Also OpenGL can be used for extremely fast 2D as well as
3D. When youfed aneedto mix core X and OpenGL rendering
into the same window, consider rendering what youwould doin
core X using OpenGL. Not only do you avoid the synchroniza-
tion overhead, but you can potentially achieve faster 2D using
direct rendered OpenGL compared to core X rendering.

3.5 Fonts

Graphics programs often need to display text. You can use X
font rendering routinesor you can usethe GLX gl XUse XFont
routineto create display listsout of X fonts.

Neither of these methods of font rendering may be flexible
enough for aprogram desiring stroke or scal ablefontsor having
sophisticated font needs. In the future, an OpenGL font man-
ager will beavail ableto meet these needs. Inthemeantime, you
can use gl XUseXFont or X font rendering or roll your own
font support. An easy way to do thisis to convert each glyph

200

of your font into a display list. Rendering text in the font be-
comes a matter of executing the display list corresponding to
each glyphin the string to display.

3.6 Display Lists

OpenGL supportsimmediate mode rendering where commands
can be generated on the fly and sent directly to the screen. Pro-
grammers should be aware that their OpenGL programs might
berunindirectly. Inthiscase, immediate mode rendering could
requireagrest deal of overhead for transport to the X server and
possibly across a network.

For thisreason, OpenGL programmers should try to use dis-
play lists when possible to batch rendering commands. Since
the display listsare stored in the server, executing adisplay list
has minimal overhead compared to executing the same com-
mands in the display list immediately.

Display lists are likely to have other advantages since
OpenGL implementationsare all owed to compilethem for max-
imum performance. Be aware you can mix display listsand im-
medi ate mode rendering to achieve the best mix of performance
and rendering flexibility.

4 Conclusion

The gl xdi no example demonstrates the basic tasks that must
be doneto use OpenGL with X. The program demonstrates so-
phisticated OpenGL features such as double buffering, lighting,
shading, back-face culling, display list modeling, and polygon
tesselation. And the proper X conventionsare followed to en-
suregl xdi no workswell with other X programs.

The gl xdi no example program and the hintsfor advanced
OpenGL programming should provide a good foundation for
understanding and programming OpenGL with Xlib. The next
article will explain how to integrate OpenGL with the Motif
toolkit.

201

A gIxdino.c

OO ~NOOOUIAWN P

/* conpile: cc -o glxdino glxdino.c -IGQU -I1G -1 Xmu -1 X11 */
#i ncl ude <stdio. h>

#include <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <mat h. h> /* for cos(), sin(), and sqrt() */

#i ncl ude <A/ gl x. h> /* this includes X and gl .h headers */

#i ncl ude <@/ glu. h> /* gluPerspective(), gluLookAt(), G.U polygon
* tesselator */

#i ncl ude <X11/ Xatom h> /* for XA RGB_DEFAULT_MAP atom */

#i ncl ude <X11/ Xnu/ St dCrap. h> /* for XnuLookupSt andar dCol ormap() */

#i ncl ude <X11/ keysym h> /* for XK _Escape keysym */

t ypedef enum {
RESERVED, BODY_SI DE, BODY_EDGE, BCDY_WHOLE, ARM SIDE, ARM EDGE, ARM WHOLE
LEG SI DE, LEG EDGE, LEG WHOLE, EYE SIDE, EYE EDGE, EYE WHOLE, DI NOSAUR

} di spl ayLi sts;

Di splay *dpy;

W ndow wi n;

G.float angle = -150; /* in degrees */

G.bool ean doubl eBuffer = G._TRUE, iconic = G_FALSE, keepAspect = G_FALSE;
int W= 300, H = 300;

XSi zeHi nts sizeH nts = {0};

GLdoubl e bodyWdth = 2.0;

int configuration[] = {GLX DOUBLEBUFFER GLX RGBA, GLX RED SIZE, 1, GLX DEPTH SIZE, 16, None}

GLfloat body[][2] ={ {0, 3}, {1, 1}, {5 1}, {8, 4}, {10, 4}, {11, 5},
{11, 11.5}, {13, 12}, {13, 13}, {10, 13.5}, {13, 14}, {13, 15}, {11, 16},
{8, 16}, {7, 15}, {7, 13}, {8, 12}, {7, 11}, {6, 6}, {4, 3}, {3, 2},
{1, 2} };

Gfloat arn{][2] = { {8, 10}, {9, 9}, {10, 9}, {13, 8}, {14, 9}, {16, 9},
{15, 9.5}, {16, 10}, {15, 10}, {15.5, 11}, {14.5, 10}, {14, 11}, {14, 10},
{13, 9}, {11, 11}, {9, 11} };

Gfloat leg[][2] ={ {8, 6}, {8, 4}, {9, 3}, {9, 2}, {8, 1}, {8, 0.5}, {9, 0},
{12, 0}, {10, 1}, {10, 2}, {12, 4}, {11, 6}, {10, 7}, {9, 7} };

GLfloat eye[][2] = { {8.75, 15}, {9, 14.7}, {9.6, 14.7}, {10.1, 15},
{9.6, 15.25}, {9, 15.25} };

G.float lightZeroPosition[] = {10.0, 4.0, 10.0, 1.0};

G.float |ightZeroColor[] = {0.8, 1.0, 0.8, 1.0}; /* green-tinted */
G.float lightOnePosition[] = {-1.0, -2.0, 1.0, 0.0};

G float lightOneColor[] = {0.6, 0.3, 0.2, 1.0}; /* red-tinted */

G.float skinColor[] = {0.1, 1.0, 0.1, 1.0}, eyeColor[] = {1.0, 0.2, 0.2, 1.0};
CC gc;
XQCVal ues gcval s;

voi d
fatal Error(char *message)

fprintf(stderr, "glxdino: %\n", nessage);

exit(1);
}
Col or map
get Col or map(XVi sual Info * vi)
{
St at us st at us;
XSt andar dCol or map *st andar dCnaps;
Col or map cmap;
int i, nunOmaps;

202

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

}

voi d
extr

{

/* be lazy; using DirectColor too involved for this exanple */
if (vi->class != TrueCol or)
fatal Error("no support for non-TrueCol or visual");
/* if no standard col ormap but TrueCol or, just nake an unshared one */
status = XnuLookupSt andar dCol or nap(dpy, Vvi->screen, vi->visualid,
vi ->dept h, XA RGB _DEFAULT_MAP, /* replace */ False, /* retain */ True);
if (status == 1) {
status = XGet RGBCol or maps(dpy, Root Wndow(dpy, Vi->screen),
&t andar dCmaps, &nunCraps, XA RGB_DEFAULT_NAP);
if (status == 1)
for (i = 0; i < nunCraps; i++)
if (standardCmaps[i].visualid == vi->visualid) {
cmap = standardCmraps[i]. col or map;
XFr ee(st andar dCnaps) ;
return cnap;
}
}
cmap = XCreat eCol or map(dpy, Root Wndow(dpy, vVi->screen),
vi->visual, Al locNone);
return cnap;

udeSol i dFr onmPol ygon(GL.fl oat data[][2], unsigned int dataSize,
G.doubl e thickness, Guint side, Guint edge, G.uint whole)

static GUriangulatorGj *tobj = NULL;

G.doubl e vertex[3], dx, dy, len;
int i;
int count = dataSize / (2 * sizeof (GLfloat));
if (tobj == NULL) {
tobj = gl uNewTess(); /* create and initialize a G.U pol ygon

* tesselation object */
gl uTessCal | back(tobj, G.U BEG@ N, gl Begin);
gl uTessCal | back(tobj, G.U VERTEX, gl Vertex2fv); /* sem -tricky */
gl uTessCal | back(tobj, G.U END, gl End);
}
gl NewLi st (si de, G._COWI LE);
gl ShadeModel (GL_SMOOTH); /* snooth mnimzes seeing tessellation */
gl uBegi nPol ygon(tobj);

for (i =0; i < count; i++) {
vertex[0] = data[i][0];
vertex[1l] = data[i][1];
vertex[2] = O;

gl uTessVertex(tobj, vertex, &datafi]);

}
gl uEndPol ygon(t obj);
gl EndLi st ();
gl NewLi st (edge, G._COWPI LE);
gl ShadeModel (GL_FLAT); [/* flat shade keeps angul ar hands from bei ng
* "snoot hed" */
gl Begi n(G._QUAD_STRI P) ;
for (i = 0; i <= count; i++) {
/* nod function handles closing the edge */
gl Vertex3f(data[i %count][0], data[i %count][1], 0.0);
gl Vertex3f(data[i %count][0], data[i %count][1], thickness);
/* Calculate a unit nornmal by dividing by Euclidean distance. W
* could be lazy and use gl Enabl e(GL_NORMALI ZE) so we could pass in

203

119 * arbitrary normals for a very slight performance hit. */

120 dx = data[(i + 1) %count][1] - data[i %count][1];
121 dy = data[i %count][0] - data[(i + 1) %count][0];
122 len = sqrt(dx * dx + dy * dy);

123 gl Nornmal 3f (dx / len, dy / len, 0.0);

124 }

125 gl End();

126 gl EndLi st ();

127 gl NewLi st (whol e, GL_COWPI LE);

128 gl Front Face(GL_CW ;

129 gl Cal I Li st (edge);

130 gl Normal 3f (0.0, 0.0, -1.0); /* constant normal for side */
131 gl Cal I Li st (side);

132 gl PushMatri x();

133 gl Transl atef (0.0, 0.0, thickness);

134 gl Front Face(G._CCW ;

135 gl Nornmal 3f (0.0, 0.0, 1.0); /* opposite nornal for other side */
136 gl Cal I Li st (side);

137 gl PopMatri x();

138 gl EndLi st ();

139 }

140

141 void

142 nakeDi nosaur (voi d)

143 {

144 G.f | oat bodyWdth = 3.0;

145

146 ext rudeSol i dFr onPol ygon(body, si zeof (body), bodyWdth,

147 BODY_SI DE, BODY_EDGE, BODY_WHOLE);

148 extrudeSol i dFr onPol ygon(arm si zeof (arn), bodyWdth / 4,
149 ARM S| DE, ARM EDGE, ARM WHOLE);

150 extrudeSol i dFr onPol ygon(|l eg, sizeof(leg), bodyWdth / 2,
151 LEG SIDE, LEG EDGE, LEG WHOLE);

152 extrudeSol i dFr onPol ygon(eye, sizeof(eye), bodyWdth + 0.2,
153 EYE_SI DE, EYE_EDGE, EYE WHOLE);

154 gl NewLi st (DI NOSAUR, GL_COMWPI LE) ;

155 gl Material fv(G_FRONT, G _D FFUSE, skinColor);

156 gl Cal I Li st (BODY_WHOLE) ;

157 gl PushMatri x();

158 gl Transl atef (0.0, 0.0, bodyWdth);

159 gl Cal I Li st (ARM WHOLE) ;

160 gl Cal | Li st (LEG WHOLE) ;

161 gl Transl atef (0.0, 0.0, -bodyWdth - bodyWdth / 4);
162 gl Cal I Li st (ARM WHOLE) ;

163 gl Transl atef (0.0, 0.0, -bodyWdth / 4);

164 gl Cal | Li st (LEG WHOLE) ;

165 gl Transl atef (0.0, 0.0, bodyWdth / 2 - 0.1);

166 gl Material fv(G._FRONT, G _DI FFUSE, eyeColor);

167 gl Cal | Li st (EYE_WHOLE) ;

168 gl PopMatri x();

169 gl EndLi st ();

170 }

171

172 wvoid

173 redraw void)

174 {

175 static int x = 0;

176 gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

177 gl Cal | Li st (DI NCSAUR) ;

178 if (doubl eBuffer)

204

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

gl XSwapBuf f er s(dpy,
el se gl Flush();

wn);
/* explicit

/* buffer

swap does inplicit gl Flush */

flush for single buffered case */

recal cvbdel View = G._TRUE;

#if 1
XDrawLi ne(dpy, win, gc, 10+x, 10, 40+x, 40);
X+=8;
XSync(dpy, 0);
#endi f
}
voi d
mai n(int argc, char **argv)
{
XVi sual | nf o *vi ;
Col or map crap;
XSet WndowAt tri butes swa;
XWWH nt s *wiHi nt s;
At om wDel et eW ndow;,
G XCont ext CX;
XEvent event;
KeySym ks;
GLbool ean needRedr aw = G__FALSE,
char *di splay = NULL, *geonetry = NULL;
int flags, x, y, width, height,

[*** (1) process nornal

for (i =1; i <argc; i++) {
if (!strcnp(argv[i], "-geonetry")) {
if (++i >= argc)

lastX, i;

X command |ine argunents ***/

fatal Error("follow -geonetry option with geonetry paraneter");

geonetry = argv[i];
} else if (!strcnp(argv[i],
if (++i >= argc)

"-display”)) {

fatal Error("follow -display option with display paraneter");

display = argv[i];

} else if (!strcnmp(argv[i], "-iconic"))

iconic = G_TRUE;

else if (!strcnp(argv[i], "-keepaspect")) keepAspect = G _TRUE;
else if (!strcnp(argv[i], "-single")) doubl eBuf fer = G._FALSE;
el se fatal Error("bad option");

}

[*** (2) open a connection to the X server ***/

dpy = XOpenDi spl ay(di spl ay);

if (dpy == NULL) fatal Error("could not open display");

[*** (3) nake sure Open@.’'s G.X extension supported ***/

if (!gl XQueryExtensi on(dpy, NULL, NULL))
fatal Error ("X server has no Open@ G.X extension");

[*** (4) find an appropriate visual and a colormap for it ***/

/* find an QpenG.-capabl e RGB vi sual

vi = gl XChooseVi sual (dpy,
if (vi == NULL) {
Si ngl eBuf f er Overri de:
vi = gl XChooseVi sual (dpy,
if (vi == NULL)

fatal Error("no appropriate RGB visual

doubl eBuf f er = G._FALSE;

}

cmap = get Col or map(vi);

205

Def aul t Scr een(dpy),

with depth buffer */
if (!doubleBuffer) goto SingleBufferQuerride;
Def aul t Scr een(dpy),

configuration);

&configuration[1]);

with depth buffer");

239

240 [*** (5) create an OpenG. rendering context ***/

241 /* create an OpenGL rendering context */

242 cx = gl XCreateContext(dpy, vi, /* no sharing of display lists */ NULL,
243 /* direct rendering if possible */ G_TRUE);
244 if (cx == NULL) fatalError("could not create rendering context");
245

246 [*** (6) create an X window with selected visual and right properties ***/
247 flags = XParseCGeonetry(geonetry, &x, &y,

248 (unsigned int *) &idth, (unsigned int *) &height);

249 if (Wdthvalue & flags) {

250 sizeHints.flags |= USSize;

251 sizeHints.width = w dth;

252 W = width;

253 }

254 if (HeightValue & flags) {

255 sizeHints.flags |= USSize;

256 si zeHi nts. hei ght = height;

257 H = hei ght;

258 }

259 if (XvValue & flags) {

260 if (XNegative & flags)

261 x = Di splayWdth(dpy, DefaultScreen(dpy)) + x - sizeH nts.w dth;
262 sizeHints.flags |= USPosition;

263 sizeH nts.x = x;

264 }

265 if (Yvalue & flags) {

266 if (YNegative & flags)

267 y = DisplayHei ght (dpy, Defaul t Screen(dpy)) + y - sizeH nts. hei ght;
268 sizeHints.flags |= USPosition;

269 sizeHints.y =vy;

270 }

271 if (keepAspect) {

272 sizeH nts. flags | = PAspect;

273 sizeHi nts. mn_aspect.x = sizeH nts.nax_aspect.x = W

274 sizeHi nts. mn_aspect.y = sizeH nts. nax_aspect.y = H

275 }

276 swa. col ormap = cnap;

277 swa. bor der _pi xel = 0;

278 swa. event _nask = ExposureMask | StructureNotifyMask |

279 But t onPressMask | ButtonlMtionMask | KeyPressMask;

280 win = XCreat eW ndow dpy, Root W ndow(dpy, vVvi->screen),

281 sizeHi nts.x, sizeHints.y, W H,

282 0, vi->depth, InputQutput, vi->visual,

283 CWBor der Pi xel | CWCol ormap | CWEvent Mask, &swa);
284 gcvals.line_w dth = 5;

285 gcval s. foreground = 45;

286 gc = XCreateQC(dpy, w n, GCForeground| GCLi neW dth, &gcvals);

287 XSet St andar dProperti es(dpy, w n, "OpenGosaurus", "glxdino",

288 None, argv, argc, &sizeH nts);

289 wnHi nts = XAl | ocWvHI nts();

290 wnHints->initial _state = iconic ? IconicState : Nornal State;

291 wHi nts->fl ags = StateH nt;

292 XSet WHI nt s(dpy, win, wiH nts);

293 wnDel et eW ndow = Xl nt er nAt on{dpy, "WV DELETE W NDOW, False);

294 XSet WWPr ot ocol s(dpy, w n, &wmrDel et eW ndow, 1);

295

296 /*** (10) request the X window to be displayed on the screen ***/
297 XMapW ndow(dpy, win);

298 sl eep(1);

206

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

[*** (7) bind the rendering

context to the

gl XMakeCurrent (dpy, wn, cx);

W ndow ***/

[*** (8) nake the desired display lists ***/

nmakeDi nosaur () ;

[*** (9) configure the Qpen@ context for

gl Enabl e(GL_CULL_FACE) ;

gl Enabl e(G._DEPTH_TEST) ;
gl Enabl e(GL_LI GHTI NG ;

gl Mat ri xMode(GL_MODELVI EW ;
gl uLookAt (0.0, 0.0, 30.0,

0.0, 1.0,
gl PushMatri x();

/* “50% better
* culling on
/* enabl e dept

rendering ***/

per fomance than no back-face
Entry Indigo */
h buffering */

/* enable lighting */
gl Mat ri xMode(GL_PROQIECTI ON);/ * set up proj
gl uPerspective(/* field of viewin degree */ 40.0, /* aspect ratio */ 1.0,

/* Z near */ 1.0, /* Z far

/* now change
/* eye is at (

ection transform */

*/ 40.0);
to nodel view */
0,0,30) */

/* center is at (0,0,0) */

/* up is in po
/* dummy push

stivie Y direction */
so we can pop on nodel recalc */

gl Li ght Mbdel i (GL_LI GHT_MODEL_LOCAL_VI EVER, 1);

gl Li ght fv(GL_LI GHTO, G._POsI TI ON,
gl Li ght fv(GL_LI GHTO, G._DI FFUSE,

|'i ght Zer oPosi tion);
| i ght Zer oCol or) ;

gl Li ght f (GL_LI GHTO, GL_CONSTANT_ATTENUATI ON, 0.1);
gl Li ght f (GL_LI GHTO, GL_LI NEAR_ATTENUATI ON, 0. 05);
gl Lightfv(G_LIGHT1, G _PCsITION, |ightOne

gl Li ght f v(GL_LI GHT1, GL_DI FFUSE,

gl Enabl e(GL_LI GHTO0) ;
gl Enabl e(GL_LI GHT1) ;

[*** (11) dispatch X events
while (1) {
do {

/* enable both

***/

XNext Event (dpy, &event);

switch (event.type)

{

case ConfigureNotify:

gl Vi ewport (0, O,

event . xconfi

/* fall through.
case Expose:

needRedraw = G_

br eak;
case MotionNotify:
recal chbdel Vi ew
angle -= (lastX
case ButtonPress:

gure.width, ev
oo

TRUE;

= GL_TRUE
- event.xnotio

| ast X = event. xbutton. x;

br eak;
case KeyPress:

ks = XLookupKeysym((XKeyEvent
if (ks == XK _Escape) exit(0);

br eak;
case dient Message:

if (event.xclient.data.l[0] ==

br eak;

}
} while (XPending(dpy));/*

if (recal cModel View {
gl PopMatri x();

/* pop old rot
* first tine)

207

Posi ti on);

|'i ght OneCol or);

lights */

ent. xconfi gure. hei ght);

n.x);

*) & event, 0);

wnDel et eW ndow) exit(0);

| oop to conpress events */

ated matrix (or dummy matrix if
*/

359 gl PushMat ri x() ;

360 gl Rotatef (angle, 0.0, 1.0, 0.0);
361 gl Transl atef (-8, -8, -bodyWdth / 2);
362 recal cvbdel Vi ew = G_FALSE;

363 needRedraw = G__TRUE;

364 }

365 if (needRedraw) {

366 redraw();

367 needRedraw = G._FALSE;

368 }

369 }

370 }

208

References

[1] James Foley, Andries van Dam, Steven Feiner, and John
Hughes, Computer Graphics: Principles and Practice,
2nd edition, Addison-Wesley Publishing, 1990.

[2] Mark Kilgard, “Programming X Overlay Windows,” The
X Journal, SIGS Publications, July 1993.

[3] Jackie Neider, Tom Davis, Mason Woo, OpenGL Pro-
gramming Guide: The official guideto learning OpenGL,
Release 1, Addison Wesley, 1993.

[4] OpenGL Architecture Review Board, OpenGL Reference
Manual: Theofficial reference document for OpenGL, Re-
lease 1, Addison Wesley, 1992.

209

PUBLISHED IN THE
JULY/AUGUST ISSUE OF The X Journal.

OPENGL ™ AND X, PART 3:
INTEGRATING OPENGL WITH MOTIF

Mark J. Kilgard *
Slicon Graphics Inc.
Revision : 1.19

May 7, 1997

Abstract

The OpenGL™ graphics system can be integrated with the
industry-standard OSF/Motif user interface. This article dis-
cusses how to use OpenGL withinaMotif application program.
There are two approaches to using OpenGL with Motif. Oneis
torender into astandard Motif drawing areawidget, but thisre-
quireseach application window to useasinglevisual for itswin-
dow hierarchy. A better approach isto use the special OpenGL
drawing area widget allowing windows used for OpenGL ren-
dering to pick freely an appropriate visual without affecting the
visua choice for other widgets. An example program demon-
strates both approaches. The X Toolkit’swork procedure mech-
anism animates the example’'s 3D paper airplanes. Handling
OpenGL errorsisaso explained.

1 Introduction

OSF/Motif is the X Window System’s industry-standard pro-
gramming interface for user interface construction. Motif pro-
grammers writing 3D applicationswill want to understand how
to integrate Motif with the OpenGL™ graphics system. This
article, the last in a three-part series about OpenGL, describes
how to write an OpenGL program within the user interface
framework provided by Motif and the X Toolkit.

Most 3D applicationsend up using 3D graphics primarily in
one or more “viewing” windows. For the most part, the graph-
ica user interface aspects of such programs use standard 2D
user interface objects like pulldown menus, diders, and dialog
boxes. Creating and managing such common user interface ob-
jects is what Motif does well. The “viewing” windows used
for 3D are where OpenGL rendering happens. These windows
for OpenGL rendering can be constructed with standard Mo-
tif drawing areawidgets or OpenGL-specific drawing areawid-

*Mark graduated with B.A. in Computer Science from Rice University and
isa Member of the Technical Staff at Silicon Graphics. He can be reached by
electronic mail addressedtonj k@gi . com

gets. Bind an OpenGL rendering context to the window of a
drawing area widget and you are ready for 3D rendering.

Programming OpenGL with Motif has numerous advantages
over using “Xlib only” as described in the first two articlesin
this series [2, 3]. First and most important, Motif provides a
well-documented, standard widget set that gives your applica-
tionaconsistent look and fedl. Second, Motif and the X Toolkit
take care of routine but complicated i ssues such as cut and paste
and window manager conventions. Third, the X Toolkit'swork
procedure and timeout mechanisms make it easy to animate a
3D window without blocking out user interaction with your ap-
plication.

Thisarticleassumes you have some experience programming
with Motif and you have a basi ¢ understanding of how OpenGL
integrates with X.

Section 2 describes how to use OpenGL rendering with either
a standard Motif drawing area widget or an OpenGL-specific
drawingareawidget. Section 3 discussesusing X Toolkit mech-
anisms for seamless animation. Section 4 provides advice on
how to debug OpenGL programs by catching OpenGL errors.
Throughout the discussion, a Motif-based OpenGL program
named paper pl ane is used as an example. The complete
source code for paper pl ane isfound in the appendix. The
program animates the 3D flight paths of virtual paper airplanes.
The user can interact with the program viaMotif controls. The
program can be compiled to use either astandard Motif drawing
areawidget or an OpenGL-specific drawing areawidget. Figure
1 shows paper pl ane running.

2 OpenGL with Widgets

Your application’s3D viewing areacan beencapsul ated by an X
Toolkitwidget. There are two approaches to rendering OpenGL
into a widget. You can render OpenGL into a standard Motif
drawing areawidget, or you can use aspecia OpenGL drawing
areawidget.

210

e e

File Edit Effects Function

=.§ OpenGl paper plane demo

File [Planes
& Motion
Add plane
Remove piane

Figure 1: Screen snapshot of paper pl ane with another
OpenGL Motif program for molecular modeling.

The Motif drawing area widget would seem a natural wid-
get for OpenGL rendering. Unfortunately, the X Toolkit's de-
sign (upon which Motif relies) alows programmers to specify
awidget’svisua only if its class is derived from the shell wid-
get class. Shell widgetsare often called “top level” widgets be-
cause they are designed to communi cate with the window man-
ager and act as containers for other widgets. Non-shell widgets
inherit the depth and visual of their parent widget. The Mo-
tif drawing area widget class (like most widget classes) is not
derived from the shell widget class. It isimpossible (without
resorting to programming widget internals) to set the visual of
a standard non-shell Motif widget differently than its ancestor
shell widget.

But in OpenGL, the X notion of a visud has expanded im-
portance for determining the OpenGL frame buffer capabilities
of an X window. In many cases, an application’s 3D viewing
areaislikely to demand a deeper, more capable visua than the
default visual which Motif normally uses.

There are two options:

1. Use the standard Motif drawing area widget for your
OpenGL rendering area and make sure that the top
level shell widget is created with the desired visual for
OpenGL's use.

2. Usean OpenGL drawing areawidget that is specially pro-
grammed to overcome the limitation on setting the visua
and depth of a non-shell widget.

Either approach works.
Thepaper pl ane exampleintheappendix iswrittento sup-
port either scheme depending on how the code is compiled. By

default, the code compiles to use the OpenGL-specific widget.
IfthenoGLwi dget C preprocessor symbol isdefined, thestan-
dard Motif drawing area widget will be used, forcing the use of
asinglevisual throughout the example’ swidget hierarchy. The
code differences between thetwo schemesinthepaper pl ane
exampl e constitute seven changed lines of code.

The preferable approach is to use the OpenGL -specific wid-
get, sinceyou can run most of the application’suser interfacein
the default visual and use adeeper, more capabl e visual only for
3D viewing aress. Limiting the use of deeper visuals can save
memory and increase rendering speed for the user interfacewin-
dows. If you use a 24-bit visua for your 3D viewing area and
use the same visua for your entire application, that means that
theimage memory for pixmaps used by non-OpenGL windows
isfour timeswhat it would befor an 8-bit visual.! Some X ren-
dering operations might al so be s ower for 24-bit windows com-
pared with 8-bit windows.

There can be advantages to running your entire application
inasinglevisual. Someworkstationswith limited colormap re-
sources might not be capabl e of showing multiplevisuaswith-
out colormap flashing. Such machines which support OpenGL
should berare. Evenif runninginasinglevisua isappropriate,
nothing precludes doing so using an OpenGL -specific widget.

2.1 The OpenGL -specific Widget

There are two OpenGL-specific drawing area widget classes.
Oneis derived from the Motif primitive widget class (not the
Motif drawing areawidget class). The other isderived fromthe
X Toolkit core widget class. Both have the same basi ¢ function-
ality; the main difference is that the Motif-based widget class
gains capabilitiesof the Motif primitivewidget class. If you use
Motif, you should use the Motif OpenGL widget. If you use a
non-Motif widget set, you can use the second widget for identi-
cal functionality.

The Motif OpenGL widget class is named
gl WVDr awi ngAr eaW dget C ass; the
non-Motif OpenGL widget class is named

gl wDr awi ngAr eaW dget Cl ass (the difference is the
lack of an Min the non-Motif case). Since the Motif OpenGL
widget is subclassed from the Motif primitive widget class, the
Motif OpenGL widget inherits the capabilities of the primitive
class like a help callback and keyboard traversal support (key-
board traversal is disabled by default for the Motif OpenGL
widget). Thepaper pl ane example uses the Motif widget by
default but the non-Motif widget can be used by defining the
noMbt i f GLwi dget C preprocessor symbol when compiling
paper pl ane. c. Thedifference istwo changed lines of code
with no functional differencein the program.

When you create either type of widget, you need to specify
thevisual to use by supplyingthewidget’ sG.wi\vi sual | nf o
resource. The attributeis of type XVi sual | nf o* making it
easy to find an appropriate visua using gl XChooseVi sual

! Even though a 24-bit pixel requires only three bytes of storage, efficient
manipulation of the pixels demandseach pixel is stored in an even 4 bytes.

211

which returnsaXVi sual | nf o* for avisua with the capabil-
ities you request.

Although this practice is not recommended, the widgets also
allow you to specify the OpenGL capabilities you desire for
the widget directly using widget resources. Because the X
Toolkit widget creation process is not expected to fail, there
is no way for a widget creation routine to indicate failure. If
a visua that matches the desired OpenGL capabilities cannot
be found, the widget code prints an error and exits without
giving the program a chance to handle the failure. If you re-
quest a specific XVi sual | nf o* that has aready been deter-
mined to be acceptable using gl XChooseVi sual or calsto
gl XGet Confi g, youwill not havethisproblem. Asarule, a-
waysspecify thevisua usingthe GLwiNvi sual | nf oresource.

The OpenGL widgets aso do extra work that might go un-
noticed. Because the OpenGL widget uses a different visual,
the widget's creation code creates a colormap matching the vi-
sual. It aso posts an ICCCM WWLCOL ORMAP_W NDOWS top
level window property to et the window manager know that the
program uses multiple colormaps.

More information about the OpenGL widgets can be found
inthe Silicon Graphics OpenGL Porting Guide [4] and thewid-
gets man pages.”

2.2 TheMotif Drawing Area Widget

Using thestandard Motif drawing areawidget with OpenGL has
some extra caveats. The main cavedat is that you must create
the top level widget with the correct visua for the program’s
OpenGL rendering.

When you start a widget program, there is generaly a call
to Xt Appl ni ti al i ze to establish the connection to the X
server and create the top level widget. Both steps are done in
the same routine. So how can we call gl XChooseVi sual to
know what visual the top level widget should use until we have
established a connection to the X server?

It would appear that it is impossible to create the top
level widget with an appropriate visual for OpenGL.
Xt Appl ni ti al i ze connectsto the X server and creates the
top level widget, but it does not realize the top level widget.
The X window for the top level widget is not created until
Xt Real i zeW dget iscaled. Thisdlows Xt Set Val ues
to be used after the top level widget's creation (and before its
realization) to specify the widget'svisual. The paper pl ane
sampl e code in the non-OpenGL widget case demonstratesthis.

A second cavest isdueto the X Toolkit'sinconsi stent inheri-
tance of the visual, depth, and colormap widget resources. The
default visua of awidget’s window is copied from its parent
window'svisua. But the default colormap and depth of awid-
get are copied from the widget’s parent widget.3

2The official standard location for the OpenGL widget headers is
<X11/ G.w GwDr awA. h> and <X11/ G.w/ GLwMDr awA. h>. In
IRIX 5.2, these headers are mistakenly located at <GL/ GLwDr awA. h>
and <G/ GLwMDr awA. h>.

31 the widget has no parent, the depth and colormap are determined by the
default depth and colormap of the screen.

paperplane (Paperplane)

mainw (XmMainWindow)

Separatorl
(XmSeparatorGadget)
Separator2
frame menubar (xmRowColumn) (XmSeparatorGadget)
(XmFrame)
Separator3
(XmSeparatorGadget)
File Planes popup_menL;(pane
(XmCascadeButton) (XmCascadeButton) \LmMenuShelD
/ menupane
glxar_ea (XmRowColumn)
(XmDrawingArea or menupane
glwMDrawingArea or (XmRowColumn)
glwDrawingArea) g
Motion
(XmToggleButton)
(XmPushButton) Add plane

(XmPushButton)

Remove plane
(XmPushButton)

Figure 2: Diagram of the widget hierarchy for paper pl ane.
The gl xar ea XnDr awi ngAr ea widget is the only widget
rendered using OpenGL.

Thismeansthat if you create awidget derived from the shell
widget and the widget’s parent uses a non-default depth or col-
ormap for a non-default visual, you will need to specify the
same visual as the new widget’s parent widget. If you do not,
aBadMat ch X protocol error will result. For thisreason the
paper pl ane example’'s XnTCr eat ePul | downMenu cals
specify the visual of the created widget's parent widget in the
Motif drawing area version of paper pl ane.

Redlize that it is not possible to bind an OpenGL rendering
context to awidget’ swindow until the widget has been realized.
Until the widget is realized, the widget’s window does not yet
exist. Noticepaper pl ane doesnot call gl XMakeCur r ent
until after Xt Real i zeW dget hasbeen called.

To see how the 3D viewing area widget fits into the
paper pl ane widget hierarchy example, Figure 2 shows the
complete hierarchy including widget class names.

These caveats are not uniqueto OpenGL. The problem comes
from using non-default visuas with the X Toolkit. PEXIib 5.1
programshaveasimilar need for non-default visualsand require
the same jumping through hoopg 1]. Fortunately, if you use the
OpenGL drawing areawidgets, you can avoid the caveats of us-
ing the standard Motif drawing area.

2.3 Drawing Area Callbacks

Applications using the Motif drawing area widget or the
OpenGL drawing area widgetsfor their 3D rendering will want
to register routinesto handle expose, resize, and input callbacks
using Xt AddCal | back. In paper pl ane. c, the dr aw,
resi ze,andi nput routineshandlethese callbacks.

paper pl ane’sdrawing area adjusts OpenGL’sviewport by
caling gl Vi ewport. Note how the nade_current vari-
able is used to protect against caling gl Vi ewport before
we have done the gl XMakeCur rent to bind to the draw-

212

ing area window. In the X Toolkit, the resize callback can be
caled before the Xt Real i zeW dget routinereturns. Since
the program does not call gl XMakeCur r ent until after the
program returnsfrom Xt Real i zeW dget , the OpenGL ren-
dering context would not be bound. Calling an OpenGL rou-
tine before a context is bound has no effect but generates an
ugly warning message.* An example of when the resize call-
back canbecalled beforeXt Real i zeW dget returnsiswhen
a- geonet ry command line option is specified.

Note that gl XMakeCurrent is defined to set a con-
text’s viewport to the size of the first window it is bound
to. (This happens only on the context’s first bind.) This is
why paper pl ane. ¢ makes no initid cal to gl Vi ewport ;
gl XMakeCur r ent setsthe viewport implicitly.

The paper pl ane example uses a single window for
OpenGL rendering. For this reason, gl XMakeCur r ent is
caled only onceto bind the OpenGL context to the window. In
a program with multiple OpenGL windows, each expose and
resize callback should make sure that gl XMakeCurrent is
called so that OpenGL rendering goes to the correct window.

The draw cdlback routine issues the OpenGL com-
mands to draw the scene. If the window is double buffered,
gl XSwapBuf f er s swaps the window's buffers. If the
context is not direct, gl Fi ni sh iscaled to avoid the latency
from queuing more than one frame at a time; interactivity
would suffer if we allowed more than one frame to be queued.
Direct rendering involves direct manipulation of the hardware
so it generaly has less latency than a potentially networked
indirect OpenGL context.

Notethat you can render OpenGL into any widget (aslong as
it is created with an OpenGL capable visud). There is nothing
special about the Motif or OpenGL-specific drawing area wid-
gets, though drawing area widgetstend to be the most appropri-
ate widget type for a 3D viewing area.

2.4 Handling Input

Thei nput routinehandles X events for the drawing area. In-
put eventsrequire no specia handling for OpenGL. But remem-
ber that the coordinate systems for X and OpenGL are distinct,
so pointer locations need to be mapped into OpenGL's coordi-
nate space. OpenGL generally assumes that the originisin the
lower left-hand corner, while X always assumes an origin at the
upper left-hand corner.

3 Animation ViaWork Procedures

The X Toolkit's work procedure facility makes it easy to in-
tegrate continuous OpenGL animation with Motif user inter-
face operation. Work procedures are application supplied rou-
tinesthat executewhiletheapplicationisidlewaitingfor events.
Work procedures should be used to do small amounts of work;

4The exact behavior is undefined by the OpenGL specification.

if too much timeisspent in awork procedure, X eventswill not
be processed and program interactivity will suffer.

Rendering a single frame of OpenGL animation is a
good use for work procedures. Xt AppAddWor kPr oc and
Xt RernmoveWor kPr oc are used to add and remove work pro-
cedures. Xt AppAddWor kPr oc is passed a function pointer
for theroutineto be called asawork procedure. Thefunctionto
becalled returnsaBool ean. If thefunctionreturnsTr ue, the
work procedure should be removed automatically; returning
Fal se indicates the work procedure should remain active.
Xt AppAddWor kPr oc returns an ID of type Wor kPr ocl d
which can later be given to Xt RenmoveWor kPr oc to remove
thework procedure.

The paper pl ane example uses awork procedure to man-
age the update of its 3D scene. In response to changing the
state of the “Motion” toggle button on the “Planes’ pulldown
menu, the t oggl e callback routine will add and remove the
ani mat e work procedure.

Theani mat e routinecallst i ck which advances the posi-
tion of each active plane; ani mat e then callsdr awto redraw
the scene with the new plane locations. Finally, ani mat e re-
turns Fal se to leave the work procedure installed so that the
animation will continue.

Because paper pl ane usesawork procedure, animation of
the scene does not interfere with window resizing and user in-
put. The X Toolkit manages both the animation and eventsfrom
the X server.

3.1 HandlingIconification

When the paper pl ane window is open, we want the
ani mat e work procedure to update the 3D scene continu-
oudy. If the user iconifies the window, it would be wasteful to
continueanimating ano longer visible scene. To avoid wasting
resources rendering to an unmapped window, paper pl ane
installsan event handler caled map_st at e_.changed for the
top-level widget to notice UnmapNot i fy and MapNoti fy
events. The handler makes sure thework procedure isremoved
or added to reflect the map state of the window.

3.2 Timeouts

X Toolkit timeouts are similar to work procedures, but in-
stead of being activated whenever event dispatching is idle,
they are called when a given period of time has expired. The
Xt AppAddTi meout and Xt RenoveTi meQut routines can
be used to add and remove X Toolkit timeouts.

OpenGL programmers may find timeouts useful to maintain
animation at rates slower than “as fast as OpenGL will render.”
Timeouts can be used to give animation asustained frame rate.
Timeouts can also be used to redraw a scene with higher de-
tail when the user has stopped interacting with the program.
For example, a 3D modeling program might redraw its model
withlightingenabled and finer tessellation after theprogram has

213

been idle for two seconds. Timeouts can also be used to trigger
simple real-time state changes useful for visual simulation.

4 Debugging Tips

As wdl as demonstrating the use of widgets with OpenGL,
paper pl ane aso demonstrates detection of OpenGL errors
for debugging purposes. Some debugging code has been added
to the bottom of paper pl ane’sdr awfunctionto test for any
OpenGL errors. A correct OpenGL program should not gen-
erate any OpenGL errors, but while debugging it is helpful to
check explicitly for errors. A good time to check for errorsis
at the end of each frame. Errorsin OpenGL are not reported
unless you explicitly check for them, unlike X protocol errors
which are aways reported to the client.

OpenGL errors are recorded by setting “sticky” flags. Once
an error flag is set, it will not be cleared until gl Get Er r or
is used to query the error. An OpenGL implementation may
have several error flagsinternally that can be set (since OpenGL
errors might occur in different stages of the OpenGL render-
ing pipdine). When you look for errors, you should call
gl Get Error repeatedly until it returns GL_NO_ERROR indi-
cating that all of the error flags have been cleared.

The OpenGL error model issuited for high performance ren-
dering, since error reporting does not slow down the error-free
case. Because OpenGL errors should not be generated by bug-
free code, you probably want to remove error querying from
your final program since querying errors will ow down your
rendering speed.

When an OpenGL error is generated, the command which
generated theerror isnot recorded, so you may need to add more
error queriesinto your code to isolate the source of the error.

The gl uEr r or St ri ng routine in the OpenGL Utility li-
brary (GLU) converts an OpenGL error number into a human
readabl e string and hel psyou output areasonabl e error message.

5 Conclusion

OpenGL and Motif are a powerful combination. Using both
APIs dlow X applications programmers to get the most out of
both Motif and OpenGL.

Still another way to integrate OpenGL rendering with wid-
gets is the Open Inventor object-oriented 3D graphics toolkit
which rendersusing OpenGL and integrateswith X Toolkitwid-
gets. Open Inventor alows you to specify 3D scenes in an
obj ect-oriented fashion instead of low-level OpenGL rendering
primitives. If youareinterestedin object-oriented 3D, check out
the recently published Inventor Mentor [5].

The source code presented in this series is avail-
able by anonymous ftp to sgi gate.sgi.com in the
pub/ opengl / xj our nal directory.

Acknowledgments

Writing these three articles on OpenGL required the assistance
from numerous engineers and managers at Silicon Graphics. In
particular | would like to thank Kurt Akeley, David Blythe, Si-
mon Hui, Phil Karlton, Mark Segal, Kevin Smith, Joel Tedler,
Tom Weinstein, Mason Woo, and David Yu.

214

A paperplane.c

OO ~NOOOUIAWN P

QOO oAb DMDIMDIMDIEMAEDRENDNWOWOWWWWWWWWWNNNNNNMNNNNNRRRPERPERPERPEPRERER
O~NO U PRARWNRPOOONOUOPRWNRPOOO~NOOUPRRWNPOOO~NOUOPRAWNRPEPOOONOUODMWNEO

/*

* paperplane can be conpiled to use a "single visual" for the entire w ndow

* hierarchy and render Open@ into a standard Mtif draw ng area widget:

*
* c¢c -0 sv_paperplane paperplane.c -DnoG@w dget -1G -IXm-IXt -1X11 -Im
*
* O paperplane can be conpiled to use the default visual for nost of
* the window hierarchy but render Qpen@ into a special "QpenG wi dget":
*
* ¢c -0 glw paperplane paperplane.c -1Gw -IG -IXm-IXt -1X11 -Im
*/
#include <stdlib. h>
#i ncl ude <stdio. h>

is>

i ncl ude <unistd. h>

#i ncl ude <nath. h>

#i ncl ude <Xm Mai nW h>

#i ncl ude <Xm RowCol umm. h>

#i ncl ude <Xm PushB. h>

#i ncl ude <Xm Toggl eB. h>

#i ncl ude <Xm CascadeB. h>

#i ncl ude <Xm Frame. h>

#i fdef noGLwi dget

#i ncl ude <Xm Drawi ngA. h> /* Mtif drawing area wi dget */

#el se

/** NOTE: in IRIX 5.2, the Qpen@ w dget headers are mistakenly in xx/
[** <@/ AwbrawA. h> and <@/ d wMdraw. h> respectively. Below are the **/
/** _official _ standard |ocations. *x/
#i fdef noMotif G w dget

#i ncl ude <X11/ G.w GwDr awA. h> /* pure Xt OpenGL drawi ng area wi dget */
#el se

#include <X11/Aw Gw\DrawA h> /* Mtif QpenG drawing area w dget */
#endi f

#endi f

#i ncl ude <X11/ keysym h>

#include <@./gl.h>

#i ncl ude <@./glu. h>

#i ncl ude <@/ gl x. h>

static int dblBuf[] = {
GLX_DOUBLEBUFFER, GLX RGBA, GLX DEPTH Sl ZE, 16,
GLX _RED SI ZE, 1, GLX GREEN SIZE, 1, GLX BLUE SIZE, 1,
None

b

static int *sngl Buf = &bl Buf[1];

static String fal |l backResources[] = {

#ifdef IRIX 5 2 or_higher

"*sgi Mbde: true", /* try to enable IRIX 5.2+ ook & feel */
"*useSchenes: all", /* and SA@ schenes */
#endi f

"*title: OpenG paper plane denpo",

"*gl xarea*w dt h: 300", "*gl xarea*hei ght: 300", NULL
b
Di spl ay *dpy;

G.bool ean doubl eBuffer = GL_TRUE, noving = G._FALSE, made_current = G _FALSE;

Xt AppCont ext app;
Xt Wr kProcld workld = O;

W dget topl evel , nmi nw, nenubar, menupane, btn, cascade, franme, gl xarea;

A XCont ext CX;

215

59 XVisuallnfo *vi;
60 #ifdef noGLwi dget

61 Col or map crap;

62 #endif

63 Arg nenuPaneArgs[1], args[1];
64

65 #define MAX_PLANES 15

66

67 struct {

68 fl oat speed; /* zero speed means not flying */
69 G.f | oat red, green, blue;
70 fl oat t het a;

71 fl oat X, Y, z, angle;

72 '} planes[MAX_PLANES] ;

73

74 #define v3f gl Vertex3f /* v3f was the short IRIS GL nane for gl Vertex3f */
75
76 void drawm(Wdget w)

77 {

78 G.f | oat red, green, blue;

79 int i;

80

81 gl d ear (G._DEPTH BUFFER BI T);

82 /* paint black to blue snooth shaded pol ygon for background */

83 gl D sabl e(G._DEPTH_TEST) ;

84 gl ShadeModel (GL_SMOOTH) ;

85 gl Begi n(G._PCOLYGON) ;

86 gl Color3f(0.0, 0.0, 0.0);

87 v3f (-20, 20, -19); v3f(20, 20, -19);

88 gl Color3f(0.0, 0.0, 1.0);

89 v3f (20, -20, -19); v3f(-20, -20, -19);

90 gl End();

91 /* paint planes */

92 gl Enabl e(G._DEPTH_TEST) ;

93 gl ShadeModel (GL_FLAT);

94 for (i =0; i < MAX_PLANES; i++)

95 if (planes[i].speed != 0.0) {

96 gl PushMat ri x() ;

97 gl Transl atef (pl anes[i].x, planes[i].y, planes[i].z);

98 gl Rotatef (290.0, 1.0, 0.0, 0.0);

99 gl Rotatef (pl anes[i].angle, 0.0, 0.0, 1.0);
100 gl Scalef(1.0 / 3.0, 1.0/ 4.0, 1.0/ 4.0);
101 gl Translatef (0.0, -4.0, -1.5);

102 gl Begi n(GL_TRI ANGLE_STRI P) ;

103 /* left wing */

104 v3f(-7.0, 0.0, 2.0); v3f(-1.0, 0.0, 3.0);

105 gl Color3f(red = planes[i].red, green = planes[i]. green,
106 blue = planes[i].blue);

107 v3f(-1.0, 7.0, 3.0);

108 /* left side */

109 gl Color3f(0.6 * red, 0.6 * green, 0.6 * blue);
110 v3f (0.0, 0.0, 0.0); v3f(0.0, 8.0, 0.0);

111 /* right side */

112 v3f (1.0, 0.0, 3.0); v3f(1.0, 7.0, 3.0);

113 /* final tip of right wing */

114 gl Col or3f (red, green, blue);

115 v3f (7.0, 0.0, 2.0);

116 gl End();

117 gl PopMatri x();

118 }

216

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

if (doubl eBuffer) gl XSwapBuffers(dpy,
if(!'gl XIsDirect(dpy, cx))

gl Fini sh();

#i f def DEBUG
{ I* for help debugging, re
GLenum error;

whi | e((error
}
#endi f
}
void tick_per_p
{
float theta
planes[i].z
pl anes[i]. x
pl anes[i].y
}

fprintf(stderr

pl anes[i].angle = ((atan(2.0) + MPI_2)

ane(int i)

/* avoid indirect

port

= gl GetError())
"GL error:

any QpenGL errors that occur

Xt W ndowm(w)) ;

I = GL_NO_ERROR)
gl uErrorString(error));

%\ n",

pl anes[i].theta += planes[i]. speed
-9 + 4 * cos(theta);
4 * sin(2 * theta);
sin(theta / 3.4) *

3,

* sin(theta) -

if (planes[i].speed < 0.0) planes[i].angle += 180

voi d add_pl ane(voi d)

{

int i;

for (i = 0;

< MAX_PLANES;

if (planes[i].speed ==

#define SET_COLOR(r,g,b) \

}

pl anes[i].red=r;

switch (randonm() %

case
case
case
case
case
case

pl anes[i].speed = (randon()

}

0

A

SET_COLOR(1.
SET_COLOR(1.
SET_COLOR(0.
SET_COLOR(1.
SET_COLOR(1.
SET_COLOR(0.

i ++)

0) {

6) {
0, O.
0, 1.
0, 1.
0, O.
0, 1.
0, 1.

cooooo
PORORO

. 0);
. 0);
. 0);
. 0);
. 0);
. 0);

% 20)

/*
/*
/*
/*
/*
/*

red */
white */
green */
magenta */
yell ow */
cyan */

M Pl _2)

* 0.001 + 0.02;
if (random() & Ox1) planes[i].speed *= -1
planes[i].theta = ((float) (random()
tick_per_plane(i);
if (!noving) draw(gl xarea);
return;

% 257)) *

XBel | (dpy, 100); /* can’'t add any nore planes */

void renove_pl ane(voi d)

{

int

s

for (i = MAX_PLANES - 1;
if (planes[i].speed != 0) {
pl anes[i].speed = 0;
if (!nmoving) draw(gl xarea);
return;

>= 0

i--)

217

0.1111;

rendering |atency from queuing */

per frame */

* 180 / MPI;

pl anes[i].green=g; planes[i].blue=b; break

179 XBel | (dpy, 100); /* no nore planes to renove */

180 }

181

182 void resize(Wdget w, XtPointer data, XtPointer call Data)
183 {

184 if(made_current) {

185 #ifdef noGw dget

186 Di nensi on wi dth, height;

187

188 /*

189 * Silly drawing area resize callback doesn't give
190 * height and width via its paraneters!

191 */

192 Xt VaGet Val ues(w, XmN\wi dth, &wi dth, Xni\height, &height, NULL);
193 gl Viewport (0, 0, (Gint) width, (Gint) height);
194 #el se

195 GwDr awi ngAr eaCal | backStruct *resize =

196 (G wDr awi ngAr eaCal | backStruct*) cal | Dat a;

197

198 gl Viewport (0, 0, (Gint) resize->width, (GLint) resize->height);
199 #endif

200 }

201 }

202

203 void tick(void)

204 {

205 int i;

206

207 for (i =0; i < MAX_PLANES; i++)

208 if (planes[i].speed !'= 0.0) tick_per_plane(i);
209 }

210

211 Bool ean ani nat e(Xt Poi nter data)

212 {

213 tick();

214 dr aw(gl xarea) ;

215 return Fal se; /* leave work proc active */
216 }

217

218 void toggle(void)

219

220 noving = !noving; /* toggle */

221 if (noving)

222 wor kl d = Xt AppAddWor kProc(app, ani mate, NULL);
223 el se

224 Xt RenmoveWor kPr oc(wor ki d) ;

225 }

226

227 wvoid quit(Wdget w, XtPointer data, XtPointer callData)
228 {

229 exi t(0);

230 }

231

232 void input(Wdget w, XtPointer data, XtPointer callData)
233 {

234 XnDr awi ngAr eaCal | backStruct *cd = (XnDraw ngAreaCal | backStruct *) call Data;
235 char buf[1];

236 KeySym keysym

237 int rc;

238

218

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

}

i f(cd->event ->type == KeyPress)
i f(XLookupString((XKeyEvent *) cd->event, buf, 1, &eysym NULL) == 1)
switch (keysym {
case XK_space:
if (!moving) { /* advance one frame if not in nmotion */
tick();
draw(w) ;
}
br eak;
case XK_Escape:
exit(0);
}

voi d map_state_changed(Wdget w, XtPointer data, XEvent * event, Boolean * cont)

{

}

switch (event->type) {
case MapNotify:
if (nmoving & workld !'= 0) workld = Xt AppAddWor kProc(app, animate, NULL);
br eak;
case UnnapNoti fy:
i f (roving) XtRenoveWdrkProc(workld);
br eak;

mai n(int argc, char *argv[])

{

toplevel = XtApplnitialize(&pp, "Paperplane", NULL, 0, &argc, argv,
fal | backResources, NULL, 0);

dpy = XtDisplay(toplevel);

/* find an QpenG.-capabl e RGB visual with depth buffer */

vi = gl XChooseVi sual (dpy, DefaultScreen(dpy), dblBuf);

if (vi == NULL) {
vi = gl XChooseVi sual (dpy, Defaul tScreen(dpy), snglBuf);
if (vi == NULL)

Xt AppError (app, "no RGB visual with depth buffer");
doubl eBuf fer = GL_FALSE;
}
/* create an OpenG rendering context */
cx = gl XCreateContext(dpy, vi, /* no display list sharing */ None,
/* favor direct */ G_TRUE);
if (cx == NULL)
Xt AppError (app, "could not create rendering context");
/* create an X colornmap since probably not using default visual */

#i fdef noGLwi dget

cmap = XCreat eCol or map(dpy, Root Wndow(dpy, vVi->screen),
vi->visual, Al locNone);

/*

* Establish the visual, depth, and colormap of the toplevel

* widget _before_ the widget is realized.

*/

Xt VaSet Val ues(topl evel , XtNvisual, vi->visual, XtNdepth, vi->depth,

Xt Ncol ormap, cnap, NULL);

#endi f

Xt AddEvent Handl er (t opl evel , StructureNoti fyMask, Fal se,
map_st at e_changed, NULL);

mai nw = XnCr eat eMai nW ndow(t opl evel, "mai nw', NULL, 0);

Xt ManageChi | d(mai nw) ;

/* create nenu bar */

219

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

nenubar = XnOreat eMenuBar (nai nw, "menubar", NULL, 0);

Xt ManageChi | d(menubar) ;
#i fdef noGLwi dget

/* Hack around Xt's unfortunate default visual inheritance. */

Xt Set Ar g(nenuPaneAr gs[0], XmNvi sual , vi->visual);

nmenupane = XnCreat ePul | downMenu(nenubar, "nenupane", menuPaneArgs, 1);
#el se

nenupane = XnCreat ePul | dowmnMenu(menubar, "nenupane", NULL, 0);
#endi f

btn = XnCreat ePushButton(nenupane, "Quit", NULL, 0);

Xt AddCal | back(btn, XmNactivateCallback, quit, NULL);

Xt ManageChi | d(bt n);

Xt Set Arg(args[0], XmNsubMenul d, nenupane);

cascade = XnCreateCascadeButton(nmenubar, "File", args, 1);

Xt ManageChi | d(cascade) ;
#i fdef noGLwi dget

nmenupane = XnCreat ePul | downMenu(nenubar, "nenupane", nenuPaneArgs, 1);
#el se

nenupane = XnCreat ePul | downMenu(nenubar, "nenupane", NULL, 0);
#endi f

btn = XnCreat eToggl eButt on(menupane, "Motion", NULL, 0);

Xt AddCal | back(bt n, Xm\val ueChangedCal | back, (Xt CallbackProc)toggle, NULL);

Xt ManageChi | d(bt n);

btn = XnCreat ePushButt on(nenupane, "Add plane", NULL, 0);
Xt AddCal | back(btn, XmNactivateCall back, (XtCallbackProc)add_plane, NULL);
Xt ManageChi | d(bt n);

btn = XnCreat ePushButt on(nenupane, "Renove plane", NULL, 0);

Xt AddCal | back(btn, XmNactivateCall back, (XtCallbackProc)renmove_plane, NULL);

Xt ManageChi | d(bt n);
Xt Set Arg(args[0], XmNsubMenul d, nenupane);
cascade = XnCreateCascadeButton(nenubar, "Planes", args, 1);
Xt ManageChi | d(cascade) ;
/* create franed drawing area for QpenG rendering */
frane = XnOreat eFrane(nmainw, "frame", NULL, 0);
Xt ManageChi | d(frane);
#i fdef noGLwi dget
gl xarea = Xt VaCr eat eManagedW dget (" gl xarea", xnDraw ngAreaW dget Cl ass,
frane, NULL);
#el se
#i fdef noMotif Gw dget
/* notice glwbraw ngAreaW dgetClass |lacks an 'M */
gl xarea = Xt VaCreat eManagedW dget (" gl xarea", gl wbrawi ngAr eaW dget d ass,
#el se
gl xarea = Xt VaCreat eManagedW dget (" gl xarea", gl wMDr awi ngAr eaW dget Cl ass,
#endi f
frane, GwNvisual Info, vi, NULL);
#endi f
Xt AddCal | back(gl xarea, XmNexposeCal | back, (XtCallbackProc)draw, NULL);
Xt AddCal | back(gl xarea, Xm\resizeCall back, resize, NULL);
Xt AddCal | back(gl xarea, XmN nput Cal | back, input, NULL);
/* set up application’s w ndow | ayout */
Xmvli nW ndowSet Ar eas(mai nw, nenubar, NULL, NULL, NULL, frane);
Xt Real i zeW dget (t opl evel);
/*
* Once widget is realized (ie, associated with a created X w ndow), we
* can bind the Open@ rendering context to the w ndow.
*/
gl XMakeCur rent (dpy, XtW ndow gl xarea), cx);
made_current = G_TRUE
/* setup Open@ state */

220

359 gl d earDepth(1.0);

360 gldearColor(0.0, 0.0, 0.0, 0.0);

361 gl Mat ri xMode(GL_PROIECTI ON) ;

362 gl Frustum(-1.0, 1.0, -1.0, 1.0, 1.0, 20);
363 gl Mat ri xMode(GL_MODELVI EW ;

364 /* add three initial random planes */
365 srandon(getpid());

366 add_pl ane(); add_plane(); add_pl ane();
367 /* start event processing */

368 Xt AppMai nLoop(app) ;

369 }

221

References

[1] Tom Gaskins, “Using PEXIib with X Toolkits,” PEXlib
Programming Manual, O’ Reilly & Associates, Inc., 1992.

[2] Mark Kilgard, “OpenGL and X, Part 1: AnIntroduction,”
The X Journal, SIGS Publications, Nov/Dec 1993.

[3] Mark Kilgard, “OpenGL and X, Part 2: Using OpenGL
with Xlib,” The X Journal, SIGS Publications, Jan/Feb
1994,

[4] Silicon Graphics, The OpenGL Porting Guide, supplied
with the IRIX 5.2 development option, 1994.

[5] Josie Wernecke, The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1994.

222

OpenGL Graphics with the X Window System

Phil Karlton
Revised by: Paula Womack

Copyright (©) 1992, 1993, 1994, 1995, 1996 Silicon Graphics, Inc.
This document contains unpublished information of Silicon Graphics, Inc.

Thisdocument is protected by copyright, and containsinformation proprietary to Sili-
con Graphics, Inc. Any copying, adaptation, distribution, public performance, or pub-
lic display of this document without the express written consent of Silicon Graphics,
Inc. isstrictly prohibited. The receipt or possession of this document does not convey
any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or
sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rightsin Technical Dataand
Computer Software clause at DFARS 252.227-7013 and/or in similar or successor
clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights re-
served under the copyright laws of the United States. Contractor/manufacturer is Sili-
con Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL isaregistered trademark of Silicon Graphics, Inc.
X isaregistered trademark of the Massachussetts Institute of Technology
Unix isaregistered trademark of A T & T Bell Laboratories.

223

1 Overview

Thisdocument describes GL X, the OpenGL extension to the X Window System. It refersto concepts
discussed inthe OpenGL specification, and may beviewed asan X specific appendix to that document.
Parts of the document assume some acquai ntance with both the OpenGL and X.

Inthe X Window System, OpenGL renderingismade availableasan extensionto X intheformal X
sense: connection and authenti cation are accomplished with the normal X mechanisms. Aswith other
X extensions, there is a defined network protocol for the OpenGL rendering commands encapsul ated
within the X byte stream.

Since performanceis critical in 3D rendering, thereisaway for OpenGL rendering to bypassthe
data encoding step, the data copying, and interpretation of that data by the X server. Thisdirect ren-
deringispossibleonly when aprocess has direct access to the graphicspipeline. Allowingfor paralléel
rendering has affected the design of the GLX interface. This has resulted in an added burden on the
client to explicitly prevent parallel execution when that is inappropriate.

X and the OpenGL have different conventions for naming entry points and macros. The GLX
extension adopts those of the OpenGL.

2 GLX Operation

2.1 Rendering Contextsand Drawing Surfaces

The OpenGL specification is intentionally vague on how a rendering context (an abstract OpenGL
state machine) is created. One of the purposes of GLX isto provide a means to create an OpenGL
context and associate it with a drawing surface.

In X, arendering surface iscaled a Dr awabl e. W ndows, onetype of Dr awabl e, are associ-
ated witha Vi sual .* The X protocol alows for asingle Vi sual | D to be instantiated at multiple
depths. The GL X bindingsallow only onedepthfor an OpenGL renderer for any given Vi sual 1 D. In
GLX thedefinition of Vi sual has been extended to include the types, quantitiesand sizes of the an-
cillary buffers (depth, accumul ation, auxiliary, and stencil). Double buffering capability is also fixed
by the Vi sual .T' The ancillary buffers have no meaning within the core X environment. The set
of extended Vi sual sisfixed at server startup time. Oneresult is that a server can export multiple
Vi sual sthat differ only in the extended attributes.

Theother typeof X Dr awabl e isaPi xmap, adrawing surface that ismaintained off screen. The
GLX equivdentto an X Pi xmap isa GLXPi xmap. A GLXPi xmap is created using the Vi sual
along with its extended attributes. The Vi sual is used to define the type and size of the Ancillary
buffersassociated withthePi xmap. ThePi xmap isused asthefront-left color buffer. A GLXDr awabl e
isthe union {W ndow, GLXPi xmap}.

Ancillary buffers are associated with a G_XDr awabl e, not with arendering context. If severa
OpenGL renderers are al writing to the same window, they will share those buffers. Rendering oper-
ations to one window never affect the unobscured pixels of another window, or of the corresponding
pixelsof ancillary buffers of that window. If an Expose eventisreceived by the client, thevaluesin
the ancillary buffers and in the back buffers for regions corresponding to the exposed region become
undefined.

*The associationiswith a {Vi sual , scr een, dept h} triple. An XVi sual | nf o isused by GLX functions sinceit
can be interpreted unambiguosly.

T Any rendering system s free to use the ancillary buffers aslong asit uses them in a manner consistent with the use by
the OpenGL.

224

Application
) and Toolkit
GLX Client GLX|
Xlib
Direct GL
Renderer
Y
Dispatch |
X Server ,
L X Renderer
> [6L Renderer|
Framebuffer

Figure 1: Direct Rendering Block Diagram.

A rendering context can be used with multiple G_XDr awabl es aslong asthose Dr awabl es are
similar. Similar means that the rendering contexts and GLXDr awabl es are created with the same
XVi sual | nf o.

An application can use any rendering context (subject to the restrictions discussed in the section
on address spaces) to render into any similar G_XDr awabl e. Animplicationis that multiple appli-
cations can render into the same window, each using a different rendering context.

2.2 Using Rendering Contexts

OpenGL defines both client state and server state. Thusarendering context consistsof two parts: one
to holdtheclient stateand oneto hold theserver state. Theclient isresponsiblefor creating arendering
context and a drawabl e; defaults are not supplied.

Each thread can have at most one current rendering context. In addition, a rendering context can
be current for only one thread at one time.

Issuing OpenGL commands may cause the X buffer to be flushed. In particular, calling glFlush()
will flush both the X and OpenGL rendering streams.

Some stateis shared between the OpenGL and X. Thepixel valuesinthe X frame buffer are shared.
The X doublebuffer extension (DBE) hasadefinitionfor which buffer iscurrently thedisplayed buffer.
Thisinformation is shared with GLX. The state of which buffer is displayed tracksin both extensions,
independent of which extension initiates a buffer swap.

2.3 Direct Rendering and Address Spaces

One of the basic assumptions of the X protocol isthat if a client can name an object, then it can ma-
nipulate that object. GLX introduces the notion of an Address Space. A GLX object cannot be used
outside of the address space in which it exists.

Inaclassic UNIX environment, each processisinitsown address space. In amulti-threaded envi-
ronment, each of thethreadswill shareavirtual address space which references acommon dataregion.

225

An OpenGL client that isrendering to a graphics engine directly connected to the executing CPU
may avoid passing the tokensthrough the X server. This generaization is made for performance rea-
sons. The model described here specifically alowsfor such optimizations, but does not mandate that
any implementation support it.

When direct rendering is occurring, the address space of the renderer isthat of the direct process;
when direct rendering is not being used, the address space of the renderer isthat of the X server. The
client has the ability to reject the use of direct rendering, but there may be a performance penalty in
doing so.

In order to use direct rendering, a client must create a direct rendering context. Both the client
context stateand the server context state of adirect rendering context exist inthe client’ saddress space;
this state cannot be shared by a client in another process. With indirect rendering contexts, the client
context stateiskept in the client’ saddress space and the server context stateiskept in the address space
of the X server. Inthiscasethe server context stateisstored in an X resource; it has an associated X1D
and may potentially be used by another client process.

24 OpenGL Display Lists

Most OpenGL state is small and easily retrieved using the glGet* commands. Thisis not true of
OpenGL display lists, which are used, for example, to encapsulate a model of some physical object.
First, thereisno mechanism to obtain the contentsof adisplay list from the rendering context. Second,
display listsmay be large and numerous. It may be desirable for multiple rendering contexts to share
display listsrather than replicating that information in each context.

GL X providesfor limited sharing of display lists; thelistscan be shared only if the server statefor
the contexts share a single address space. Using this mechanism, a single set of lists can be used, for
instance, by acontext that supportscolor index rendering and acontext that supports RGBA rendering.

A group of shared display listsexistsuntil the last referencing rendering context is destroyed. All
rendering contextshave equal accessto using listsor defining new lists. Implementati ons sharing con-
texts must handl e the case where one rendering context is using a display list when another rendering
context destroysthat list.

When display lists are shared between OpenGL contexts, the sharing extends only to the display
liststhemselves and the information about which display list numbers have been allocated. In partic-
ular, the value of the base set with glListBaseis not shared.

In general, OpenGL commands are not atomic. glEndList and glDeletel istsare exceptions. The
list named in agINewL st call isnot created or superseded until glEndList iscalled. If onerendering
context is sharing a display list with another, it will continue to use the existing definition while the
second context isin the process of re-defining it.

25 Texture Objects

OpenGL texture state can be encapsulated in a named texture object. A texture object is created by
binding an unused nameto one of thetexturetargets(TEXTURE_1D or TEXTURE _2D) of arendering
context. When atexture object isbound, OpenGL operationson the target to which it is bound affect
the bound texture object, and queries of the target to which it is bound return state from the bound
texture object.

Texture objects may be shared by rendering contexts, as long as the server portion of the contexts
share the same address space. OpenGL makes no attempt to synchronize access to texture objects.
If atexture object is bound to more than one context, then it is up to the programmer to ensure that
the contents of the object are not being changed via one context while another context is using the

226

texture object for rendering. The results of changing atexture object whileanother contextisusing it
are undefined.
A texture object will not be deleted until it isno longer bound to any rendering context.

2.6 Aligning Multiple Drawables

A client can create onewindow withan overlay Vi sual and asecondwithamainplaneVi sual and
then move them independently or in concert to keep them aligned. Thisisamajor change between the
OpenGL and the previous SGI proprietary GL: allocation of overlay planesand main planesfor every
window is no longer done automatically. To accomplish what was done by adrawmode/gconfig pair
in previous versions of the SGI proprietary GL, the OpenGL client can use the following paradigm:

e Make the windows which are to share the same screen area children of a single window (that
will never be written). Size and position the children to completely occlude their parent. When
the window combination must be moved or resized, perform the operation on the parent.

e Make the subwindows have a background of None so that the X server will not paint into the
shared area when you restack the children.

e Sedlect for device-related events on the parent window, not on the children. Since device-related
eventswith thefocusin one of the child windowswill beinherited by the parent, input dispatch-
ing can be done directly without reference to the child on top.

2.7 Multiple Threads

It is possible to create a version of the client side library that is protected against multiple threads
attempting to access the same connection. Thisis accomplished by having appropriate definitionsfor
L ockDisplay and UnlockDisplay. Since there is some performance penalty for doing the locking, it
isimplementation-dependent whether a thread safe version, anon-safeversion, or both versionsof the
library are provided. Interrupt routines may not share a connection (and hence a rendering context)
with the main thread. An application may be written as a set of co-operating processes.

X has atomicity (between clients) and sequentiality (withinasingle client) requirementsthat limit
the amount of parallelism achievable when interpreting the command streams. GLX relaxes these
requirements. Sequentiality is still guaranteed within a command stream, but not between the X and
the OpenGL command streams. It is possible, for example, that an X command issued by a single
threaded client after an OpenGL command might be executed before that OpenGL command.

The X specification requires that commands are atomic:

If aserver isimplemented with internal concurrency, the overall effect must be as if in-
dividua requests are executed to completion in some serial order, and requests from a
given connection must be executed in delivery order (that is, the total execution order is
ashuffle of the individua streams).

OpenGL commands are not guaranteed to be atomic. Some OpenGL rendering commands might oth-
erwiseimpair interactiveuse of thewindowing system by the user. For instancecalling adeeply nested
display list or rendering alarge texture mapped polygon on a system with no graphics hardware could
prevent auser from popping up a menu soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained with moderate cost with the
judicious use of the glFinish, giIXWaitGL, giXWaitX, and X Sync commands. OpenGL and X ren-
dering can be done in parald as long as the client does not preclude it with explicit synchronization

227

cals. Thisistrue even when the rendering is being done by the X server. Thus, a multi-threaded X
server implementation may execute OpenGL rendering commands in parallel with other X requests.

Some performance degradation may be experienced if needless switching between OpenGL and
X rendering isdone. Thismay involve around trip to the server, which can be costly.

3 Functionsand Errors

3.1 Errors

Where possible, asin X, when areguest terminates with an error, the request has no side effects.
Theerror codesthat may be generated by arequest are described with that request. Thefollowing
table summarizes the GL X -specific error codesthat are visibleto applications:

G_XBadCont ext A valuefor aCont ext argument does not name a Cont ext .

GLXBadCont ext St at e An attempt was made to switch to another rendering context while the
current context was in Render Mbde GL_FEEDBACK or GL_SELECT, or acall to giXMake-
Current was made between a glBegin and the corresponding call to glEnd.

G_XBadCur r ent W ndow The current Dr awabl e of the calling thread is a window that is no
longer valid.

G_XBadDr awabl e TheDr awabl e argument doesnot nameaDr awabl e configured for OpenGL
rendering.

G_XBadPi xmap ThePi xmap argument does not name aPi xmap that isappropriate for OpenGL
rendering.

G_XUnsupport edPri vat eRequest May bereturned inresponseto either aglXVendorPrivate
request or a glXVendorPrivateWithReply request.

Thefollowing error codes may be generated by afaulty GL X implementation, but would not nor-
mally bevisibleto clients:

G_XBadCont ext Tag A rendering request contains an invalid context tag. (Context tags are used
to identify contextsin the protocol.)

G_XBadRender Request A glXRender request isill-formed.

G_XBadLar geRequest A glXRenderLarge request isill-formed.

3.2 Functions

GLX functions should not be called between glBegin and glEnd operations. If a GLX function is
called within a glBegin/glEnd pair, then the result is undefined; however, no error is reported.

228

3.2.1 Initialization

To ascertain if the GLX extension is defined for an X server, use

Bool gIXQueryExtension(Di spl ay *dpy, i nt *error_base, i nt *event_base)

dpy specifies the connection to the X server. Fal se isreturned if the extension is not present. er-
ror_baseis used to return the value of thefirst error code. The constant error codes should be added
to this base to get the actual value.

event_base isincluded for future extension. GL X does not currently define any events.

The GLX definition existsin multiple versions. Use

Bool gIXQueryVersion(Di spl ay *dpy, i nt *major, i nt *minor) ;

to discover which version of GLX isavailable. Upon success, major and minor are filled in with the
major and minor versions of the extension implementation. If the client and server both have the same
major version number then they are compatible and the minor version that is returned is the minimum
of the two minor version numbers.

major and minor do not return valuesif they are specified asNULL.

gIXQueryVersion returns Trueif it succeeds and Falseif it fails. If it fails, major and minor are
not updated.

3.2.2 Configuration Management

The constants shown in Table 1 are passed to glXGetConfig and gl X ChooseVisual to specify which
attributes are being queried.

GLX_BUFFER_SI ZE givesthetotal depth of the color buffer in bits. For PseudoColor and Stat-
icColor visuas, this is equal to the depth value reported in the core X11 Visua. For TrueColor
and DirectColor visuals, G_X_ BUFFER_SI ZE isthe sum of GLX_ RED_SI ZE, GLX_ GREEN SI ZE,
GLX BLUE_SI ZE, and Q. X_ALPHA_SI ZE. Notethat thisvalue may belarger thanthedepth valuere-
ported inthe core X 11 visua sinceit may include alphaplanesthat may not be reported by X11. Also,
for TrueCol or visuds, the sum of GLX RED_SI ZE, G_X_GREEN S| ZE, and GLX BLUE_SI ZE
may be larger than the maximum depth that core X11 can support.

To obtain a description of an OpenGL attribute exported by a Vi sual use

i nt glXGetConfig(Di spl ay *dpy, XVi sual | nf o* *visual, i nt attribute, i nt
*value) ;

gl XGetConfig returns through val ue the value of the attribute of visual.
gl XGetConfig returns one of the following error codesif it fails, and Success otherwise:

GLX_NO_EXTENSI ON dpy does not support the GLX extension.
GLX_BAD_SCREEN screen of visual does not correspond to a screen.
GLX_BAD_ATTRI BUTE attributeisnot avaid GLX attribute.

GLX_BAD_VI SUAL visual doesnot support GL X and an attribute other than GLX_USE_G. was spec-
ified.

GLX_BAD_VALUE parameter invalid

229

\ Attribute | Type | Notes

GX_USE_GL boolean | Trueif OpenGL rendering supported
GLX_BUFFER_SI ZE integer | depth of the color buffer
GLX_LEVEL integer | frame buffer level
GLX_RGBA boolean | Trueif RGBA rendering supported
G_X_DOUBLEBUFFER boolean | Trueif color buffers have front/back pairs
G_X_STEREO boolean | Trueif color buffers have |eft/right pairs
GLX_AUX_BUFFERS integer | number of auxiliary color buffers
GLX_RED_SI ZE integer | number of bits of Red in the framebuffer
GLX_GREEN_SI ZE integer | number of bits of Green in the framebuffer
GLX_BLUE_SI ZE integer | number of bits of Bluein the framebuffer
GLX_ALPHA_SI ZE integer | number of bitsin the destination al pha buffer
GLX_DEPTH_SI ZE integer | number of bitsin the depth buffer
GLX_STENCI L_SI ZE integer | number of bitsin the stencil buffer
GLX_ACCUMRED_SI ZE | integer | number Red bitsin the accumulation buffer
GLX_ACCUML.GREENLSI ZE | integer | number Green bitsin the accumulation buffer
GLX_ACCUMBLUE_SI ZE | integer | number Blue bitsin the accumulation buffer
GLX_ACCUMALPHA_SI ZE | integer | number Alphabitsin the accumulation buffer

Table 1: Configuration attributes.

A GLX implementation may export many visuals that support OpenGL. These visuals support
either color index or RGBA rendering. Currently RGBA rendering can be supported only by Visuals
of typeTrueColor or DirectColor and color index rendering can be supported only by Visuals of type
PseudoColor or StaticColor.

Servers are required to export at least one visual that supports RGBA rendering. At least one of
the visuals that supports RGBA rendering must have at least one color buffer, a stencil buffer of at
least 1 bit, adepth buffer of at least 12 bits, and an accumulation buffer; alpha bitplanes are optional.
The color buffer size for this visual must be as large as that of the deepest TrueColor, DirectColor,
PseudoColor, or StaticColor visual supported on framebuffer level zero (themainimage planes), and
it must be available on framebuffer level zero.

If the X server exports a PseudoColor or StaticColor visual on framebuffer level 0, avisua that
supports color index rendering is also required. If color index rendering is supported then one of the
visuals that supports color index rendering must have at least one color buffer, a stencil buffer of at
least 1 bit, and adepth buffer of at least 12 bits. It also must have as many color bitplanesasthe deepest
PseudoColor or StaticColor visual supported on framebuffer level zero, and it must itself be made
availableon level zero.

glXChooseVisual isused to find avisua that matches the client’s specified attributes.

XVi sual | nf o* giIXChooseVisual(Di spl ay *dpy, i nt screen, i nt *attrib.list
)

glXChooseVisual returns apointer toan XVi sual | nf o structure describing the visual that best
matches the specified attributes. If no matching visual exists, NULL isreturned.

The attributes are matched in an attribute-specific manner, as shown in Table 2. Some of the at-
tributes, such asGLX_LEVEL, must match the specified valueexactly; others, suchas, GLX_.BUFFER_SI ZE
and GLX_RED_SI ZE must meet or exceed the specified minimumvalues. Inthecase of G_X_BUFFER SI ZE,

230

\ Attribute | Default | Selection Criteria |

A X_USE_GL True | exact
A_X_BUFFER_SI ZE 0 minimum, smallest
G X_LEVEL 0 exact
GLX_RGBA False | exact
GLX_DOUBLEBUFFER False | exact
GLX_STEREO False | exact
A_X_AUX_BUFFERS 0 minimum, smallest

GLX_RED_SI ZE
GLX_GREEN_SI ZE
GLX_BLUE_SI ZE
GLX_ALPHA_SI ZE
GLX_DEPTH_SI ZE

GLX_STENCI L_SI ZE
GLX_ACCUMLRED._SI ZE
GLX_ACCUM.GREEN_SI ZE
GLX_ACCUMBLUE_SI ZE
GLX_ACCUMALPHA_SI ZE

minimum, largest
minimum, largest
minimum, largest
minimum, largest
minimum, largest
minimum, smallest
minimum, largest
minimum, largest
minimum, largest
minimum, largest

OO OO0 0o|0ooo|o

Table 2: Defaults and selection criteria used by gIXChooseVisual.

preference isgiven based on how closethe visual’ sattribute valueisto the specified value. (Attributes
that are matched in thismanner havem ni nrum smal | est listed astheir selection criteriain Ta
ble2.) Inthe case of GLX_RED_SI ZE, if the specified value is non-zero, then preference is given to
visualswith thelargest valuefor thisattribute; otherwise preference is given to visual swith the small-
est value. (Attributesthat are matched in this manner have mi ni nrum | ar gest listed astheir se-
lection criteriain Table 2.)

If LX_RGBAisinattrib_list then the resulting visual will be Tr ueCol or or bi r ect Col or . If
all other attributesareequivalent, thenaTr ueCol or visua will bechoseninpreferencetoabi r ect Col or
visual.

If GLX_RGBAisnotinattrib_list thenthereturnedvisual will bePseudoCol or or St ati cCol or.
If al other attributes are equivalent then a PseudoCol or visual will be chosen in preference to a
St ati cCol or visual.

If an attribute is not specified in attrib_list, then the default value isused. See Table 2 for alist of
defaults.

Default specifications are superseded by the attributesincluded in attrib_list. Integer attributesare
immediately followed by the corresponding desired value. Boolean attributes appearing in attribist
have an implicit True vaue; such attributes are never followed by an explicit True or False vaue.
Thelist is terminated with None.

To free the data returned, use XFree.

NULL isreturned if an undefined GLX attributeis encountered.

3.2.3 Off Screen Rendering

To create an off screen rendering area, first creste an X Pi xmap of the depth specified by the desired
Vi sual , then call

231

GLXPi xmap glXCreateGL XPixmap(Di spl ay *dpy, XVi sual | nf o* visual, Pi xrmap
pixmap) ;

glXCreateGL XPixmap creates an off screen rendering area and returns its XID. Any GLX ren-
dering context created with respect to visual can be used to render into this off screen area.

pixmapisusedfor the RGB planesof thefront-left buffer of theresulting GL X off screen rendering
area. The aphabuffer and ancillary buffers specified by visual are created without externally visible
names. GL X pixmapsmay be created with avisual that includesback buffers and stereoscopic buffers.
However, gl X SwapBuffersisignored for these pixmaps.

A direct rendering context might not be able to be made current with a GLXPi xmap.

If the depth of pixmap does not match the depth val uereported by core X 11 for visual, or if pixmap
was not created with respect to the same screen as visual, then a BadMat ch error is generated. If
visual isnot valid (e.g., if GLX does not support it), then aBadVal ue error is generated. If pixmap
isnot avalid pixmap id, then aBadPi xmap error is generated. Finaly, if the server cannot allocate
the new GLX pixmap, aBadAl | oc error isgenerated.

A GLXPi xmap isdestroyed by calling

voi d giXDestroyGL XPixmap(Di spl ay *dpy, GLXPi xmap pixmap) ;

This request deletes the association between the resource ID pixmap and the GLX pixmap. The
storage will be freed when it is not current to any client.
If pixmapisnot avalid GLX pixmap then a G_XBadPi xmap error is generated.

3.24 Rendering Contexts

To create an OpenGL rendering context call

GLXCont ext glXCreateContext(Di spl ay *dpy, XVi sual | nf o* visual, G_XCont ext
sharelist, Bool direct) ;

glXCreateContext returnsNULL if it fails. If gIXCreateContext succeeds, it initiaizesthe render-
ing context to the default OpenGL state and returns a handle to it. This handle can be used to render
to both windowsand GLX pixmaps.

If share listisnot NULL, then al display listsand texture objects except texture objects named
O will be shared by share list and the newly created rendering context. An arbitrary number of GL X-
Contexts can shareasingledisplay list and texture abject space. All sharing contexts must also share
asingle address space or aBadMat ch error is generated.

If directistrue, thenadirect rendering context will be created if theimplementation supportsdirect
rendering and the connectionisto an X server that islocal. If direct is False, then arendering context
that renders through the X server is created.

Direct rendering contexts may be a scarce resource in some implementations. If direct is true,
and if adirect rendering context cannot be created, then gIXCreateContext will attempt to create an
indirect context instead.

gl X CreateContext can generatethefollowing GL X extensionerrors: GLXBadCont ext if share.list
is neither zero nor avalid GLX rendering context; BadVal ue if visual isnot avalid X Visual or if
GL X doesnot support it; BadMat ch if sharelist defines an address space that cannot be shared with
the newly created context or if share_list was created on a different screen than the one referenced by
visual; BadAl | oc if the server does not have enough resources to allocate the new context.

To determine if an OpenGL rendering context is direct call

232

Bool gIXIsDirect(Di spl ay *dpy, G.XCont ext ctx) ;

glX1sDirect returns Trueif ctx isadirect rendering context, False otherwise. If ctxisnot avalid
GLX rendering context, aGLXBadCont ext error is generated.
An OpenGL rendering context is destroyed by calling

voi d giXDestroyContext(Di spl ay *dpy, G.XCont ext ctx) ;

If ctxis still current to any thread, ctx is not destroyed until it isno longer current. In any event, the

associated XID will be destroyed and ctx cannot subsequently be made current to any thread.
glXDestroyContext will generateaGLXBadCont ext error if ctxisnot avalid rendering context.
To copy OpenGL rendering state from one context to another, use

voi d giXCopyContext(Di spl ay *dpy, GLXCont ext source, GLXCont ext dest,
unsi gned | ong mask) ;

gl X CopyContext copies selected groups of state variables from source to dest. mask indicates which
groups of state variables are to be copied; it contains the bitwise OR of the symbolic names for the
attribute groups. The symbolic names are the same as those used by glPushAttrib, described in the
OpenGL Specification. Also, the order in which the attributes are copied to dest as a result of the
glXCopyContext operation is the same as the order in which they are popped off of the stack when
glPopAttrib is caled. The single symbolic constant G-_ALL_ATTRI B_BI TS can be used to copy
the maximum possible portion of the rendering state. It is not an error to specify mask bits that are
undefined.

If source and dest do not share an address space or were not created onthe same screen, aBadMat ch
error is generated. (source and dest may be based on different X visuas and still share an address
space; giXCopyContext will work correctly in such cases.) If the destination context is current for
some thread then aBadAccess eror is generated. If the source context is the same as the current
context of the calling thread, and the current drawable of the caling thread is a window that is no
longer valid, a@_XBadCur r ent W ndow is generated. Findly, if either source or destisnot avalid
GLX rendering context, a GLXBadCont ext error is generated.

glXCopyContext performs an implicit glFlush() if source is the current context for the calling
thread.

Only one rendering context may bein use, or current, for a particular thread at a giventime. The
minimum number of current rendering contexts that must be supported by a GL X implementation is
one. (Supporting alarger number of current rendering contexts is essential for general-purpose sys-
tems, but may not be necessary for turnkey applications.)

To make a context current, call

Bool gIXMakeCurrent(Di spl ay *dpy, GLXDr awabl e drawable, GLXCont ext
ctx) ;

If thecallingthread a ready hasa current rendering context, then that context isflushed and marked
as no longer current. ctx is made the current context for the calling thread.

If the drawable and ctx are not similar, a BadVat ch error is generated. If ctx is current to some
other thread, then giIXMakeCurrent will generate a BadAccess error. G.XBadCont ext St at e
isgenerated if there is a current rendering context and its render mode is either GL_FEEDBACK or
GL _SELECT. G_XBadCont ext St at e will also be generated if giXMakeCurrent is called be-
tweenaglBegin anditscorrespondingglEnd. If ctxisnot avalid GL X rendering context, G_XBadCont ext
is generated. If drawableis not avalid GLX drawable, a GLXBadDr awabl e error is generated. If

233

the previous context of the calling thread has unflushed commands, and the previous drawable is a
window that is no longer valid, G.XBadCur r ent W ndow is generated. Finaly, note that the an-
cillary buffers for drawable need not be allocated until they are needed. A BadAl | oc error will be
generated if the server does not have enough resources to all ocate the buffers.

If drawableis destroyed after glXMakeCurrent is called then subsequent rendering commands
will behave asif drawableisboundto the NULL clip. The commandswill be processed and the con-
text state will be updated, but no output will appear on the display.

To release the current context without assigning anew one, use NULL for ctx and None for draw-
able. If ctxisNULL and drawableis not None, or if drawable is None and ctx isnot NULL, then a
BadMat ch error will be generated.

The first time ctx is made current to a G_XDr awabl e, itsinitia viewport is set. That viewport
must be reset by the client when ctx is subsequently made current.

Note that when multiple threads are using their current contexts to render to the same drawable,
OpenGL does not guarantee atomicity of fragment update operations. In particul ar, programmers may
not assume that depth-buffering will automatically work correctly; there is a race condition between
threadsthat read and update the depth buffer. Clientsare responsiblefor avoidingthiscondition. They
may usevendor-specific extensionsor they may arrange for separate threadsto draw indisjoint regions
of the framebuffer, for example.

glXGetCurrentContext returns the current context.

G XCont ext gIXGetCurrentContext(void) ;

If thereis no current context, NULL isreturned.
glXGetCurrentDrawable returns the XID of the current drawable.

G_XDr awabl e giXGetCurrentDrawable(void) ;

If thereis no current drawable, None isreturned.
To get the display associated with the current context and drawable, call

Di spl ay* gIXGetCurrentDisplay(void) ;

If thereisno current context, NUL L isreturned. Thisroutineisavailableonly if the GLX version
is1l.2or later.

gIXGet* calsretrieveclient-side stateand do not forcearound trip to the X server. Unlikemost X
cals(includingthe gl X Query* calls) that return avalue, these callsdo not flush any pending requests.

3.2.5 Synchronization Primitives
To prevent X requests from executing until any outstanding OpenGL rendering is done, call
voi d gIXWaitGL(void) ;

OpenGL callsmade prior to giXWaitGL are guaranteed to be executed before X rendering calls made
after gIXWaitGL . Whilethe same result can be achieved using glFinish, giXWaitGL doesnot require
around trip to the server, and is therefore more efficient in cases where the client and server are on
separate machines.

glXWaitGL isignored if thereis no current rendering context. If the drawable associated with
the calling thread’s current context isawindow that isno longer valid, a G_.XBadCur r ent W ndow
error is generated.

To prevent the OpenGL command sequence from executing until any outstanding X requests are
compl eted, call

234

voi d gIXWaitX(void) ;

X rendering calls made prior to giXWaitX are guaranteed to be executed before OpenGL rendering
calls made after gIXWaitX. While the same result can be achieved using X Sync, giXWaitX does not
require around trip to the server, and may therefore be more efficient.

gIXWaitX isignored if thereis no current rendering context. If the drawable associated with the
calling thread’ scurrent context isawindow thatisno longer valid, aG_XBadCur r ent W ndow error
is generated.

3.2.6 Double Buffering

For drawablesthat are double buffered, the contents of the back buffer can be made potentially visible
(i.e., become the contents of the front buffer) by calling

voi d giXSwapBuffers(Di spl ay *dpy, GLXDr awabl e drawable) ;

The contents of the back buffer then become undefined. This operation is ano-op if drawable was
created with anon-double-buffered visual, or if drawableisa GLXPi xmap.

All GLX rendering contexts share the same notion of which are front buffers and which are back
buffers for agiven drawable. Thisnotionis aso shared with the X double buffer extension (DBE).

When multiplethreadsare rendering to the same drawable, only one of them need call gl XSwapBuf f er s
and all of themwill seetheeffect of theswap. Theclient must synchronizethethreadsthat perform the
swap and the rendering, using some means outside the scope of GL X, to insure that each new frame
is completely rendered before it is made visible.

If dpy and drawablearethedisplay and drawabl efor thecalling thread’ scurrent context, gl XSwapBuf f er s
performs an implicit gl Fl ush() . Subsequent OpenGL commands can be issued immediately, but
will not be executed until the buffer swapping has completed, typically during vertical retrace of the
display monitor.

If drawableisnotavalid GL X drawable, giX SwapBuffer sgeneratesa@_XBadDr awabl e error.
If dpy and drawable are the display and drawable associated with the calling thread’s current context,
and if drawableisawindow that isno longer valid, a G- XBadCur r ent W ndow error is generated.

3.2.7 Accessto X Fonts

A shortcut for using X fontsis provided by the command
voi d giXUseXFont(Font font, i nt first, i nt count, i nt list base) ;

count display listsare defined starting at list_base, each list consistingof asinglecall onglBitmap. The
definitionof bitmap list_ base+ i istakenfromtheglyphfirst+i of font. If aglyphisnot defined, thenan
empty display listisconstructed for it. Thewi dt h, hei ght , xori g, andyori g of the constructed
bitmap are computed fromthefont metricsasr bear i ng- | beari ng, ascent +descent , -1 beari ng,
and descent - 1 respectively. xrmove istaken from thewi dt h metric and ynove isset to zero.

Notethat inthedirect rendering case, thisrequiresthat the bitmaps be copiedto theclient’saddress
space.

gIXUseXFont performsan implicit gl Fl ush() .

gIXUseXFont is ignored if there is no current GLX rendering context. BadFont is generated
if fontisnot avaid X fontid. GLXBadCont ext St at e isgenerated if the current GLX rendering
context isin display list construction mode. G_XBadCur r ent W ndow isgenerated if the drawable
associated with the calling thread’s current context is awindow and is no longer valid.

235

3.28 GLX Versioning

Thefollowing functions are available only if the GLX versionis 1.1 or later.
const char* glXQueryExtensionsString(Di spl ay *dpy, i nt screen) ;

gl XQueryExtensionsString returns a pointer to a string describing which GLX extensions are
supported on the connection. The string is zero-terminated and contains a space-seperated list of ex-
tension names. The extension names themselves do not contain spaces. If there are no extensionsto
GLX, then the empty string is returned.

const char* gIXGetClientString(Di spl ay *dpy, i nt name) ;

gl XGetClientString returns apointer to astatic, zero-terminated string describing some aspect of
theclient library. Thepossiblevaluesfor nameare GLX_VENDOR, GLX_VERSI ON, and GLX_EXTENSI ONS.
If nameisnot set to one of these values then NUL L isreturned. The format and contents of the ven-
dor string isimplementation dependent, and the format of the extension string is the same as for gl X-
QueryExtensionsString. The version string islaid out as follows:

<major_version.minor_version> < space> < vendor-specific info>

Both the major and minor portions of the version number are of arbitrary length. The vendor-specific
informationisoptional. However, if itis present, the format and contents are implementation specific.

const char* giXQueryServerString(Di spl ay *dpy, i nt screen, i nt name)

gIX QueryServer String returns apointer to a static, zero-terminated string describing some aspect
of the server’s GLX extension. The possiblevalues for name and the format of the stringsis the same
asfor gIXGetClientString. If nameis not set to arecognized value then NULL isreturned.

4 Encoding on the X Byte Stream

In the remote rendering case, the overhead associated with interpreting the GLX extension requests
must be minimized. For thisreason, al commands have been broken up into two categories: OpenGL
and GL X commandsthat are each implemented asasingle X extension request and OpenGL rendering
requests that are batched within a GLXRender request.

4.1 Requeststhat hold a single extension request

Each of the commands from glx.h (that is, the gIX* commands) is encoded by a separate X extension
request. In addition, thereis a separate X extension request for each of the OpenGL commands that
cannot be put into adisplay list. That list consists of all the glGet* commands plus

glAreTexturesResident
glDeletel ists
glDeleteTextures
glEndList
glFeedbackBuffer
glFinish

236

1 1
i GLX i : z

. | data jcmd @ data emd data
single i Renderi : : :

GLX
1
Core [data

Figure 2: GLX byte stream.

glFlush
glGenLists
glGenTextures
gllsEnabled
gllsList
gllsTexture
glNewL st

gl Pixel Stor ef
glPixelStorei
glReadPixels
glRenderMode
gl SelectBuffer

The two Pixel Store commands (glPixel Storei and gl Pixel Stor ef) are exceptions. These commands
areissued to the server only to alow it to set its error state appropriately. Pixel storage state is main-
tained entirely on the client side. When pixel dataistransmitted to the server (by glDrawPixels, for
example), the pixel storage information that describesit is transmitted as part of the same protocol
request. Implementations may not change this behavior, because such changes would cause shared
contexts to behave incorrectly.

4.2 Request that holds multiple OpenGL commands

The remaining OpenGL commands are thosethat may be put into display lists. Multiple occurrences
of these commands are grouped together into a single X extension request (GL XRender). Thisis
diagrammed in Figure 4.2.

Thegrouping minimizesdispatchingwithinthe X server. Thelibrary packsas many OpenGL com-
mands as possibleinto asingle X request (without exceeding the maximum size limit). No OpenGL
command may be split across multiple GL XRender requests.

For long OpenGL commands (thoselonger than amaximum X request size), aseriesof GL XRen-
derL arge commands isissued. The structure of the OpenGL command within GL XRenderLargeis
the same asfor GL XRender .

Notethatitislegal to have aglBegin in onerequest, followed by gl Vertex commands, and eventu-
aly thematching glEnd inasubsequent request. A command isnot the same as an OpenGL primitive.

4.3 Wirerepresentationsand byte swapping

Unsigned and signed integersarerepresented asthey are represented in thecore X protocol. Singleand
double precision floating point numbers are sent and received in |EEE floating point format. The X
byte stream and network specificationsmake it impossiblefor theclient to assurethat doubleprecision
floating point numbers will be naturally aligned within the transport buffers of the server. For those
architectures that requireit, the server or client must copy those floating point numbers to a properly
aligned buffer before using them.

237

Byte swapping on the encapsul ated OpenGL byte streamis performed by the server using the same
rule as the core X protocol. Single precision floating point values are swapped in the same way that
32-bit integers are swapped. Doubl e precision floating point values are swapped across al 8 bytes.

44 Sequentiality

There are two sequences of commands: the X stream, and the OpenGL stream. In genera these two
streams are independent: Although the commands in each stream will be processed in sequence, there
is no guarantee that commands in the separate streams will be processed in the order in which they
were issued by the calling thread.

An exception to this rule arises when a single command appears in both streams. Thisforcesthe
two streams to rendezvous.

Because the processing of the two streams may take place at different rates, and some operations
may depend on the results of commands in a different stream, we distinguish between commands as-
signed to each of the X and OpenGL streams.

The following commands are processed on the client side and therefore do not exist in either the
X or the OpenGL stream:

gIXGetClientString
gIXGetCurrentContext
gIXGetCurrentDisplay
gIXGetCurrentDrawable
gl XGetConfig

Thefollowingcommands arein the X stream and obey the sequentiality guaranteesfor X requests:

glXCreateContext
glXDestroyContext
glXMakeCurrent
glXIsDirect
gIXQueryExtensionsString
gIXQueryServer String
gIXQueryVersion
gIXWaitGL

gIX CreateGL XPixmap
gIXDestroyGL XPixmap
glXChooseVisual

gl X SwapBuffers (but see below)
glXCopyContext (see below)

glXSwapBuffersisinthe X streamif and only if the display and drawabl e are not those bel onging
to the calling thread’s current context; otherwiseit isin the OpenGL stream. glXCopyContext isin
the X stream aone if and only if its source context differs from the calling thread’s current context;
otherwiseit isin both streams.

Commands in the OpenGL stream, which obey the sequentiality guarantees for OpenGL requests
are:

238

gIXWaitX
gl X SwapBuffers (see below)
All OpenGL Commands

glXSwapBuffersisin the OpenGL stream if and only if the display and drawable are those be-
longing to the calling thread's current context; otherwiseit isinthe X stream.
Commands in both streams, which force arendezvous are:

glX CopyContext (see below)
glXUseXFont

glXCopyContext isin both streams if and only if the source context is the same as the current
context of the calling thread; otherwiseit isin the X stream only.

5 Extending OpenGL

OpenGL isextended by adding new GL X requests, OpenGL requestsor additional enumerated values
tothe OpenGL requests. The OpenGL Architectural Review Board maintainsaregistry of indexesfor
each vendor to use as they wish.

New names must clearly indicateto clients whether some particular featureisin the core OpenGL
or is vendor specific. To make a vendor-specific name, append a company identifier (in upper case)
and any additional vendor-specific tags (e.g. machine names). For instance, SGI might add new com-
mands and manifest constantsof theform giNewCommandSGI and GL_NEW DEFINITION_SGI.
If SGI wanted to provide extensionsthat were specifictoitsReality Engine, then the names might be of
the form gINewCommandSGlre and GL _NEW_DEFINITION_SGI _RE. If two or more licensees
agree in good faith to implement the same extension, and to make the specification of that extension
publicly available, the procedures and tokensthat are defined by the extension can be suffixed by EXT.

6 Glossary

Address Space the set of objects or memory locations accessible through a single name space. In
other words, it is a dataregion that one or more processes may share through pointers.

Client an X client. An application communicatesto a server by some path. The application program
isreferred to asaclient of thewindow system server. Tothe server, the client isthe communica-
tion pathitself. A program with multiple connectionsis viewed as multipleclientsto the server.
The resource lifetimes are controlled by the connection lifetimes, not the application program
lifetimes.

Connection abidirectional byte stream that carriesthe X (and GLX) protocol between the client and
the server. A client typically has only one connection to a server.

(Rendering) Context aOpenGL rendering context. Thisisavirtual OpenGL machine. All OpenGL
rendering is done with respect to a context. The state maintained by one rendering context is
not affected by another except in case of shared display lists.

239

GL XContext a handle to a rendering context. Rendering contexts consist of client side state and
server side state.

Similar apotential correspondence among GLXDr awabl es and rendering contexts. W ndows and
GLXPi xmaps are similar to arendering context are similar if, and only if, they have been cre-
ated with respect to the same Vi sual | D and root window.

Thread one of agroup of processes all sharing the same address space. Typically, each thread will
have its own program counter and stack pointer, but the text and data spaces are visible to each
of thethreads. A thread that isthe only member of itsgroup is equivalent to a process.

240

SIGGRAPH 97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

A Simple Example

In order to use OpenGL with Win32 to render images, there are some initialization steps that must be
taken. These steps are outlined below.

Creating a Window
Setting the Pixel Format
Creating a Rendering Context

Example source code:
simple.c

Create a Window

Before creating a window,window classnust be registered. A window class is a basic template that is
used to create a window in an application. Every window is associated with a window class. To register
a window class, &NDCLASStructure is filled out with the desired settings and then the Win32 function
RegisterWindowClass() is called with a pointer to this structure as an argument. Multiple windows

can be associated with a single class. When the application that registered a window class exits, the
window class is destroyed. A window class can be identified by its class name (a character string).

The window class contains tindow procedureA window procedure is a callback function that is

used by Win32 to notify the application of messages that should be processed by the window. A window
procedure must have the forn@NG WINAPI WindowProc(HWND, UINT, WPARAM, LPARAM) . See the

next section on messages for more information about window procedures.

The following code fragment shows how to register a new window class.

code fragment from oglCreateWindow() function in simple.c

241

/* oglCreateWindow

* Create a window suitable for OpenGL rendering

*

HWND oglCreateWindow(char* title, int x, int y, int width, int height)
WNDCLASS wc;
HWND hwWnd;
HINSTANCE hinstance;

/* get this modules instance */
hinstance = GetModuleHandle(NULL);

/* fill in the window class structure */

wec.style =0; /* no special styles */

wc.IpfnWndProc = (WNDPROC)WindowProc; [* event handler */
wc.cbClsExtra =0; /* no extra class data */

wc.cbWndExtra = 0; /* no extra window data */
wc.hinstance = hinstance; /* instance */

wec.hlcon = Loadlcon(NULL, IDI_WINLOGO); /* load a default icon */
wc.hCursor = LoadCursor(NULL, IDC_ARROW); /* load a default cursor */
wc.hbrBackground = NULL; [* redraw our own bg */
wc.lpszMenuName = NULL; /* no menu */

wc.lpszClassName = title; * use a special class */

/* register the window class */
if ('RegisterClass(&wc)) {
MessageBox(NULL,
"RegisterClass() failed: Cannot register window class,",
"Error", MB_OK);
return NULL;
}

}

Although the settings above should be sufficient for many applications, there are many values each field
of theWNDCLASStructure can assume. For more information omkeCLASStructure and its options,
see the Microsoft Developer Studio InfoViewer topieDCLASS

Once a window class has been successfully registered, a new window can be created. When creating a
window suitable for OpenGL rendering, the window style must have/$heLIPSIBLINGS and
WS_CLIPCHILDRENattribute bits set.

The following code shows how to create a window.

code fragment from oglCreateWindow() function in simple.c

/* oglCreateWindow

* Create a window suitable for OpenGL rendering

*/

HWND oglCreateWindow(char* title, int X, int y, int width, int height)

WNDCLASS wc;

HWND hwnd;
HINSTANCE hinstance;

242

[* create a window */

hwnd = CreateWindow(title, [* class */
title, /* title (caption) */
WS_CLIPSIBLINGS | WS_CLIPCHILDREN, /* style */
X, ¥, width, height, /* dimensions */

NULL, /* no parent */
NULL, /* no menu */
hinstance, /* instance */
NULL); /* don't pass anything to WM_CREATE */

/* make sure we got a window */
if (hWnd == NULL) {
MessageBox(NULL,
"CreateWindow() failed: Cannot create a window.",
"Error", MB_OK);
return NULL;
}

/* show the window (map it) */
ShowWindow(hWnd, SW_SHOW);

/* send an initial WM_PAINT message (expose) */
UpdateWindow(hWnd);

return hwnd;
}

A common style attribute which is used quite often (and bears mentioning here) is the
WS_OVERLAPPEDWINDGHyle. This creates a window that has resize handles and a system menu as well
as the three icons (minimize, maximize and close) common to most Win32 windows in the upper right
hand corner of the title (caption) bar. In the next section on messages, there are some example programs
that use this style. Another style that can be used allows for the window to take up the whole screen. See
the fullscrn.c program for an example of this style.

While in the example we only use the minimum style options necessary for Op&sGLL(PCHILDREN
andws_CLIPSIBLINGS), there are many options that can be used when creating a window. See the
Microsoft Developer Studio InfoViewer topiereateWindowor a list of all the available options.

After creating a new window it must be shown if the rendering is to be seen. It is also a good idea
(though not strictly necessary) to force an initial paint by making a call to the window procedure in order
to "prime the message pump". This is accomplished by callinghtivevindow() anduUpdateWindow()

functions as shown in the example above.

Crt ol LAl

Set the Pixel Format

After a window class has been registered and a new window has been successfully crgaied, the
formatmust be set. The simplest way to set the pixel format is to usdbePixelFormat()
function. More sophisticated methods for choosing the pixel format will be discussed in a later section.

The pixel format specifies several properties of an OpenGL context. Common properties are depth of the
Z buffer, whether a stencil buffer exists or not, whether the framebuffer is double buffered and many

243

others.

In order to specify the many properties availabRX&LFORMATDESCRIPTORBtructure is employed.

The members of this structure correspond to different properties. In order to set these properties, the
corresponding field is set in tF&XELFORMATDESCRIPTORtructure and a format that best fits the

criteria defined by theIXELFORMATDESCRIPTORtructure is selected by tlb@oosePixelFormat()

function. The "best fit" is somewhat ambiguous and methods for finding exactly the pixel format desired
are covered, as mentioned above, in a later section.

The following code fragment illustrates how to set the pixel format.

code defining the oglSetPixelFormat() function in simple.c

/* oglPixelFormat()

* Sets the pixel format for the context

*

int oglSetPixelFormat(HDC hDC, BYTE type, DWORD flags)

{
int pf;
PIXELFORMATDESCRIPTOR pfd;
* fill in the pixel format descriptor */
pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
pfd.nVersion =1; [* version (should be 1) */
pfd.dwFlags =PFD_DRAW_TO_WINDOW | /* draw to window (not bitmap) */
PFD_SUPPORT_OPENGL | /* draw using opengl */
flags; /* user supplied flags */
pfd.iPixelType = type; /* PFD_TYPE_RGBA or COLORINDEX */
pfd.cColorBits = 24;
[* other criteria here */
/* get the appropriate pixel format */
pf = ChoosePixelFormat(hDC, &pfd);
if (pf == 0) {
MessageBox(NULL,
"ChoosePixelFormat() failed: Cannot find format specified.",
"Error", MB_OK);
return O;
}
/* set the pixel format */
if (SetPixelFormat(hDC, pf, &pfd) == FALSE) {
MessageBox(NULL,
"SetPixelFormat() failed: Cannot set format specified.",
"Error", MB_OK);
return O;
}
return pf;
}

Note thatype is one ofPFD_TYPE_RGBAor non-paletted aPFD_COLORINDEXor paletted (indexed)
display modeflags is a bitwise OR (|) of several options. We'll use ar#yp_DOUBLEBUFFE®hich

selects a doublebuffered framebuffer for these simple examples. For more information on what other
values it can assume, see the next section on pixel formats or the Microsoft Developer Studio
InfoViewer topiCPIXELFORMATDESCRIPTQR

244

Create a Rendering Context

The final step in setting up for OpenGL rendering is to create the OpenGL context. An OpenGL
rendering context in Win32 has the typ@LRC All OpenGL rendering must go through an HGLRC. A
context must be current for OpenGL calls to affect to it.

The procedure for creating and making a context current is shown below.

code from main() function in simple.c

/* main()
* Entry point

*/

int main(int argc, char** argv)

{
HDC hDC; /* device context */
HGLRC hRC; [* opengl context */
HWND hwnd; /* window */

/* create an OpenGL context */
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

/* now we can start changing state & rendering */
while (1) {
[* rotate a triangle around */
glClear(GL_COLOR_BUFFER_BIT);
glRotatef(1.0, 0.0, 0.0, 1.0);
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);
glVertex2i(0, 1);
glColor3f(0.0, 1.0, 0.0);
glVertex2i(-1, -1);
glColor3f(0.0, 0.0, 1.0);
glVertex2i(1, -1);

glEnd();
glFlush();
SwapBuffers(hDC); /* nop if singlebuffered */
}
[* clean up */
wglMakeCurrent(NULL, NULL); /* make our context 'un-"current */
ReleaseDC(hDC, hwnd); [* release handle to DC */
wglDeleteContext(hRC); * delete the rendering context */
DestroyWindow(hWnd); [* destroy the window */
return O;
}

After this is done, OpenGL calls can be made to change state and render to the context as shown in the
example above. In order to clean up the resources allocated for OpenGL rendering, first make the
HGLRC 'un’-current, release the HDC and delete the context. Lastly, destroy the window.

245

246

SIGGRAPH 97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Processing Messages & Using Menus

Win32 Messages and Menus allow for processing of user input. Methods for intercepting and
responding to messages as well as methods for using menus is presented below.

Peeking at Messages
Using Message Procedures
Using Menus

Example source code:
peek.c
msgproc.c
menu.c

Peeking at Messages

While the simple example presented in the last section got us started with OpenGL, it was very limited
in that it didn’t provide for any user inpiessagesre the standard method to receive and process user
input in Win32. An easy way to check for messages is presented below. This approach is very simple
and limited. There are more sophisticated methods for processing messages which will be covered later
in this document.

code defining the main() function in msgproc.c

/* main()
* Entry point

*/

int main(int argc, char** argv)

HDC hDC,; /* device context */
HGLRC hRC; [* opengl context */

247

HWND hWnd; /* window */
MSG msg; /* message */

[* create a window */
hwnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
if (hWnd == NULL)

exit(1);

/* get the device context */
hDC = GetDC(hWnd);

/* set the pixel format */
if (oglSetPixelFormat(hDC, PFD_TYPE_RGBA, 0) == 0)
exit(1);

[* create an OpenGL context */
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

/* now we can start changing state & rendering */
while (1) {
[* first, check for (and process) messages in the queue */
while(PeekMessage(&msg, hwnd, 0, 0, PM_REMOVE)) {
switch(msg.message) {
case WM_LBUTTONDOWN:
printf("WM_LBUTTONDOWN: %d %d %s %s %s %s %s\n",
LOWORD(msg.IParam), HIWORD(msg.IParam),
msg.wParam & MK_CONTROL ? "MK_CONTROL" : ",
msg.wParam & MK_LBUTTON ? "MK_LBUTTON": ",
msg.wParam & MK_RBUTTON ? "MK_RBUTTON" : ",
msg.wParam & MK_MBUTTON ? "MK_MBUTTON" : ",
msg.wParam & MK_SHIFT ? "MK_SHIFT" :™);
break;
case WM_MOUSEMOVE:
printf("WM_MOUSEMOVE: %d %d\n",
LOWORD(msg.lParam), HIWORD(msg.IParam));
break;
case WM_KEYDOWN:
printf("WM_KEYDOWN: %c\n", msg.wParam);
if(msg.wParam == 27) /* ESC */
goto quit;
break;
default:

DefWindowProc(hWnd, msg.message, msg.wParam, msg.IParam);

break;

}
}

[* rotate a triangle around */
glClear(GL_COLOR_BUFFER_BIT);
glRotatef(1.0, 0.0, 0.0, 1.0);
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);

glVertex2i(0, 1);

glColor3f(0.0, 1.0, 0.0);
glVertex2i(-1, -1);

glColor3f(0.0, 0.0, 1.0);

glVertex2i(1, -1);

glEnd();

glFlush();

SwapBuffers(hDC); /* nop if singlebuffered */

248

}

quit:
/* clean up */
wglMakeCurrent(NULL, NULL); /* make our context 'un-"current */
ReleaseDC(hDC, hwnd); * release handle to DC */
wglDeleteContext(hRC); [* delete the rendering context */
DestroyWindow(hwnd); [* destroy the window */
return O;

}

There are many other messages that can be checked for and processed. See the macros defined in the
winuser.h include file for a full listing, or look at Microsoft Developer Studio InfoViewer topics

beginning withWM _. The method presented above is limited in that some messages must be "translated”
before they can be processed. The method presented next takes care of these messages as well.

Message Procedure

A much more effective way of processing messages is tows®law procedureEvery window must

have a window procedure associated with it (actually, the window procedure is associated with the
window class, but since every window has a class, every window also has a window procedure). The
window procedure is called whenever there are messages for the window in the message queue.

The code for a typical window procedure follows.

code defining the WindowProc() function in msgproc.c

/* WindowProc()
* Minimum Window Procedure
*/
LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM |Param)
{
LONG IRet = 1;
PAINTSTRUCT ps;

switch(uMsg) {
case WM_CREATE:
break;

case WM_DESTROY:
break;

case WM_PAINT:
BeginPaint(hwnd, &ps);
EndPaint(hWnd, &ps);
break;

case WM_LBUTTONDOWN:
printf("WM_LBUTTONDOWN: %d %d %s %s %s %s %s\n",
LOWORD(IParam), HIWORD(IParam),
wParam & MK_CONTROL ? "MK_CONTROL" : ™,
wParam & MK_LBUTTON ? "MK_LBUTTON" : ",

249

wParam & MK_RBUTTON ? "MK_RBUTTON": ",

wParam & MK_MBUTTON ? "MK_MBUTTON" : ",

wParam & MK_SHIFT ? "MK_SHIFT" :™);
break;

case WM_MOUSEMOVE:
printf("WM_MOUSEMOVE: %d %d\n", LOWORD(IParam), HIWORD(IParam));
break;

case WM_CHAR:
printf("WM_CHAR: %c\n", wParam);
if(wParam == 27) [* ESC */
PostQuitMessage(0);
break;

case WM_SIZE:
printf("WM_SIZE: %d %d\n", LOWORD(IParam), HIWORD(IParam));
glViewport(0, 0, LOWORD(IParam), HIWORD(IParam));
break;

case WM_CLOSE:
printf("WM_CLOSE\n");
PostQuitMessage(0);
break;

default:
IRet = DefWindowProc(hWnd, uMsg, wParam, |IParam);
break;

}

return IRet;

}

Eachcase in theswitch statement processes one type of message. As mentioned above, there are many
types of messages. The ones presented in this code fragment are some of the more common ones. Notic
that thedefault ~ action is to call @efwindowProc() function. This passes on any messages that the

user doesn’t intercept to the system message processing function.

The translation and dispatch of messages must be done explicitly. The following code illustrates a
method of doing this.

code defining the main() function in msgproc.c

/* main()
* Entry point
*

int main(int argc, char** argv)

HDC hDC; /* device context */
HGLRC hRC; [* opengl context */
HWND hwnd; /* window */

MSG msg; /* message */

[* create a window */
hwnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
if (h"Wnd == NULL)

exit(1);

/* get the device context */

250

hDC = GetDC(hWnd);

/* set the pixel format */
if (oglSetPixelFormat(hDC, PFD_TYPE_RGBA, 0) ==0)
exit(1);

/* get the device context */
hDC = GetDC(hWnd);

/* create an OpenGL context */
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

/* now we can start changing state & rendering */
while (1) {
[* first, check for (and process) messages in the queue */
while(PeekMessage(&msg, hwnd, 0, 0, PM_NOREMOVE)) {
if(GetMessage(&msg, hwnd, 0, 0)) {
TranslateMessage(&msg); /* translate virtual-key messages */
DispatchMessage(&msg); /* call the window proc */
} else {
goto quit;
}
}
[* rotate a triangle around */
glClear(GL_COLOR_BUFFER_BIT);
glRotatef(1.0, 0.0, 0.0, 1.0);
gIBegin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);
glVertex2i(0, 1);
glColor3f(0.0, 1.0, 0.0);
glVertex2i(-1, -1);
glColor3f(0.0, 0.0, 1.0);
glVertex2i(1, -1);

glEnd();
glFlush();
SwapBuffers(hDC); /* nop if singlebuffered */
}
quit;
[* clean up */
wglMakeCurrent(NULL, NULL); /* make our context 'un-"current */
ReleaseDC(hDC, hwnd); /* release handle to DC */
wglDeleteContext(hRC); [* delete the rendering context */
DestroyWindow(hWnd); [* destroy the window */
return O;

}

The TranslateMessage() function breaks down virtual-key messages into character messages. The
DispatchMessage() ~ function dispatches a message to the window procedure, which means it calls the
window procedure with the correct arguments for the given message.

251

Another common method for obtaining user input in Win32 is through menus. Setting up and managing
a menu is very simple. The following example shows how to create a menu bar.

code defining the menubar() function in menu.c

/* globals */
HMENU hPopup = NULL; /* popup menu */

/* menubar()
* create a menubar for the window

*

/

void menubar(HWND hWnd)

{
HMENU hFileMenu; /* file menu handle */
HMENU hDrawMenu; /* draw menu handle */
HMENU hMenu; /* menu bar handle */
MENUITEMINFO item; [* item info */

/* create the menus */
hMenu = CreateMenu();
hFileMenu = CreateMenu();
hDrawMenu = CreateMenu();

* fill up the file menu */
item.cbSize = sizeof(MENUITEMINFO);

item.fMask = MIIM_ID | MIIM_TYPE | MIIM_SUBMENU;
item.fType = MFT_STRING;

item.hSubMenu = NULL;

item.wID =X

item.dwTypeData = "E&xit";

item.cch = strlen("E&xit");

InsertMenultem(hFileMenu, 0, FALSE, &item);

/* now do the draw menu */

item.wlD ='r;

item.dwTypeData = "&Rotate";

item.cch = strlen("&Rotate");
InsertMenultem(hDrawMenu, 0, FALSE, &item);
item.wlD ='s’;

item.dwTypeData = "&Don't Rotate";

item.cch = strlen("&Don’t Rotate™);

InsertMenultem(hDrawMenu, 1, FALSE, &item);

/* now do the main menu */

item.wID =0;
item.dwTypeData = "&File";
item.cch = strlen("&File™);

item.hSubMenu = hFileMenu;
InsertMenultem(hMenu, 0, FALSE, &item);

item.wlD =0;
item.dwTypeData = "&Draw";
item.cch = strlen("&Draw");

item.hSubMenu = hDrawMenu;
InsertMenultem(hMenu, 1, FALSE, &item);

[* attach the menu to the window */
SetMenu(hWnd, hMenu);

252

/* use the draw menu as a popup menu */
hPopup = hDrawMenu;

The above code creates all the menus needed in the program. It also attaches the menus to the menubar
at the top of the window just under the title (caption) bar. An ampersand in a string used as a
dwTypeData causes an underscore beneath the following letter to be printed, and uses that letter as the
accelerator key.

All menus send svM_COMMANDessage to the window that they are attached to. The low word of the
wParam sent to the message procedure indicates what item was selected from the menu. The following
code handles the actions attached to each menu. It should be inserted into the window procedure of an
application.

code defining the menubar() function in menu.c

/* globals */
BOOL Rotate = TRUE; [* rotating? */

/* WindowProc()

* Minimum Window Procedure

*/

LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM IParam)
{

case WM_COMMAND:
printf("WM_COMMAND: %c\n", LOWORD(wParam));
switch(LOWORD(wParam)) {
case'’'s’
Rotate = FALSE;
break;
case’r:
Rotate = TRUE;
break;
case 'X’:
PostQuitMessage(0);
break;

}

break;

-

A popup menu is one that is attached to a certain mouse button. When the button is pressed inside the
window, the menu should "pop-up” right below where the mouse was pressed. These type of menus take
an additional step to set up. Since they are triggered when a mouse button is pressed, the corresponding
message must be reacted to.

The following code explains how to react to mouse messages for popup menus. It should be inserted in
the window procedure of the application.

/* globals */
HMENU hPopup = NULL; /* popup menu */

253

/* WindowProc()

* Minimum Window Procedure

*/

LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM |Param)

POINT point;

case WM_RBUTTONDOWN:
point.x = LOWORD(IParam);
point.y = HIWORD(IParam);
ClientToScreen(hWnd, &point);
TrackPopupMenu(hPopup, TPM_LEFTALIGN, point.x, point.y,
0, hwnd, NULL);
break;

.-

Note that the x and y location of the menu must be in screen coordinates, not window coordinates. The
conversion is facilitated by th&ientToScreen() function.

254

SIGGRAPH 97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Pixel Formats & Palettes

Pixel formats specify the properties of OpenGL contexts. Pixel formats in conjunction with palettes are
the gateway through which an appropriate context for an application is created. Their use is described
below.

Pixel Format Descriptor
Using Palettes

Example source code:
wglinfo.c
index.c

Pixel Format Descriptor

Setting the pixel format seems to be one of the more tricky parts of programming with OpenGL in
Win32. This section should dispel most of the mystery surroundingixkeéformat descriptoand the
setting of pixel formats. A pixel format descriptor is the key to getting and setting pixel formats.

There are several functions that are used to manipulate pixel formats. They are as follows:
Function Description

ChoosePixelFormat Obtains the device context’s pixel format that is
the closest match to a specified pixel format.

SetPixelFormat Sets a device context’s current pixel format to
the pixel format specified by a pixel format
index.

GetPixelFormat Obtains the pixel format index of a device

context’s current pixel format.
DescribePixelFormat Given a device context and a pixel format index,

255

fills in a PIXELFORMATDESCRIPTOHata structure
with the pixel format’s properties.

A lot of the time, thechoosePixelFormat() function will be adequate to choose a pixel format, but

when more precision in pixel format choice is needed, other methods must be employed. An excellent
method of selecting a pixel format with specific properties is to enumerate them all and compare them
against your own criteria. When one fits all the criteria, stop examining the rest of the formats (if any)
and use the one that fit. Weights can even be added to certain criteria if need be. For example, if it was
absolutely necessary that a color depth of 24 bits be used, but not so necessary that the depth buffer be
24 bits, the weights could be set accordingly. The following code illustrates this method. It only prints
out information for those pixel formats that are OpenGL capable. Of course, when choosing a visual to
render with, more criteria should probably be used (such as color depth, z-buffer depth and
single/doublebuffering -- all the possible criteria are outlined below).

code defining the Visuallnfo() function in wglinfo.c

/* Visuallnfo()

* Shows a graph of all the visuals that support OpenGL and their
* capabilities. Just like (well, almost) glxinfo on SGI's.

*

void Visuallnfo(HDC hDC)

int i, maxpf;
PIXELFORMATDESCRIPTOR pfd;

/* calling DescribePixelFormat() with NULL args return maximum
number of pixel formats */
maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

/* print the table header */
printf(" visual x bflvrgdst r g ba ax dp st accum buffs ms\n");
printf("id dep clspsz| cibroszszszszbfthcl r g b ansb\n");
printf(" \n");

* loop through all the pixel formats */
for(i = 1; i <= maxpf; i++) {

DescribePixelFormat(hDC, i, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
[* only describe this format if it supports OpenGL */
if(!(pfd.dwFlags & PFD_SUPPORT_OPENGL))

continue;

[* other criteria could be tested here for actual pixel format
choosing in an application:

for (...each pixel format...) {
if (pfd.dwFlags & PFD_SUPPORT_OPENGL &&
pfd.dwFlags & PFD_DOUBLEBUFFER &&
pfd.cDepthBits >= 24 &&
pfd.cColorBits >= 24)

goto found;

... hot found so exit ...

256

found:
...found so use it ...
*/

[* print out the information for this pixel format */
printf("0x%02x ", i);

printf("%2d ", pfd.cColorBits);

if(pfd.dwFlags & PFD_DRAW_TO_WINDOW) printf("wn ");
else if(pfd.dwFlags & PFD_DRAW_TO_BITMAP) printf("bm ");
else printf(". ");

/* should find transparent pixel from LAYERPLANEDESCRIPTOR */
printf(" . ");

printf("%2d ", pfd.cColorBits);

/* bReserved field indicates number of over/underlays */
if(pfd.bReserved) printf(" %d ", pfd.bReserved);

else printf(" . ");

printf(" %c ", pfd.iPixelType == PFD_TYPE_RGBA ?'r' : 'c’);
printf("%c ", pfd.dwFlags & PFD_DOUBLEBUFFER ? 'y’ : ".");
printf(" %c ", pfd.dwFlags & PFD_STEREO ? 'y’ : ".");

if(pfd.cRedBits) printf("%2d ", pfd.cRedBits);
else printf(" . ");

if(pfd.cGreenBits) printf("%2d ", pfd.cGreenBits);
else printf(" . ");

if(pfd.cBlueBits) printf("%2d ", pfd.cBlueBits);
else printf(" . ");

if(pfd.cAlphaBits) printf("%2d ", pfd.cAlphaBits);
else printf(" . ");

if(pfd.cAuxBuffers) printf("%2d ", pfd.cAuxBuffers);
else printf(" . ");

if(pfd.cDepthBits) printf("%2d ", pfd.cDepthBits);
else printf(" . ");

if(pfd.cStencilBits) printf("%2d ", pfd.cStencilBits);
else printf(" . ");

if(pfd.cAccumRedBits) printf("%2d ", pfd.cAccumRedBits);
else printf(" . ");

if(pfd.cAccumGreenBits) printf("%2d ", pfd.cAccumGreenBits);
else printf(" . ");

if(pfd.cAccumBlueBits) printf("%2d ", pfd.cAccumBlueBits);
else printf(" . ");

if(pfd.cAccumAlphaBits) printf("%2d ", pfd.cAccumAlphaBits);
else printf(" . ");

/* no multisample in Win32 */

257

printf(" . .\n");

[* print table footer */

printf("

\n");

printf(" visual x bflvrgdst r g ba ax dp st accum buffs ms\n");
printf("id dep clspszl cibroszszszszbfthcl r g b ansb\n";

printf("

}

\n");

Following is a detailed description of tRekELFORMATDESCRIPTORtructures fields as shown in the
Microsoft Developer Studio InfoViewer topRIXELFORMATDESCRIPTQR

typedef struct tagPIXELFORMATDESCRIPTOR {// pfd
WORD nSize;
WORD nVersion;
DWORD dwFlags;

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

iPixelType;
cColorBits;
cRedBits;
cRedShift;
cGreenBits;
cGreenShift;
cBlueBits;
cBlueShift;
cAlphaBits;
cAlphaShift;
cAccumBits;
cAccumRedBits;
cAccumGreenBits;
cAccumBlueBits;
cAccumAlphaBits;
cDepthBits;
cStencilBits;
cAuxBuffers;
iLayerType;
bReserved;

DWORD dwLayerMask;
DWORD dwVisibleMask;
DWORD dwDamageMask;

} PIXELFORMATDESCRIPTOR,;

Members

nSize

Specifies the size of this data structure. This value should be set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion

Specifies the version of this data structure. This value should be set to 1.

dwFlags

A set of bit flags that specify properties of the pixel buffer. The properties are generally not mutually
exclusive; you can set any combination of bit flags, with the exceptions noted. The following bit flag
constants are defined.

Value Meaning
PFD_DRAW_TO_WINDOW The buffer can draw to a window or

258

PFD_DRAW_TO_BITMAP

PFD_SUPPORT_GDI

PFD_SUPPORT_OPENGL

device surface.

The buffer can draw to a memory
bitmap.

The buffer supports GDI drawing.
This flag and
PFD_DOUBLEBUFFER are
mutually exclusive in the current
generic implementation.

The buffer supports OpenGL
drawing.

PFD_GENERIC_ACCELERATED The pixel format is supported by a

PFD_GENERIC_FORMAT

PFD_NEED_PALETTE

device driver that accelerates the
generic implementation. If this flag
is clear and the
PFD_GENERIC_FORMAT flag is
set, the pixel format is supported by
the generic implementation only.

The pixel format is supported by the
GDI software implementation,
which is also known as the generic
implementation. If this bit is clear,
the pixel format is supported by a
device driver or hardware.

The buffer uses RGBA pixels on a
palette-managed device. A logical
palette is required to achieve the
best results for this pixel type.
Colors in the palette should be
specified according to the values of
the cRedBits, cRedShift,
cGreenBits, cGreenShift, cBluebits,
and cBlueShift members. The
palette should be created and
realized in the device context before
calling wglMakeCurrent.

PFD_NEED_SYSTEM_PALETTE Used with systems with OpenGL

259

hardware that supports one hardware
palette only. For such systems to use
hardware acceleration, the hardware
palette must be in a fixed order (for
example, 3-3-2) when in RGBA
mode or must match the logical
palette when in color-index mode.
When you set this flag, call
SetSystemPaletteUse in your
program to force a one-to-one

mapping of the logical palette and
the system palette. If your OpenGL
hardware supports multiple
hardware palettes and the device
driver can allocate spare hardware
palettes for OpenGL, you don’t need
fo set
PFD_NEED_SYSTEM_PALETTE.
This flag is not set in the generic
pixel formats.

PFD_DOUBLEBUFFER The buffer is double-buffered. This
flag and PFD_SUPPORT_GDI are
mutually exclusive in the current
generic implementation.

PFD_STEREO The buffer is stereoscopic. This flag
is not supported in the current
generic implementation.

PFD_SWAP_LAYER_BUFFERS Indicates whether a device can swap
individual layer planes with pixel
formats that include double-buffered
overlay or underlay planes.

Otherwise all layer planes are
swapped together as a group. When
this flag is set,
wglSwapLayerBuffers is supported.

You can specify the following bit flags when calliagoosePixelFormat()
Value Meaning

PFD_DEPTH_DONTCARE The requested pixel format
can either have or not have a
depth buffer. To select a
pixel format without a depth
buffer, you must specify this
flag. The requested pixel
format can be with or
without a depth buffer.
Otherwise, only pixel
formats with a depth buffer
are considered.

PFD_DOUBLEBUFFER_DONTCARE The requested pixel format
can be either single- or
double-buffered.

PFD_STEREO_DONTCARE The requested pixel format
can be either monoscopic or
stereoscopic.

With theglAddSwapHintRectWIN extension function, two new flags are included for the
PIXELFORMATDESCRIPTORIXel format structure.

260

Value Meaning

PFD_SWAP_COPY Specifies the content of the back buffer in
the double-buffered main color plane
following a buffer swap. Swapping the
color buffers causes the content of the
back buffer to be copied to the front
buffer. The content of the back buffer is
not affected by the swap.
PFD_SWAP_COPY is a hint only and
might not be provided by a driver.

PFD_SWAP_EXCHANGE Specifies the content of the back buffer in
the double-buffered main color plane
following a buffer swap. Swapping the
color buffers causes the exchange of back
buffer’'s content with the front buffer’s
content. Following the swap, the back
buffer’s content contains the front
buffer's content before the swap.
PFD_SWAP_EXCHANGE is a hint only
and might not be provided by a driver.

iPixelType
Specifies the type of pixel data. The following types are defined.
Value Meaning
PFD_TYPE_RGBA RGBA pixels. Each pixel has four
components in this order: red, green,
blue, and alpha.
PFD_TYPE_COLORINDEX Color index pixels. Each pixel uses a
color-index value.
cColorBits

Specifies the number of color bitplanes in each color buffer. For RGBA pixel types, it is the size of the
color buffer, excluding the alpha bitplanes. For color index pixels, it is the size of the color-index buffer.

cRedBits

Specifies the number of red bitplanes in each RGBA color buffer.
cRedShift

Specifies the shift count for red bitplanes in each RGBA color buffer.
cGreenBits

Specifies the number of green bitplanes in each RGBA color buffer.
cGreenShift

Specifies the shift count for green bitplanes in each RGBA color buffer.
cBlueBits

Specifies the number of blue bitplanes in each RGBA color buffer.
cBlueShift

261

Specifies the shift count for blue bitplanes in each RGBA color buffer.

cAlphaBits

Specifies the number of alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not supported.
cAccumBits

Specifies the total number of bitplanes in the accumulation buffer.

cAccumRedBits

Specifies the number of red bitplanes in the accumulation buffer.

cAccumGreenBits

Specifies the number of green bitplanes in the accumulation buffer.

cAccumBlueBits

Specifies the number of blue bitplanes in the accumulation buffer.

cAccumAlphaBits

Specifies the number of alpha bitplanes in the accumulation buffer.

cDepthBits

Specifies the depth of the depth (z-axis) buffer.

cStencilBits

Specifies the depth of the stencil buffer.

cAuxBuffers

Specifies the number of auxiliary buffers. Auxiliary buffers are not supported.
iLayerType

Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.
bReserved

Not used. Must be zero.

dwLayerMask

Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.
dwVisibleMask

Specifies the transparent color or index of an underlay plane. When the pixel type is RGBA,
dwLayerMask is a transparent RGB color value. When the pixel type is color index, it is a transparent
index value.

dwDamageMask

Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.

Note that in the documentation above, when it says "not supported” it means not supported in the
generic implementation of OpenGL supplied by Microsoft. Different hardware types may well support
some of these options (such as alpha bitplanes, or auxiliary buffers).

Here’s a short code fragment which finds a pixel format that is OpenGL capable, draws to a window,
has a depth buffer greater than or equal to 24 bits and is double buffered:

code fragment defining oglPixelFormatExact() in exact.c

/* oglPixelFormatExact()

* Sets the pixel format for the context
*/

int oglSetPixelFormatExact(HDC hDC)

int pf, maxpf;
PIXELFORMATDESCRIPTOR pfd;

* get the maximum number of pixel formats */

262

maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

/* loop through all the pixel formats */
for (pf = 1; pf <= maxpf; pf++) {
DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
if (pfd.dwFlags & PFD_DRAW_TO_WINDOW &&
pfd.dwFlags & PFD_SUPPORT_OPENGL &&
pfd.dwFlags & PFD_DOUBLEBUFFER &&
pfd.cDepthBits >= 24)
{

/* found a matching pixel format */

/* set the pixel format */
if (SetPixelFormat(hDC, pf, &pfd) == FALSE) {
MessageBox(NULL,
"SetPixelFormat() failed: Cannot set format specified.",
"Error", MB_OK);
return O;

}

return pf;

}
}

/* couldn’t find one, bail out! */

MessageBox(NULL,
"Fatal Error: Failed to find a suitable pixel format.",
"Error", MB_OK);

return O;

Using Palettes

Up to this point, we’ve neglected a very important part of the integration of OpenGL with Win32 --
palettes A palette is a table of colors used when a Truecolor display can’t be used or when the
application wants exact control over what colors are available (for example, in a height field), or when
palette animation functionality is desired.

There are two situations that arise regarding palettes when using OpenGL and Win32. The first is trying
to use a color-index context. A discussion of this follows. The second is a bit harder -- using an RGBA
context in a paletted mode.

When using a color-index contextlogical palettemust be created. A logical palette is a table of colors
that isselectedandrealizedinto a device context. This just means that the user defines a table of colors,
then forces windows to use those colors. On a Truecolor display, this isn’'t a problem, but on a paletted
display, Windows must try to match up the system and logical palettes the best it can. Sometimes there
is a "flashing" that occurs because of this palette switching.

The following code shows how to initialize a logical palette.

code defining the oglSetPalette() function in index.c

263

/* globals */
HPALETTE hPalette; /* handle to custom palette */

[* oglSetPalette()

* Sets the palette

*

BOOL oglSetPalette(HDC hDC)

{

LOGPALETTE Igpal; [* custom logical palette */

int nEntries = 5; /* number of entries in palette */

PALETTEENTRY peEntries[5] = { /* entries in custom palette */
0, 0, O, NULL, * black */

255, 0, 0, NULL, * red */

0, 255, 0, NULL, /* green */
0, 0,255, NULL, /* blue */

255, 255, 255, NULL I* white */

h

/* create a logical palette (for color index mode) */
Igpal.palVersion = 0x300; [* version should be 0x300 */
Igpal.palNumEntries = nEntries; /* number of entries in palette */
if((hPalette = CreatePalette(&Igpal)) == NULL) {
MessageBox(NULL,
"CreatePalette() failed: Cannot create palette.",
"Error", MB_OK);
return FALSE;
}

/* set the palette entries */
SetPaletteEntries(hPalette, 0, nEntries, peEntries);

/* select the palette */
SelectPalette(hDC, hPalette, TRUE); /* map logical into physical palette */

/* realize the palette */
RealizePalette(hDC);

return TRUE;
}

In addition to the initialization code, there are some messages that must be dealt with when using
palettes. The following shows these messages and the reaction to them.

code fragment from WindowProc() function in index.c

/* globals */
HPALETTE hPalette; /* handle to custom palette */

/* WindowProc()

* Minimum Window Procedure

*/

LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM IParam)

LONG IRet = 1,
PAINTSTRUCT ps;

264

switch(uMsg) {

case WM_QUERYNEWPALETTE:
SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
IRet = RealizePalette(GetDC(hWnd));
break;

case WM_PALETTECHANGED:

if(hwnd == (HWND)wParam) /* make sure we don't loop forever */
break;

SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
RealizePalette(GetDC(hWnd)); /* remap the custom palette */
UpdateColors(GetDC(hWnd));
IRet = 0;
break;

}

return IRet;

}

This next section is very tricky. Palette management in general is tricky, but even more so when trying
to simulate Truecolor with a palette. The basic idea is to create a palette that has an adequate range of
colors so that a Truecolor display can be simulated with the aid of dithering. There are many ways to
generate such a palette. For a full example, see the Microsoft Developer Studio InfoViewRGBpic

Mode and Windows Palette Manageméme’ll use a simple palette derived from the example cited
above.

Note that this operation need only be done ifdiligiags member of th@IXELFORMATDESCRIPTOR
structure has theFD_NEED PALETTHIt set.

Following is the code required to setup a new palette for RGBA rendering in a paletted display mode.

code from the GLUT for Win32 sources

static HPALETTE ghpalOld, ghPalette = (HPALETTE) O;

static unsigned char threeto8[8] = {
0, 0111>>1, 0222>>1, 0333>>1, 0444>>1, 0555>>1, 0666>>1, 0377

I3

static unsigned char twoto8[4] = {
0, 0x55, Oxaa, Oxff

I3

static unsigned char oneto8[2] = {
0, 255
2

static int defaultOverride[13] = {
0, 3, 24, 27, 64, 67, 88, 173, 181, 236, 247, 164, 91
2

static PALETTEENTRY defaultPalEntry[20] = {
{ Oy 05 01 0 }5

265

3

{0x80,0, 0, 0}
{0, 0x80,0, 0}
{ 0x80,0x80,0, 0}
{0, 0, 0x80,0},
{ 0x80,0, 0x80, 0},
{0, 0x80,0x80, 0},

{ 0xC0,0xC0,0xC0, 0},

{192, 220, 192, 0},
{166, 202, 240, 0},
{ 255, 251, 240, 01,
{160, 160, 164, 0},

{ 0x80,0x80,0x80, 0 },
{OxFF,0, 0, 0},
{0, OxFF,0, 0},

{ OXFF,0xFF,0, 01},
{0, 0, OxFF,0},

{ OXFF,0, OxFF, 0},
{0, OxFF,0xFF, 0},

{ OXFF,0xFF,0xFF, 0 }

static unsigned char ComponentFromindex(int i, UINT nbits, UINT shift) {

}

unsigned char val;

val = (unsigned char) (i >> shift);
switch (nbits) {
case 1:

val &= Ox1;

return oneto8[vall;

case 2:
val &= 0x3;
return twoto8[vall;

case 3:
val &= Ox7;
return threeto8[val];

default:
return O;

}

HPALETTE CreateRGBPalette(HDC hDC) {

PIXELFORMATDESCRIPTOR pfd;
LOGPALETTE *pPal;
intn,i;

n = GetPixelFormat(hDC);
DescribePixelFormat(hDC, n, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

if (pfd.dwFlags & PFD_NEED_PALETTE) {
n = 1 << pfd.cColorBits;
pPal = (PLOGPALETTE)LocalAlloc(LMEM_FIXED, sizeof(LOGPALETTE) +
n * sizeof(PALETTEENTRY));
pPal->palVersion = 0x300;
pPal->palNumEntries = n;
for (i=0; ipalPalEntry[i].peRed =

266

ComponentFromindex(i, pfd.cRedBits, pfd.cRedShift);
pPal->palPalEntry[i].peGreen =

ComponentFromindex(i, pfd.cGreenBits, pfd.cGreenShift);
pPal->palPalEntry[i].peBlue =

ComponentFromindex(i, pfd.cBlueBits, pfd.cBlueShift);
pPal->palPalEntry[i].peFlags = 0;

/* fix up the palette to include the default GDI palette */

if ((pfd.cColorBits == 8) &&
(pfd.cRedBits == 3) && (pfd.cRedShift ==0) &&
(pfd.cGreenBits == 3) && (pfd.cGreenShift == 3) &&
(pfd.cBlueBits == 2) && (pfd.cBlueShift == 6)
) {

for(i=1;i<=12;i++)

pPal->palPalEntry[defaultOverride][i]] = defaultPalEntry][i];

ghPalette = CreatePalette(pPal);
if('ghPalette)

__glutFatalError("CreatePalette() failed: Cannot create palette.");
LocalFree(pPal);

ghpalOld = SelectPalette(hDC, ghPalette, FALSE);
n = RealizePalette(hDC);

}

return ghPalette;

}

As you can see, it is very messy and very tricky. However, for the most part, this code can simply be
"cut and pasted" into an application. When it is determined that the application needs an RGB palette (if
thePFD_NEED_PALETTHIt is set as described above), call theateRGBPalette() function.

In addition to the initialization code, there are some windows messages that must now be intercepted.
code from the GLUT for Win32 sources

case WM_QUERYNEWPALETTE:

if (ghPalette) {
SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
IRet = RealizePalette(GetDC(hWnd));

break;

case WM_PALETTECHANGED:

if (ghPalette) {
if(hwnd == (HWND)wParam) /* make sure we don't loop forever */
break;

SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
RealizePalette(GetDC(hWnd)); /* remap the custom palette */
UpdateColors(GetDC(hWnd));
IRet = 0;

}

break;

267

SIGGRAPH 97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Overlays & Underlays

Overlays and underlays are often used in applications for rendering above (or below) the main OpenGL
context. Setup and use of overlays and underlays is discussed below.

Overlays & Underlays

Example source code:
overlay.c

Overlays

Some pixel formats include an overlay or underlay plane. If overlay or underlay planes are desired, a
pixel format with these must be selected. You cannot have free-floating overlay windows that can move
over other windows. Overlay planes have a transparent color to allow things drawn 'beneath’ them to
show through. Every layer has a palette associated with it.

Unlike main plane pixel formats, overlay and underlay plane formats don’t have an equivalent
ChoosePixelFormat() , SO a method similar to that described in the pixel format section must be
employed to find an appropriate format.

The following code will setup the pixel format to use an overlay plane if available. Note that it looks
very similar to the pixel format choosing code developed in the last section. Notable differences are the
wglDescribeLayerPlane() function call in place of theescribePixelFormat() call in the previous
example.

code defining oglPixelFormat() function in overlay.c

/* oglPixelFormat()
* Sets the pixel format for the context
*

268

int oglSetPixelFormatOverlay(HDC hDC, BYTE type, DWORD flags)
{

int pf, maxpf;

PIXELFORMATDESCRIPTOR pfd;

LAYERPLANEDESCRIPTOR Ipd; /* layer plane descriptor */

int nEntries = 2; /* number of entries in palette */

COLORREF crEntries[2] = { [* entries in custom palette */
0x00000000, [* black (ref #0 = transparent) */
0x00ff0000, * blue */

h

/* get the maximum number of pixel formats */
maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

/* find an overlay layer descriptor */
for(pf = 0; pf < maxpf; pf++) {
DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

[* the bReserved field of the PIXELFORMATDESCRIPTOR contains the
number of overlay/underlay planes */
if (pfd.bReserved > 0) {
/* aha! This format has overlays/underlays */
wglDescribeLayerPlane(hDC, pf, 1,
sizeof(LAYERPLANEDESCRIPTOR), &Ipd);
if (Ipd.dwFlags & LPD_SUPPORT_OPENGL &&
Ipd.dwFlags & flags)

goto found;

}

/* couldn’t find any overlay/underlay planes */
MessageBox(NULL,
"Fatal Error: Hardware does not support overlay planes.",
"Error", MB_OK);
return O;

found:
I* now get the "normal” pixel format descriptor for the layer */
DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

/* set the pixel format */
if(SetPixelFormat(hDC, pf, &pfd) == FALSE) {
MessageBox(NULL,
"SetPixelFormat() failed: Cannot set format specified.",
"Error", MB_OK);
return O;

}

/* set up the layer palette */
wglSetLayerPaletteEntries(hDC, 1, 0, nEntries, crEntries);

/* realize the palette */
wglRealizeLayerPalette(hDC, 1, TRUE);

[* announce what we’ve got */
printf("Number of overlays = %d\n", pfd.bReserved);
printf("Color bits in the overlay = %d\n", Ipd.cColorBits);

return pf;

269

Now simply create an overlay context in much the same way that you create a main plane context. The
number passed in to thglCreateLayerContext() function is the layer number.

code fragment from the main() function in overlay.c

/* main()
* Entry point

*

int main(int argc, char** argv)

{
HWND hwWnd; /* window */
MSG msg; /* message */
/* create a window */
hwnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
if (hWnd == NULL)
exit(1);
/* get the device context */
hDC = GetDC(hwnd);
/* set the pixel format */
if (oglSetPixelFormatOverlay(hDC, PFD_TYPE_RGBA, LPD_DOUBLEBUFFER) == 0)
exit(1);
/* get the device context */
hDC = GetDC(hWnd);
/* create an OpenGL overlay context */
hOverlayRC = wglCreateLayerContext(hDC, 1);
}
When rendering to the overlay, be sure to set it current. Also be sure to swap the correct plane if using
double buffering. Note that you must also swap the main planevgiiivapLayerBuffers() , NOT

SwapBuffers() when using overlay or underlay planes. Pasgdn_SWAP_MAIN_PLANES the second
argument tavglSwapLayerBuffers() to swap the main plane, anasL_SWAP_OVERLAWhere i is the
overlay number to swap an overlay buffer.

code fragment from the main() function in overlay.c

/* main()
* Entry point
*/
int main(int argc, char** argv)
HWND hWnd; /* window */
MSG msg; /* message */

I* create an OpenGL overlay context */
hOverlayRC = wglCreateLayerContext(hDC, 1);

[* create an OpenGL context */

hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

270

/* now we can start changing state & rendering */
while(1) {
[* first, check for (and process) messages in the queue */
while(PeekMessage(&msg, hwnd, 0, 0, PM_NOREMOVE)) {
if(GetMessage(&msg, hwnd, 0, 0)) {
TranslateMessage(&msg); /* translate virtual-key messages */
DispatchMessage(&msg); /* call the window proc */
}else {
goto quit;

}

[* make current and draw a triangle */
wglMakeCurrent(hDC, hRC);
glClear(GL_COLOR_BUFFER_BIT);
glRotatef(1.0, 0.0, 0.0, 1.0);
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);

glVertex2i(0, 1);

glColor3f(0.0, 1.0, 0.0);

glVertex2i(-1, -1);

glColor3f(0.0, 0.0, 1.0);

glVertex2i(1, -1);

glEnd();

glFlush();
wglSwapLayerBuffers(hDC, WGL_SWAP_MAIN_PLANE);

/* make current and draw a triangle */
wglMakeCurrent(hDC, hOverlayRC);
glClear(GL_COLOR_BUFFER_BIT);
glRotatef(-1.0, 0.0, 0.0, 1.0);
glBegin(GL_TRIANGLES);
glindexi(1);

glvertex2i(0, 1);

glVertex2i(-1, -1);

glVertex2i(1, -1);

glEnd();

glFlush();

wglSwapLayerBuffers(hDC, WGL_SWAP_OVERLAY1);
}

quit:

/* clean up */
wglMakeCurrent(NULL, NULL); I* make our context 'un-"current */
ReleaseDC(hDC, hwWnd); * release handle to DC */
wglDeleteContext(hRC); [* delete the rendering context */
wglDeleteContext(hOverlayRC); /* delete the overlay context */
DestroyWindow(hWnd); * destroy the window */

return TRUE;

271

SIGGRAPH 97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

WGL Reference

WGL (pronounced "wiggle") is the glue that binds OpenGL and the Win32 API together.

Rendering Context functions
Font and Text functions
Overlay, Underlay and Main Plane functions
Miscellaneous functions

Rendering Context Functions

Function Description

wglCreateContext Creates a new rendering context.

wglMakeCurrent Sets a thread’s current rendering context.

wglGetCurrentContext Obtains a handle to a thread’s current rendering
context.

wglGetCurrentDC Obtains a handle to the device context
associated with a thread’s current rendering
context.

wglDeleteContext Deletes a rendering context.

See the source code referenced in previous sections for examples of the use of each of these functions.

Font and Text functions

Function Description

272

wglUseFontBitmaps Creates a set of character bitmap display lists.
Characters come from a specified device
context’s current font. Characters are specified as
a consecutive run within the font’s glyph set.

wglUseFontOutlines Creates a set of display lists, based on the glyphs
of the currently selected outline font of a device
context, for use with the current rendering
context. The display lists are used to draw 3-D
characters of TrueType fonts.

example from Microsoft Developer Studio topiovglUseFontBitmaps

HDC hdc;
HGLRC hgilrc;

/Il create a rendering context
hglrc = wglCreateContext (hdc);

/l make it the calling thread’s current rendering context
wglMakeCurrent (hdc, hglrc);

/I now we can call OpenGL API

/I make the system font the device context’s selected font
SelectObject (hdc, GetStockObject (SYSTEM_FONT));

/I create the bitmap display lists

/I we're making images of glyphs 0 thru 255

/I the display list numbering starts at 1000, an arbitrary choice
wglUseFontBitmaps (hdc, 0, 255, 1000);

/I display a string:

/l indicate start of glyph display lists

glListBase (1000);

/I now draw the characters in a string

glCallLists (24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World");

example from Microsoft Developer Studio topiovglUseFontOutlines

HDC hdc; /I A TrueType font has already been selected
HGLRC hgirc;
GLYPHMETRICSFLOAT agmf[256];

/l Make hglrc the calling thread’s current rendering context
wglMakeCurrent(hdc, hglrc);

/I create display lists for glyphs 0 through 255 with 0.1 extrusion

/I and default deviation. The display list numbering starts at 1000

/I (it could be any number)

wglUseFontOutlines(hdc, 0, 255, 1000, 0.0f, 0.1f,
WGL_FONT_POLYGONS, &agmf);

/I Set up transformation to draw the string
glLoadldentity();

glTranslate(0.0f, 0.0f, -5.0f)

glScalef(2.0f, 2.0f, 2.0f);

273

/I Display a string

glListBase(1000); // Indicates the start of display lists for the glyphs

/I Draw the characters in a string

glCallLists(24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World.");

Overlay, Underlay and Main Plane functions

Function Description

wglCopyContext Copies selected groups of rendering states
from one OpenGL rendering context to
another.

wglCreateLayerContext Creates a new OpenGL rendering context
for drawing to a specified layer plane on a
device context.

wglDescribeLayerPlane Obtains information about the layer planes
of a given pixel format.

wglGetLayerPaletteEntries Retrieves the palette entries from a given
color-index layer plane for a specified
device context.

wglRealizeLayerPalette Maps palette entries from a given
color-index layer plane into the physical
palette or initializes the palette of an
RGBA layer plane.

wglSetLayerPaletteEntries Sets the palette entries in a given
color-index layer plane for a specified
device context.

wglSwapLayerBuffers Swaps the front and back buffers in the
overlay, underlay, and main planes of the
window referenced by a specified device
context.

See the overlay.c program for examples of how to use the functions above.

Miscellaneous Functions

Function Description

wglShareLists Enables a rendering context to share the
display-list space of another rendering context.

wglGetProcAddress Returns the address of an OpenGL extension
function for use with the current OpenGL
rendering context.

274

275

