
1

OpenGL & Window
System Integration

‘‘Most portable 3D; fastest 3D.’’

Mark J. Kilgard

SIGGRAPH ’97 Course
August 4, 1997

Silicon Graphics, Inc.

Abstract

This practical course explains the application development
options for writing portable, high−performance OpenGL programs
for both the X Window System and Microsoft’s Windows 95 and
NT. Instead of focusing on rendering images with OpenGL, this
course focus on how OpenGL integrates with your native window
system. The course emphasizes Windows programming and
Motif−based approaches to writing real OpenGL applications.
Techniques for ensuring portability between different platforms
will be highlighted. The class also introduces high−level toolkits
and alternative OpenGL interfaces. Advanced topics like stereo,
effective debugging, and exotic input devices are covered.

Brian Paul
Avid Technology

Nate Robins
SGI, University of Utah,
Parametric Technology

2

OpenGL is a registered trademark of Silicon Graphics, Inc.
X Window System is a registered trademark of X
Consortium, Inc. Motif is a trademark of Open Software
Foundation, Inc. Spaceball is registered trademark of
Spatial Systems, Inc.

Copyright c 1994, 1995, 1996, 1997
Mark J. Kilgard, Brian Paul, Nate Robins.
All rights reserved.

3

Table of Contents

Abstract 1
Speaker background 5
Course notes

Brian’s course notes (Portability, etc.) 7
Mark’s course notes (X & Motif issues) 27
Nate’s course notes (Win32 issues) 63

Topic Discussion
comparison of OpenGL window system interfaces 75
OpenGL application design and organization 85
using OpenGL extensions 89
GLX portability 101
OpenGL ‘‘gotchas’’ 109
OpenGL hardcopy 113
OpenGL language bindings 117
The Mesa 3−D graphics library (a white paper) 121
OpenGL/Mesa off−screen rendering 133
OpenGL performance optimization 141
OpenGL portability 157
Togl − a Tk OpenGL widget 161
OpenGL toolkit choices 169
TR − OpenGL tile rendering library 179
graphics library transitions 187

Articles
Use OpenGL with Xlib 191
Integrating OpenGL with Motif 210

Specification
OpenGL Graphics with the X Window System

(Version 1.1), a.k.a. ‘‘the GLX spec’’ 223
Win32 Tutorials

Win32: a simple example 241
Processing messages 247
Pixel formats and palettes 255
Overlays and underlays 268
WGL Reference 272

4

5

The Speakers

Mark J. Kilgard

o Member of the Technical Staff, Silicon Graphics,
Inc.

o Author of Programming OpenGL for the X Window
System.

o Directly involved in the design and implementation
of SGI’s window system support for OpenGL.

o Implemented OpenGL Utility Toolkit (GLUT).
o Karaoke rendition of Dolly Parton’s ‘‘9 to 5’’

can’t be beat.

Address: Silicon Graphics, Inc., Mail Stop 8U−590, 2011
N. Shoreline Blvd., Moutain View, CA 94043−1389.
Email: mjk@sgi.com Phone: 415−390−2028 Fax:
415−965−2658.

Brian Paul

o Graphics software engineer at Avid Technology.
o Author of Mesa − free implementation of the

OpenGL API.
o Formerly: developer of scientific visualization

software at University of Wisconsin − Madison.

Address: Avid Technology, 6400 Enterprise Lane −
Suite 201, Madison, WI 53719.
Email: brianp@sgi.com Phone: 608−228−2014 Fax:
608−273−9198

6

The Speakers (cont’d)

Nate Robins

o Worked for Evans & Sutherland in the Graphics
Systems Group.

o Ported the OpenGL Utility Toolkit (GLUT) to
Windows 95 & NT.

o Worked for Parametric Technology porting
Pro/3DPAINT to Windows NT.

o Currently an Intern at SGI.

OpenGL & Window System Integration

Mark J. Kilgard

SIGGRAPH ’97 Cours e
August 4, 1997

Silicon Graphics, Inc.

‘‘Most portable 3D, fastest 3D.’ ’

Brian Pau l Avid Technology

Nate Robins SGI, University of Utah,
Parametric Technology

Brian Paul

Graphics software engineer at Avid
Technology

Author of Mesa − free implementation of the
OpenGL API

Formerly: developer of scientific visualization
software at University of Wisconsin − Madison

My background:

Topics:

OpenGL Development Choices

Portability and Interoperability

Off−screen Rendering

CC
CC
CC
CC
CC
CC

OpenGL Development Choices

Overview

Programming Languages

Low−level OpenGL interfaces

High−level OpenGL toolkits

Mesa

CCC
CCC
CCC
CCC
CCC
CCC

7

Development Choices: Overview

Choices:
Programming language
OpenGL integration method
User interface toolkit

Issues:
Commercial vs. free software
Importance of cross−platform portability
Complexity of the application

Programming Languages

OpenGL API is defined by the C
bindings.

C++ bindings identical to those for C.

Fortran bindings are common but
inconsistent (identifier prefixes,
identifier length restrictions).

Ada, Modula−3, Tcl, Java and other
bindings or wrappers are available.

OpenGL Integration Method

Low−level interfaces (GLX, WGL, etc):

Advantages:
Provides access to all features (stereo,

multisampling)
Standardized (i.e. GLX is used on all X/OpenGL

systems)

Disadvantages:
Doesn’t provide GUI elements
Too many details, easy to make mistakes

Requires considerable window system
programming knowledge

OpenGL Integration Method (2)

High−level interfaces (Motif, Tcl/Tk, etc):

Built on top of the low−level interfaces

Advantages:
Hides implementation details
Clean integration with other GUI elements
May be more portable

Disadvantages:
May not offer access to low−level features
May not be available for your GUI of choice

8

Example high−level interfaces

Xt/Motif
GLUT
Tcl/Tk
XForms
Open Inventor
OpenGL++
Others

Xt/Motif

Motif is a popular widget set built on Xt, the X
toolkit library.

The GLwMDrawingArea widget provides a
canvas into which OpenGL can render.

 Motif advantages:
 Standardized
 Full featured

 Motif disadvantages:
 Large, complicated
 Not free

GLUT

GLUT is a free, portable toolkit which provides
functions for creating windows, pop−up
menus, event handling, simple geometric
primitives and more.

 GLUT advantages:
 Free
 Very simple (like the OpenGL API)
 Good for demos and small applications

 GLUT disadvantages:
 Doesn’t provide all the GUI elements needed

for real applications (buttons, scrollbars etc).

Tcl/Tk

Tcl is an interpreted scripting language. Tk is a
GUI toolkit for Tcl. A number of Tk widgets are
available for OpenGL rendering.

 Tcl/Tk advantages:
 Free
 Simple yet powerful
 Good for any size application
 Now available for X, Windows, Macintosh

 Tcl/Tk disadvantages:
 Interpreted; may not be fast enough in
 really demanding applications.
 OpenGL integration not standardized.

9

Tcl/Tk Example Tcl/Tk Usage

Two approaches:

Use Tcl wrappers for OpenGL to
write an application entirely
with Tcl/Tk (Tiger).

Create and manage GUI and
OpenGL canvas with Tcl/Tk but
render into with with C code.
(Togl)

Example: Togl (1)

The Togl widget lets one create an OpenGL
canvas in Tcl:
 togl.my_widget −width 320 −height 200

−rgba true −double true −depth true
 pack .my_widget

Register C callback functions for widget
creation, rendering, and resizing:
 Togl_CreateFunc(create_cb);
 Togl_DisplayFunc(display_cb);
 Togl_ReshapeFunc(reshape_cb);

Example: Togl (2)

C create callback function:

void create_cb(struct Togl *widget)
{

glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
/* load 3−D model */
/* make display lists */
/* etc. */

}

1
0

Example: Togl (3)

C rendering callback function:

void display_cb(struct Togl *widget)
{

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

/* draw something */

Togl_SwapBuffers(widget);
}

Example: Togl (4)

C reshape callback function:

void reshape_cb(struct Togl *widget)
{

int width = Togl_Width(widget);
int height = Togl_Height(widget);

glViewport(0, 0, width, height);
// setup projection matrix with
// glFrustum or glOrtho, etc.

}

Example: Togl (5)

One may also define new commands
implemented in C, callable from Tcl, to
implement user−interface callbacks:

int reset_view_cb(struct Togl *widget,
 int argc, char *argv[])
{

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Togl_PostRedisplay(widget);
return TCL_OK;

}

Togl_CreateCommand("ResetView",reset_view_cb);

Example: Togl (6)

Invoke the new command from Tcl with:

.my_widget ResetView

The main use of this feature is to send
"messages" to the C program from Tcl in
response to user input.

The command may simply modify a C variable
or invoke an arbitrary computation.

1
1

Example: Togl (7)

Putting it all together:
int main(int argc, char *argv[])
{

Tk_main(argc, argv, my_init);
return 0;

}

int my_init(Tcl_Interp *interp)
{

Tcl_Init(interp);
 Tk_Init(interp);
 Togl_Init(interp);

Togl_CreateFunc(create_cb);
Togl_DisplayFunc(display_cb);
Togl_ReshapeFunc(reshape_cb);
Togl_CreateCommand("ResetView", reset_view_cb);
return TCL_OK;

}

Tcl/Tk Summary

The approach of using Tcl/Tk for GUI
construction and management while using
C for computation and rendering is quite
powerful:

 The GUI may be changed without
 recompiling

 The C components allow efficient
 3−D rendering.

XForms

XForms is a free GUI toolkit built on top of X.
Based on the original IRIS GL−based FORMS
library. XForms includes a rudimentary
OpenGL canvas widget.

 XForms advantages:
 Free
 Simple

 XForms disadvantages:
 Not as powerful as Motif or Tcl/Tk.
 OpenGL support is minimal.

Open Inventor

Open Inventor is a high−level 3−D graphics
toolkit built on OpenGL. It includes functions
for creating 3−D windows and methods for
accessing the underlying window system.

 Open Inventor advantages:
 Higher−level 3−D environment
 Powerful cene graph
 Direct manipulation/interaction support
 Available for many systems

 Open Inventor disadvantages:
 Not free (but a free work−alike is coming)
 Still need a GUI toolkit for for real apps

1
2

OpenGL++

Proposed toolkit for OpenGL which offers
higher−level organizational and rendering
support.

Still in planning stages at this time.

Should be widely adopted by OpenGL licensees.

Other high−level OpenGL toolkits

 Commercial toolkits: IRIS Performer for visual
simulation. ImageVision for image processing.

 There are Python bindings for OpenGL, Tk, and
GLUT.

 An unofficial set of OpenGL bindings for Java are
available from the University of Waterloo.

 MET++ is a C++ multi−media application
framework for Unix/X which includes OpenGL
support.

 Tiger : Tcl wrappers for OpenGL API so a 3−D
application may be written with just a Tcl script.

Mesa

Mesa is a free 3−D graphics library which uses
the OpenGL API and semantics.

Expands the range of systems which support
OpenGL development and execution: old
workstations, X terminals, PCs, etc.

Not 100% equivalent to OpenGL. A few
features are not implemented yet.

Not as fast as commercial OpenGL
implementations, but still quite usable.

Hardware support is under development.

Mesa (2)

Drivers available for X Window System,
Microsoft Windows 95/NT, Macintosh,
Amiga, NextStep, BeBox, others...

With X, supports rendering on almost any X
server, even monochrome.

Implements OpenGL 1.1 API and several
extensions.

Source code is free. Users have tuned it to
improve their application’s performance.

1
3

Next topic:

OpenGL Development Choices

Portability and Interoperability

Off−screen Rendering

CC
CC
CC
CC
CC
CC

Portability and Interoperability

Overview

Source code

OpenGL details

Using extensions correctly

GLX/X11 interoperability

Source code

Modular source code:

Window system, widget toolkit and OpenGL
interface (GLX, WGL) code.

OpenGL graphics code.

OS−specific code.

Core data structures, number crunching,
event callbacks.

Source code

Clean code:

Follow standards (POSIX, use STL?)

Write clean module interfaces. Callbacks
very helpful.

Develop and test on multiple platforms.

Use OpenGL extensions correctly.

1
4

OpenGL details

Despite OpenGL’s clean design, well−defined
specification and lack of subsetting,
developers must be aware of possible gotchas:

Optional features

Implementation limits

Versions and extensions

OpenGL details (2)

Optional features

Frame buffer alpha planes

Overlay/underlay planes

Aux buffers

Singel/double buffering

OpenGL details (3)

Implementation Limits:

OpenGL spec calls for minimum
requirements in many areas.
Can’t assume that an arbitrary
OpenGL implementation will
offer more.

OpenGL details (4)

Example Limits:

Stacks (Modelview: 32, Projection: 2,
Texture: 2, Attribute: 16)

Textures may be limited to 64x64

Max viewport may equal screen size

Stencil buffer may be one bit deep

Max curve control points may be 8

Pixel map size may be only 32 entries

1
5

Using OpenGL extensions

Naming conventions

Compile−time testing

Run−time testing

OpenGL version 1.1

Microsoft OpenGL extensions

Extension naming conventions (1)

Core extensions have names of the form:
 GL_type_name. (GLX: GLX_type_name)

type may be EXT, SGI, SGIX, SGIS, IBM,
DEC, MESA, etc.

name is a lowercase character string

Examples:
 GL_EXT_polygon_offset
 GL_SGIS_detail_texture

Extension naming conventions (2)

Extensions may add new constants
and/or functions.

Constants and functions are suffixed with
the extension type.

Examples:
GL_FUNC_ADD_EXT
GL_MIN_EXT, GL_MAX_EXT
GL_DETAIL_TEXTURE_2D_SGIS
glBlendEquationEXT()
glPolygonOffsetEXT()

Compile−time extension testing

The header file will define a preprocessor
symbol with name of the extension:

 #define GL_EXT_polygon_offset 1

Surround code which uses the extension
with preprocessor conditionals:

 #ifdef GL_EXT_polygon_offset
 glPolygonOffsetEXT(a, b);
 #endif

1
6

Run−time extension testing

The glGetString(GL_EXTENSIONS)
function returns a list of extensions
supported by the renderer.

Must be called after a rendering
context has been made current.

Be wary of using strstr() for searching
the extension list string!

Extension fall−back scenerios

Disable: If the GL_SGIS_multisample
extension is not available, disable
antialiasing.

Work−around: If the GL_EXT_vertex_array
extension isn’t available use ordinary
glVertex*() calls.

Abort: If your volume visualization program
depends on the GL_EXT_texture_3D
extension you may have no choice but to
abort. A last resort and discouraged!

Extension example: vertex arrays

Determine if extension is available:

GLboolean HaveVertexArray = GL_FALSE;

/* MakeCurrent() must have already been called! */
#ifdef GL_EXT_vertex_array
 char *extensions = glGetString(GL_EXTENSIONS);
 if (strstr(extensions,"GL_EXT_vertex_array")) {
 HaveVertexArray = GL_TRUE;
 }
#endif

Note: See course notes for the
CheckExtension() function to use instead
of strstr().

Extension example: vertex arrays (2)

void DrawTriangleStrip(const GLfloat v[][3], GLuint n)
{
 if (HaveVertexArray) {
#ifdef GL_EXT_vertex_array
 glVertexPointerEXT(3, GL_FLOAT, 0, n, v);
 glDrawArraysEXT(GL_TRIANGLE_STRIP, 0, n);
#endif
 }
 else {
 int i;
 glBegin(GL_TRIANGLE_STRIP);
 for (i=0;i<n;i++)
 glVertex3fv(v[i]);
 glEnd();
 }

}

1
7

Extensions and OpenGL 1.1

A number of extensions from OpenGL
1.0 are now standard features of
OpenGL 1.1.

Problem: How to accommodate 1.0,
extensions, and OpenGL 1.1

Example: the 1.0 extension function
glBindTextureEXT() is called
glBindTexture() in OpenGL 1.1.

Extensions and OpenGL 1.1 (2)

At compile time, also look for
GL_VERSION_1_1 preprocessor symbol:

if (HaveTextureObjects) {

#if defined(GL_VERSION_1_1)

 glBindTexture(GL_TEXTURE_2D, t);

#elif defined(GL_EXT_texture_object)

 glBindTextureEXT(GL_TEXTURE_2D, t);

#endif

}

else {

 // fall−back code
}

Extensions and OpenGL 1.1 (3)

At runtime, call glGetString(GL_VERSION)
to determine if renderer supports OpenGL
1.1:

GLboolean HaveTextureObjects = GL_FALSE;

GLubyte *version =glGetString(GL_VERSION);

if (strncmp((char*)version,"1.1",3)==0) {

 HaveTextureObjects = GL_TRUE;

}

Extensions and OpenGL 1.1 (4)

Dealing with extensions and OpenGL 1.1
can be messy.

Best approach is probably to abstract the
use of extensions or 1.1 features into
functions which can hide the ugliness from
your main code.

In other cases, the C preprocessor can be
useful for resolving naming differences.

See course notes for details.

1
8

Microsoft OpenGL extensions

Unfortunately, Microsoft OpenGL and SGI
Cosmo OpenGL extensions are even more
complicated.

An extension function can’t be called
directly as it may not exist in the OpenGL
DLL.

Instead, call function via pointer returned
by wglGetProcAddress().

Microsoft OpenGL extensions (2)

Example:

#if defined(WIN32) && defined(GL_WIN_swap_hint)

 if (CheckExtension("GL_WIN_swap_hint")) {

 // The following type is found in the GL/gl.h file:

 PFNGLADDSWAPHINTRECTWINPROC glAddSwapHintRectWIN;

 // Get pointer to function.

 glAddSwapHintRectWIN = (PFNGLADDSWAPHINTRECTWINPROC)

 wglGetProcAddress("glAddSwapHintRectWIN");

 // Call the function

 if (glAddSwapHintRectWIN) {

 (*glAddSwapHintRectWIN)(x, y, width, height);

 }

 }

#endif

GLX and GLU extensions and versions

The GLX and GLU libraries can also have
extensions. Several versions of these
libraries exist.

Do compile and run−time extension and
version testing similar to core OpenGL.

See course notes for details.

GLX/X11 interoperability

GLX extends the X protocol to allow remote
OpenGL rendering in a network.

In principle, nothing special must be
done in a GLX application to support
this.

In practice, there are a number of
issues to be aware of to be sure the
application is robust and
well−behaved.

1
9

GLX/X11 interoperability (2)

Issues involved:

GLX Visuals (Mesa compatibility)

Colormaps

Double/single buffering

Alpha planes

GLX Visuals (and Mesa)

Typically, glXChooseVisual() is used to
select a GLX visual.

GLX spec says:
Color index mode − return PseudoColor or

StaticColor visual

RGB mode − return TrueColor or
DirectColor visual

Mesa:
RGB mode − may return any visual type.

Be prepared for that.

Colormaps

Different colormap strategies for RGB
vs color index mode.

RGB mode − usually never alter the
colormap entries

CI mode − may or may not need to alter
colormap entries

In either case, want to avoid colormap
flashing by sharing colormaps.

Colormaps (2)

Colormap flashing occurs when color
demands exceed the hardware capabilities.

Common problem on low−end systems
with only one hardware colormap.

Colormaps my be shared by windows using
same visual type and depth.

Use default/root colormap when possible.

2
0

Colormaps (3)

For RGB mode:

If OpenGL visual matches root visual then
Use root colormap. Mesa will manage to
allocate all the colors it needs.

Otherwise, look for a standard RGB colormap
with XGetRGBColormaps().

Last resort: Create new colormap with
XCreateColormap(..., AllocNone)

Colormaps (4)

For Color Index mode:

Do you need to be able to store particular
colors in particular colormap cells (lighting,
fog, colormap animation)?

If yes, you need a private, writable
colormap.

Otherwise, share an existing colormap and
let X allocate colors or color cells for
you.

Colormaps (5)

IF you need a private colormap THEN
call XCreateColormap(..., AllocAll)
set colormap entries with XStoreColor().

ELSE
IF GLX visual matches root/default visual THEN

use root colormap
ELSE

XCreateColormap(.., AllocNone).
ENDIF
allocate read/write cells with XAllocColorCells()
store colors into cells with XStoreColor()
allocate read−only cells with XAllocColor()
free colors or color cells with XFreeColors()

ENDIF

Colormaps (6)

Two more X colormap tips:

If XAllocColor() fails, get a copy of the
colormap with XQueryColors() and
search for closest match. See Mesa
code for example.

If your top−level window contains
children with non−default colormaps
inform the window manager with a call
to XSetWMColormapWindows().

2
1

GLX single / double buffering

Be aware that GLX doesn’t require the
presence of both single and double buffered
visuals.

GLX may offer only single buffered visuals or
only double buffered visuals.

Write your glXChooseVisual() code with this in
mind.

Single buffering can be easily simulated with a
double buffered visual by calling
glDrawBuffer(GL_FRONT).

Mesa/X11 double buffering

When using double buffering, Mesa can use
either an X Pixmap or XImage as its back
buffer.

Use the MESA_BACK_BUFFER environment
variable to determine which performs better
with your application. This is especially
important when remotely rendering.

GLX/X11 Alpha buffers

Alpha (transparency) planes must be
explicitly requested.

If alpha planes are not supported in the
hardware frame buffer they may be
implemented in software −> slow.

Alpha planes not needed for most
transparency and blending effects.

Mesa can simulate alpha planes.

Next topic:

OpenGL Development Choices

Portability and Interoperability

Off−screen Rendering
CC
CC
CC
CC
CC
CC

2
2

Uses for off−screen rendering:

Intermediate image generation

Hardcopy image generation

Tiled rendering

Off−screen Rendering

Many ways to do off−screen rendering:

AUX buffers

OpenGL for Microsoft Windows − device
independent bitmaps

GLX − GLX Pixmaps

Mesa − Off−screen rendering API

SGI Pbuffers

Off−screen Rendering (2)

OpenGL spec defines auxillary (AUX)
buffers.

Request via glXChooseVisual() or
ChoosePixelFormat()

Select with glDrawBuffer() and
glReadBuffer()

Problem: available in few OpenGL
implementations

AUX buffers

Alternatives to AUX buffers:

Windows: device indepedent bitmaps (DIB)
GLX: GLXPixmaps

Create via window system−dependant
functions.

Bind OpenGL context to the buffer just like
a window.

Read back with glReadPixels.

Problem: seldom hardware accelerated

DIBs and GLXPixmaps

2
3

Mesa’s off−screen rendering interface:

No operating system or window system
dependencies. Very portable.

Renders into a color buffer allocated by
the client.

Maximum size may be reconfigured.

Mesa: OSMesa interface

An SGI−only extension (GLX_SGIX_pbuffers)

Auxilliary buffers allocated from frame buffer
memory.

Used in conjunction with the
GLX_SGIX_fbconfig extension.

Hardware accelerated!

Difficult to use.

Dependent on X.

See course notes for example program.

SGI Pbuffers

Often want to generate large, high−resolution
images. For example: hard copy.

Problem: Maximum OpenGL image size
limited by several factors:

Maximum window size.
Maximum off−screen buffer size.
Maximum viewport size (ex: 2k x 2k)

Solution: tiled rendering− break large image
into pieces then assemble pieces.

Tiled Rendering

Difficulties in tiled rendering:

Must carefully setup projection matrix for
each tile to avoid seam/edge artifacts in
final image.

Must manage memory carefully if
generating very large images

glRasterPos and glBitmap are
troublesome.

Tiled Rendering (2)

2
4

TR library makes it easy:
Takes care of projection and viewport

arithmetic.
Can automatically assemble final image

from tiles.
Allows access to intermediate tiles.
trRasterPos() − solves glRasterPos

problem.
Generate arbitrarily large images without

using lots of memory.
Included on course notes CD−ROM with
examples.

Tiled Rendering (3)

2
5

2 6

OpenGL & Window System Integration

Mark J. Kilgard

SIGGRAPH ’97 Cours e
August 4, 1997

Silicon Graphics, Inc.

‘‘Most portable 3D, fastest 3D.’ ’

Brian Pau l Avid Technology

Nate Robins SGI, University of Utah,
Parametric Technology

Mark Kilgard

Author of Programming OpenGL for the X
Window System

Member of Technical Staff at Silicon Graphics.

Directly involved in implementation of SGI’s X
Window System support for OpenGL

Implemented OpenGL Utility Toolkit (GLUT)

My background:

It will help to know one or more of . . .

C programming

Fundamentals of computer graphics

Basics of OpenGL programming

Xlib or Xt/Motif programming

Windows programming

Main Objective (entire course!):

Not learning how to use the OpenGL API and
writing whizzy 3D programs...

But how to properly integrate whizzy 3D
OpenGL programs with the your window
system. Also, being portable & fast.

Often a neglected topics.

2
7

Basic X Topics

CC
CC
CC
CC
CC
CC

OpenGL Integration for X

OpenGL with Motif

GLX Extensions

GLX Integrates X and OpenGL

OpenGL = API for rendering

Window management API left to the
native window system

With X Window System, Xlib and
Xt/Motif = windowing API

Still, X−specific OpenGL ‘‘binding’’ API
between X calls and OpenGL needed

Therefore, GLX.

Role of GLX

OpenGL specification has no mention of the
X Window System. GLX specifies how
OpenGL and X interact.

GLX is the ‘‘glue’’ between OpenGL and X.

X server supports OpenGL if GLX is on its
extension list.

Wgl (pronounced ‘‘wiggle’’) has a similar
role for Windows NT. More on Wgl later.

GLX Functionality

Extension queries.

Visual selection.

OpenGL context management.

Pixmap handling. Buffer swapping.

X font support. Synchronization.

2
8

GLX: API and Protocol

GLX is a programming interface (API).

GLX routines begin with glX like
glXCreateContext

GLX is also an X extension protocol.

Protocol provides inter−vendor
interoperability and network
transparency.

GLX API hides GLX protocol for OpenGL
and GLX calls.

When OpenGL routines are called...

Typical OpenGL routine call:

glEnable(GL_DEPTH_TEST);

Notice no window destination specified.

Also no X display connection specified.

Also no context for OpenGL state.

This information is implicit for each
OpenGL call.

GLX Contexts and Making Current

Programs use glXCreateContext to create
OpenGL rendering context.

Rendering context = instance of an
OpenGL state machine.

Programs use glXMakeCurrent to bind to
context and OpenGL−capable drawable.

Once bound, OpenGL calls render to
current drawable using current context.

Analogy of Rendering Models

OpenGL Rendering Context :: X Graphics Context :: Crayon

GLXDrawable :: Drawable :: Paper

C
rayon

Crayon

Graphics Context

Drawable

OpenGL Rendering
Context

GLXDrawable

2
9

Types of GLXDrawables

On−screen X windows.

Not every window has to be OpenGL
capable though.

Off−screen GLXPixmaps.

A GLXPixmap is an ‘‘enhanced’’ version of a
standard X pixmap.

Different GLXDrawables can have different
frame buffer capabilities.

Choosing frame buffer capabilities

Core X11 protocol uses ‘‘visuals’’ to abstract
methods of mapping pixel values to color
values at various depths.

Example: 24−bit TrueColor window.

OpenGL has frame buffer capabilities not
known by core X.

Example: depth buffer, stencil buffer,
double buffering, stereo

OpenGL overloads X visuals with new info.

Some frame buffer capabilities

OpenGL−capable (all visuals don’t have to be!).

Color index vs. RGBA color model.

Bits of image resolution.

Buffers: stencil, depth, accumulation.

Double buffering.

Frame buffer level (overlays, underlays).

GLX Visual Attributes

Attribute Type Notes

GLX_USE_GL boolean true if OpenGL rendering is supported
GLX_BUFFER_SIZE integer depth of the color buffer
GLX_LEVEL integer frame buffer level: >0=overlay
GLX_RGBA boolean true if in RGB mode
GLX_RED_SIZE integer number of bits of red in RGB mode
GLX_GREEN_SIZE integer number of bits of green in RGB mode
GLX_BLUE_SIZE integer number of bits of blue in RGB mode
GLX_ALPHA_SIZE integer number of bits of alpha in RGB mode
GLX_DOUBLEBUFFER boolean true if front/back color buffers pairs
GLX_STEREO boolean true if left/right color buffers pairs
GLX_DEPTH_SIZE integer number of bits in the depth buffer
GLX_STENCIL_SIZE integer number of bits in the stencil buffer
GLX_AUX_BUFFERS integer number of auxiliary color buffers
GLX_ACCUM_RED_SIZE integer accumulation buffer red component
GLX_ACCUM_GREEN_SIZE integer accumulation buffer green component
GLX_ACCUM_BLUE_SIZE integer accumulation buffer blue component
GLX_ACCUM_ALPHA_SIZE integer accumulation buffer alpha component

(Further discussed when glXChooseVisual and glXGetConfig are
introduced.)

3
0

X visuals advertise configurations

Frame buffer configuration = supported set of
OpenGL frame buffer capabilities.

A given X server supporting OpenGL
enumerates all its frame buffer configurations
via its supported visuals.

When an XCreateWindow is performed with a
given visual, the new window supports the
frame buffer configuration of the its visual.

The configuration (like the visual) is fixed for
the lifetime of the X window.

Important Distinction

Number and types of frame buffer
configurations (and therefore capabilities)
can vary by OpenGL implementation.

Depends on available hardware.

But, all OpenGL rendering capabilities are
mandated for all implementations.

Still, GLX mandates high base−line of
minimum guaranteed frame buffer
configurations.

Frame buffer functionality baseline

Every GLX−capable X server must provide at
least one OpenGL−capable RGBA visual with
at least the following:

stencil buffer at least 1−bit deep
depth buffer at least 12−bits deep
an accumulation buffer

If color index provided, one OpenGL color
index visual must have:

stencil buffer at least 1−bit deep
depth buffer at least 12−bits deep

Example of OpenGL Visuals

VisualID: 25
 depth=2, class=PsuedoColor ,
 bufferSize=2 , level=overlay , rgba=no,
 doubleBuffer=no, stereo=no, auxBuffers=0,
 depthSize=0 bits, stencilSize=0 bits,
 accumulationBuffer=no

VisualID: 23
 depth=4, class=TrueColor ,
 bufferSize=4 , level=normal, rgba=yes (redSize=1,
 greenSize=2, blueSize=1, alphaSize=0),
 doubleBuffer=yes , stereo=no, auxBuffers=0,
 depthSize=32 bits, stencilSize=8 bits,
 accumulationBuffer=yes (redSize=16,
 greenSize=16, blueSize=16, alphaSize=16)

VisualID: 22
 depth=8, class=TrueColor ,
 bufferSize=8 , level=normal, rgba=yes (redSize=1,
 greenSize=2, blueSize=1, alphaSize=0),
 doubleBuffer=no, stereo=no, auxBuffers=0,
 depthSize=32 bits , stencilSize=8 bits ,
 accumulationBuffer=yes (redSize=16,
 greenSize=16, blueSize=16, alphaSize=16)VisualID: 24

 depth=4, class=PsuedoColor ,
 bufferSize=4 , level=normal, rgba=no,
 doubleBuffer=yes , stereo=no, auxBuffers=0,
 depthSize=32 bits , stencilSize=8 bits ,
 accumulationBuffer=no

VisualID: 20
 depth=8, class=PsuedoColor ,
 bufferSize=8 , level=normal, rgba=no,
 doubleBuffer=no, stereo=no, auxBuffers=0,
 depthSize=32 bits , stencilSize=8 bits ,
 accumulationBuffer=no

Indigo Entry workstation (SGI’s lowest end
graphics) exports the following 5 visuals with
these capabilities:

3
1

OpenGL Rending Contexts

OpenGL rendering context = full OpenGL state
machine.

Two options:

Indirect rendering − uses GLX protocol,
inter−operable, network−extensible, always
supported.

Direct rendering − higher local performance,
direct access to hardware, not required.

Direct & Indirect Rendering

OpenGL/GLX

device
dependent

OpenGL renderer

Xlib

Local application

device
dependent

OpenGL renderer

Protocol
dispatch

X renderer

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????
?????????

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

Graphics
Hardware

OpenGL/GLX

Xlib

Remote application

Networked
connection

Local
connection

X server

GLX API Functionality (Part 1)

Extension queries: glXQueryExtension,
glXQueryVersion, glXQueryExtensionsString,
glXGetClientString, glXQueryServerString

Visual selection: glXChooseVisual, glXGetConfig

Context manipulation: glXCreateContext,
glXCopyContext, glXDestroyContext

Context/Drawable binding: glXMakeCurrent

Context queries: glXGetCurrentContext, glXIsDirect

GLX API Functionality (Part 2)

Drawable query: glXGetCurrentDrawable

Buffer swapping: glXSwapBuffers

Display listable X font support: glXUseXFont

Synchronization: glXWaitGL, glXWaitX

GLX can also have API extensions, both standard
and vendor supplied...

3
2

Header files for using OpenGL’s APIs

To get the OpenGL rendering API, use:

#include <GL/gl.h>

To get the OpenGL GLX window system integration
for X API, use:

#include <GL/glx.h>

GLX Extension Queries

Does X server support OpenGL? Example:

Display *dpy;
int error_base, event_base;
if(!glXQueryExtension(dpy, &error_base, &event_base))

fatalError("no OpenGL GLX extension!");

Also, can query version of OpenGL/GLX. Example:

Status status;
int major_vers, minor_vers;
status = glXQueryVersion(dpy, &major_vers, &minor_vers);

GLX 1.0, 1.1, and 1.2 are currently available.

GLX 1.1

OpenGL 1.0 has mechanism to support API
extensions to the basic OpenGL API.

GLX 1.1 adds a similar mechanism to GLX.

str=glXQueryExtension(dpy,screenNum);

GLX 1.1 adds no ‘‘real’’ functionality.

Backward compatible.

GLX 1.2: Most recent

One new call:

dpy = glXGetCurrentDisplay();

Fixes functionality oversight.

Mostly, provides the protocol specification
and associated updates for OpenGL 1.1.

3
3

Visual Selection

glXGetConfig returns an OpenGL configuration for
a specified visual. Example:

XVisualInfo *visual;
int value;

zeroIfSuccess = glXGetConfig(dpy, visual, GLX_USE_GL, &value)
if(value == True)
 printf("Visual 0x%x does GL\n",visual−>visualid);

Examples of other configuration attributes:

GLX_USE_GL True if OpenGL rendering supported
GLX_DEPTH_SIZE Number of bits in the depth buffer

Quick and Dirty Visual Selection

glXChooseVisual is ‘‘quick and dirty’’ visual
selection routine.

Example to find visual that supports double
buffering, uses the RGBA color model, and
has a depth buffer with at least 16 bits:
int configuration[] = { GLX_DOUBLEBUFFER, GLX_RGBA,

GLX_DEPTH_SIZE, 16, None };
XVisualInfo *visual;

visual = glXChooseVisual(dpy, DefaultScreen(dpy),
configuration);

Creating OpenGL Rendering Contexts

Use glXCreateContext to create an OpenGL
rendering context:

GLXContext context;
context = glXCreateContext(dpy,

visual /* defines buffer resources of context */,
NULL /* share context for display lists */,
True /* try to create a direct context */);

Note: contexts can share display lists.

Note: a context’s visual must match the visual
of drawables it can be bound to.

Destroying and Copying Contexts

Use glXDestroyContext to destroy a created
context:
glXDestroyContext(dpy, context);

Contexts are expensive; recycle, don’t
repeatedly create/destroy them.

glXCopyContext allows a context’s OpenGL
state to be copied to another context:
glXCopyContext(dpy, src_ctx, dest_ctx,

/* copy everything */ GL_ALL_ATTRIB_BITS);

3
4

OpenGL rendering to pixmaps

To create a window for rendering OpenGL into,
use Xlib’s standard XCreateWindow routine;
the window’s visual determines the frame
buffer configuration.

But X pixmaps do not have visuals!

OpenGL rendering is pretty limited without the
benefit of ancillary buffers like a depth buffer.

How do you render OpenGL into a pixmap
then?

Handling GLXPixmaps

To render OpenGL into a pixmap, a GLXPixmap
handle is created that ‘‘wraps’’ a pixmap created
by XCreatePixmap. Example:

XVisualInfo *visual;
Pixmap pixmap;
GLXPixmap glxpixmap;

pixmap = XCreatePixmap(dpy, DefaultRootWindow(dpy),
 width, height, depth);
glxpixmap = glXCreateGLXPixmap(dpy, visual, pixmap);

Draw core X rendering to pixmap, draw OpenGL
rendering to glxpixmap.

Wrapping a Pixmap for OpenGL

,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,

pixmap = XCreatePixmap(...)

''''''''''
''''''''''
''''''''''
''''''''''
''''''''''
''''''''''
''''''''''
''''''''''

pixmap

$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$
$$$$$$$$$$$$

'''''''''''
'''''''''''
'''''''''''
'''''''''''
'''''''''''
'''''''''''
'''''''''''
'''''''''''

pixmap

glxpixmap = glXCreateGLXPixmap(dpy, visual, pixmap)

glxpixmap

image buffer

image buffer

OpenGL ancillary
buffers

OpenGL’s ‘‘make current’’ operation

OpenGL rendering commands do not take a
Display* or drawable or context per call.

Instead, the current context and drawable
are used.

glXMakeCurrent establishes the current
context and drawable for the calling thread:

Display *dpy;
Window win;
GLXContext ctx;

glXMakeCurrent(dpy, win, ctx);

3
5

More about glXMakeCurrent

Use glXMakeCurrent whenever you switch
OpenGL rendering to a different context or
drawable.

Don’t call OpenGL API routines unless you
are ‘‘made current.’’

You can unbind from a context and window
by calling:

glXMakeCurrent(dpy, None, NULL);

Notes about GLX Contexts

OpenGL rendering contexts are considered to
‘‘reside’’ in a given address space.

Indirect contexts reside in the X server’s address
space.

Direct contexts reside in the application’s address
space.

Therefore, direct contexts can not be shared by
distinct applications (though indirect contexts
can).

GLX Queries

GLXDrawable glxdrawable;

glxdrawable = glXGetCurrentDrawable();

GLXContext context;

context = glXGetCurrentContext();

Display *display;

display = glXGetCurrentDisplay();

if(glXIsDirect(context))
printf("this context is direct\n");

GLX 1.2

Buffer Swapping

OpenGL supplies its own means to perform a
buffer swap:

Window window;

glXSwapBuffers(dpy, window);

Double buffering gets you seamless window
updates.

3
6

Native X font usage by OpenGL

OpenGL has no native font support.

The GLX API does supply a routine that turns
X fonts into bitmap display lists so OpenGL
and X can draw using the same bitmap fonts:

Font font;
int first; /* first glyph to be used */
int count; /* number of glyphs */
int displayListBase; /* base display list ID */

font = XLoadFont(dpy, "fixed");
glXUseXFont(font, first, count,
 displayListBase);

Synchronizing X & OpenGL rendering

The command streams for X and OpenGL are
considered separate.

There is no guaranteed ordering for the
execution of X request and OpenGL
commands relative to each other.

Two GLX routines allow efficient explicit
synchronization:

glXWaitX();

glXWaitGL();

Putting it all together

Now, we put the OpenGL, GLX, and Xlib APIs together.

A short example that doesn’t always do the smartest thing
but demonstrates the basics...

Start at the beginning, #includes:

#include <stdio.h>
#include <X11/Xlib.h>
#include <GL/gl.h>
#include <GL/glx.h>

Declare attribute lists to use with glXChooseVisual:

static int configuration[] = {GLX_RGBA,
GLX_DEPTH_SIZE, 16, None};

Continuing example

Declare variables:

Display *dpy;
Window win;
GLXContext ctx;
XVisualInfo *visual;
Colormap cmap;
XSetWindowAttributes winattrs;
XEvent event;

Start main:

main(int argc, char **argv)
{

Open X server connection:

dpy = XOpenDisplay(NULL);
if(dpy == NULL) fatalError("bad DISPLAY");

3
7

Continuing example (2)

Find an appropriate visual:

visual = glXChooseVisual(dpy,
DefaultScreen(dpy), configuration);

if(visual == NULL)
fatalError("no visual");

if(visual−>class != TrueColor)
fatalError("expected TrueColor visual");

Create an OpenGL rendering context for visual:

ctx = glXCreateContext(dpy, visual,
NULL, /* go direct if possible */ True);

Impolite colormap strategy, just create one:

cmap = XCreateColormap(dpy, RootWindow(dpy,
visual−>screen), visual−>visual,
AllocNone);

Continuing example (3)

Create the window with the correct visual; be careful,
since it is likely not the default visual:

winattrs.colormap = cmap;
winattrs.border_pixel = 0; /* avoid BadMatch */
winattrs.event_mask = StructureNotifyMask;
win = XCreateWindow(dpy, RootWindow(dpy,

visual−>screen), 0, 0, 300, 300, 0,
visual−>depth, InputOuput, visual−>visual,
CWBorderPixel|CWColormap|CWEventMask,
&winattrs);

Connect the context to the window:

 glXMakeCurrent(dpy, win, cx);

Map the window:

 XMapWindow(dpy, win);

Continuing example (4)

Wait for MapNotify event (assume waitForNotify was
defined before main):

static Bool
waitForNotify(Display *d, XEvent *e, char *arg)
{

return (e−>type == MapNotify) &&
(e−>xmap.window == (Window)arg);

}

Back in main...

XIfEvent(dpy, &event, waitForNotify,
(char*) win);

Continuing example (5)

Draw in the window using OpenGL; clear the window
to red:

glClearColor(1,0,0,1); /* red */
glClear(GL_COLOR_BUFFER_BIT);
glFlush();

Sleep for a bit, then exit.

sleep(10);
exit(0);
}

Greatly simplified, of course. Real application would have
real X event loop and would do colormap selection better,
etc., etc.

3
8

Non−default Visuals

Note that it is likely that the visual you select is
not the default visual.

Be aware of the caveats about creating an X
window with a non−default visual.

When you create a top−level window not using
the default visual, you can not inherit the
colormap. You must specify a colormap created
for your visual.

Also the border pixel value must be specified;
generally just supply 0.

Event handling for OpenGL programs

The GLX extension adds no new events; still
event handling for OpenGL programs has some
caveats:

An Expose event leaves the contents of all
OpenGL ancillary buffers in the damaged region
undefined.

More Event handling for OpenGL

Usually OpenGL programs call glViewport to
reshape the viewport of windows that receive
a ConfigureNotify event indicating the
window has been resized.

Be aware the coordinate system origin for X is
the upper−left corner; the origin for
OpenGL’s coordinate system is lower−left.

Translate button, keyboard, and motion
event locations accordingly.

Basic X Topics

OpenGL Integration with X: GLX (mjk)

OpenGL with Motif

GLX Extensions

CC
CC
CC
CC
CC
CC

3
9

OpenGL with Motif

Programmers typically combine OpenGL
rendering with Motif user interface toolkit.

Specialized OpenGL drawing area widgets make
combining OpenGL and Motif relatively
painless.

Basic split:

User interface written using Motif.

 3D OpenGL rendering done into special
drawing area widgets.

Example of OpenGL and Motif

Motif Options

OpenGL rendering into standard Motif
drawing area widget. Involved.

OpenGL rendering into specialized OpenGL
drawing area widget. Fairly easy.

Using specialized OpenGL widget generally
better option!

(Potential exists for more specialized OpenGL
widgets. Open Inventor widgets are examples
of this.)

Why is a special widget needed?

OpenGL relies on selecting appropriate
visual for determining OpenGL frame buffer
configuration.

The X Toolkit (Xt) on which Motif relies,
allows visual to be specified easily only for
Shell and Shell−derived widgets.

Non−shell widgets inherit visual from parent
widget.

Impossible (without resorting to widget
internals) to set the visual of non−Shell Motif
1.2 widgets!

4
0

The OpenGL Widget(s)

Actually two OpenGL widgets!

GLwMDrawingArea is Motif OpenGL widget.

GLwDrawingArea is vanilla Xt OpenGL
widget (notice lack of M) which can be used
with non−Motif widget sets.

Minor difference is the Motif OpenGL widget
is derived from Motif’s XmPrimitive widget.

FYI: Partial Widget Class Hierarchy
 Core

 Composite XmPrimitive

 Shell

 XmLabel

 GLwMDrawingArea

 GLwDrawingArea Constraint

 XmManager

 XmDrawingArea

 WMShell

 VendorShell

 TopLevelShell

 XmTextField

 XmFrame

Xm prefix = Motif,
GLw prefix = OpenGL, others = X Toolkit

Using an OpenGL widget

The Motif OpenGL widget header:

#include <X11/GLw/GLwMDrawA.h>

The vanilla OpenGL widget header (notice lack
of M):

#include <X11/GLw/GLwDrawA.h>

Excepting obscure XmPrimitive resources, the
two widgets are functionally equivalent.

OpenGL widget software layering

Typical OpenGL widget program software
layering:

Typical library link options (in right order):

−lGLw −lGLU −lGL −lXm −lXt −lXext −lX11 −lm

Xlib

Motif
X
Toolkit

GLX
API

OpenGL
API

Client code

GLwMDrawingArea
widget

4
1

Types of OpenGL widget resources

Visual selection resources: for selecting the
appropriate OpenGL frame buffer
configuration.

Callback resources: for handling graphics
initialization, resizes, exposes, and input.

Colormap management resources: allocation
of background and other colors, colormap
installation.

Visual selection resources

GLwNvisualInfo: allows particular XVisualInfo* to
specify visual. Recommended!

GLwNattribList: contains list of GLX visual attributes to
be passed to glXChooseVisual.

Per−GLX visual attribute resources:

GLwNbufferSize GLwNlevel
GLwNrgba GLwNdoublebuffer
GLwNstereo GLwNauxBuffers
GLwNredSize GLwNgreenSize
GLwNblueSize GLwNalphaSize
GLwNdepthSize GLwNstencilSize
GLwNaccumRedSize GLwNaccumGreenSize
GLwNaccumBlueSize GLwNaccumAlphaSize

Why GLwNvisualInfo recommended

XtCreateWidget has no ability to fail if described
visual can not be found!

The OpenGL widget terminates the program
with a message if described visual not found.

(Limitation of X Toolkit!)

To guarantee described visual exists, call
glXChooseVisual yourself (testing for failure),
and then use GLwNvisualInfo to specify an
explicit visual to use.

Callback resources

GLwNginitCallback: called when widget is first
realized. Good time to do OpenGL
initialization.

GLwNresizeCallback: called when the widget is
resized. Good time to adjust OpenGL viewport,
etc.

GLwNexposeCallback: called when widget
receives expose events. Redraw the scene.

GLwNinputCallback: called in response to user
input.

4
2

OpenGL callback information

The call_data structure passed to each OpenGL
widget callback:

typedef struct {
 int reason;
 XEvent *event;
 Dimension width, height;
} GLwDrawingAreaCallbackStruct;

reason is why callback called: GLwCR_EXPOSE,
GLwCR_RESIZE, GLwCR_INPUT, &
GLwCR_GINIT.

event is X event that triggered callback; NULL
for the ginit and resize callbacks.

Realizing Widgets & the ginit Callback

X Toolkit does not create X window for widget
until widget is realized.

XtWindow(widget) will not return a valid
window ID until window is realized.

Therefore, you can not ‘‘make current’’ to a
widget until realized.

(Note: callbacks for some widgets can be called
before a widget is realized like the resize
callback!)

The GLwNginitCallback helps you know when
to start doing OpenGL state initialization, etc.

Creating GLXContexts for widgets

It is your responsibility to call glXCreateContext
to create OpenGL rendering contexts for use
with widgets you create.

Normally, this can be done before a widget is
actually created since it does not require an X
window, just the XVisualInfo*.

You can also wait to create OpenGL contexts
until your ginit callback is called. Either works.

How you share and use rendering contexts is up
to you.

‘‘Making current’’ for callbacks

The OpenGL widget does not automatically
perform a glXMakeCurrent before the callback.

To make current, call:

 glXMakeCurrent(XtDisplay(widget),
 XtWindow(widget), context);

If there are multiple OpenGL drawing areas,
you should always call glXMakeCurrent before
calling any OpenGL routines within a widget
callback.

4
3

The resize callback

Typically used to change OpenGL viewport and
possibly to update the projection matrix.

Example:

void
resize(Widget w,
 XtPointer data, XtPointer callData)
{
 GLwDrawingAreaCallbackStruct *info =
 (GLwDrawingAreaCallbackStruct*) callData;

 glXMakeCurrent(XtDisplay(w),
 XtWindow(w), context);
 glViewPort(0, 0, info−>width, info−>height);
}

The expose callback

Typically used to redraw the window’s entire
scene.

Example:

void
redraw(Widget w,
 XtPointer data, XtPointer callData)
{
 glXMakeCurrent(XtDisplay(w),
 XtWindow(w), context);

 /* redraw the scene... */

 glXSwapBuffers(XtDisplay(w), XtWindow(w));
}

The input callback

Typically used to handle user input for the
window.

As a programming convenience, by default, the
OpenGL widget sets up the following
translations:

<KeyDown>: glwInput()
<KeyUp>: glwInput()
<BtnDown>: glwInput()
<BtnUp>: glwInput()
<BtnMotion>: glwInput()

glwInput calls the GLwNinputCallback.

Alternate translations can be set up.

Widget colormap allocation

If X colormap is not explicitly provided, OpenGL
widget will attempt to allocate one.

All widget instances share a colormap cache, so
OpenGL widgets for the same visual will get
assigned the same colormap.

Good advice: allocate your own colormap and
explicitly set it instead of letting widget do it for
you. Better control!

4
4

An OpenGL widget example:

glw.c

glw.c demonstrates...

Proper visual selection.

Falling back to single buffering.

Proper colormap allocation.

Using WorkProcs for animation.

Suspending WorkProc animation when
iconified.

OpenGL widget callback registration and
handling.

Handles indirect rendering.

glw.c (1): necessary headers

Necessary headers:

#include <stdlib.h>
#include <stdio.h>
#include <Xm/Form.h> /* Motif Form widget */
#include <Xm/Frame.h> /* Motif Frame widget */
#include <X11/GLw/GLwMDrawA.h> /* Motif OpenGL drawing area */
#include <X11/keysym.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP */
#include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap */
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>

glw.c (2): global variables

static int snglBuf[] = {GLX_RGBA,
 GLX_DEPTH_SIZE, 16, None};
static int dblBuf[] = {GLX_RGBA, GLX_DEPTH_SIZE, 16,
 GLX_DOUBLEBUFFER, None};
static String fallbackResources[] = {
 "*glxarea*width: 300", "*glxarea*height: 300",
 "*frame*x: 20", "*frame*y: 20",
 "*frame*topOffset: 20", "*frame*bottomOffset: 20",
 "*frame*rightOffset: 20", "*frame*leftOffset: 20",
 "*frame*shadowType: SHADOW_IN", NULL
};
Display *dpy;
XtAppContext app;
XtWorkProcId workId = 0;
Widget toplevel, form, frame, glxarea;
XVisualInfo *visinfo;
GLXContext glxcontext;
Colormap cmap;
Bool doubleBuffer = True, spinning = False;

4
5

glw.c (3): initial main

Start of main, before OpenGL widget creation:

void main(int argc, char **argv)
{
 toplevel = XtAppInitialize(&app, "Glw", NULL, 0, &argc, argv,
 fallbackResources, NULL, 0);
 dpy = XtDisplay(toplevel);

 visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), dblBuf);
 if (visinfo == NULL) {
 visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), snglBuf);
 if (visinfo == NULL)
 XtAppError(app, "no good visual");
 doubleBuffer = GL_FALSE;
 }
 XtAddEventHandler(toplevel, StructureNotifyMask,
 False, map_state_changed, NULL);
 form = XmCreateForm(toplevel, "form", NULL, 0);
 XtManageChild(form);

 frame = XmCreateFrame(form, "frame", NULL, 0);
 XtVaSetValues(frame, XmNbottomAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM, XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM, NULL);
 XtManageChild(frame);

glw.c (4): iconification & animation

Notice main’s XtAddEventHandler call.

An Xt WorkProc is used to control animation. Be
sure to install and uninstall it on unmapping and
unmapping of toplevel widget. Otherwise, useless
rendering to unmapped window wastes CPU:

void map_state_changed(Widget w, XtPointer clientData,
 XEvent * event, Boolean * cont)
{
 switch (event−>type) {
 case MapNotify:
 if (spinning && workId != 0)
 workId = XtAppAddWorkProc(app, spin, NULL);
 break;
 case UnmapNotify:
 if (spinning)
 XtRemoveWorkProc(workId);
 break;
 }
}

glw.c (5): OpenGL widget creation

Create your own colormap using the ICCCM
colormap allocation conventions by calling Xt
version of getShareableColormap.

Create glwMDrawingArea widget and add
callbacks.

 cmap = getShareableColormap(visinfo);
 glxarea = XtVaCreateManagedWidget("glxarea",
 glwMDrawingAreaWidgetClass, frame,
 GLwNvisualInfo, visinfo, XtNcolormap, cmap, NULL);
 XtAddCallback(glxarea, GLwNginitCallback, init_callback, NULL);
 XtAddCallback(glxarea, GLwNexposeCallback, expose_callback, NULL);
 XtAddCallback(glxarea, GLwNresizeCallback, resize_callback, NULL);
 XtAddCallback(glxarea, GLwNinputCallback, input_callback, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

glw’s Widget Instance Hierarchy

 glw
 (Glw)

form
 (XmForm)

frame
 (XmFrame)

glxarea
 (glwMDrawingArea)

4
6

glw.c (6): colormap allocation

Try to get a shared colormap:

Colormap getShareableColormap(XVisualInfo * vi) {
 XStandardColormap *standardCmaps;
 Colormap cmap; Status status; int i, numCmaps;

 /* be lazy; using DirectColor too involved for this example */
 if (vi−>class != TrueColor)
 XtAppError(app, "no support for non−TrueColor visual");
 /* if no standard colormap but TrueColor, just make an unshared one */
 status = XmuLookupStandardColormap(dpy, vi−>screen, vi−>visualid,
 vi−>depth, XA_RGB_DEFAULT_MAP, /* replace */ False, /* retain */ True);
 if (status == 1) {
 status = XGetRGBColormaps(dpy, RootWindow(dpy, vi−>screen),
 &standardCmaps, &numCmaps, XA_RGB_DEFAULT_MAP);
 if (status == 1)
 for (i = 0; i < numCmaps; i++)
 if (standardCmaps[i].visualid == vi−>visualid) {
 cmap = standardCmaps[i].colormap;
 XFree(standardCmaps);
 return cmap;
 }
 }
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi−>screen), vi−>visual, AllocNone);
 return cmap;
}

glw.c (7): ginit callback

Graphics initialization callback creates OpenGL
context, binds context to widget’s window, and
initializes OpenGL state:

void
init_callback(Widget w, XtPointer client_data, XtPointer call)
{
 XVisualInfo *visinfo;

 XtVaGetValues(w, GLwNvisualInfo, &visinfo, NULL);
 glxcontext = glXCreateContext(XtDisplay(w), visinfo,
 /* no sharing */ 0, /* direct if possible */ GL_TRUE);
 glXMakeCurrent(XtDisplay(w), XtWindow(w), glxcontext);
 /* setup OpenGL state */
 glEnable(GL_DEPTH_TEST);
 glClearDepth(1.0);
 glClearColor(0.0, 0.0, 0.0, 0.0); /* clear to black */
 glMatrixMode(GL_PROJECTION);
 gluPerspective(40.0, 1.0, 10.0, 200.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.0, 0.0, −50.0);
 glRotatef(−58.0, 0.0, 1.0, 0.0);
}

glw.c (8): resize callback

Resize callback updates OpenGL context’s viewport
to reflect new window size:

void
resize_callback(Widget w,
 XtPointer client_data, XtPointer call)
{
 GLwDrawingAreaCallbackStruct *call_data;
 call_data = (GLwDrawingAreaCallbackStruct *) call;

 glViewport(0, 0, call_data−>width, call_data−>height);
}

glw.c (9): expose callback

Expose callback redraws the OpenGL widget’s
window by calling the draw routine:

void
expose_callback(Widget w,
 XtPointer client_data, XtPointer call)
{
 draw();
}

Note: the common draw routine is also used
when a redraw is generated by animation.

Two possible redraw reasons in glw:
 1) expose events.
 2) animation.

4
7

glw.c (10): draw routine

Draw routine renders OpenGL scene.
void
draw(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glBegin(GL_POLYGON);
 glColor3f(0.0, 0.0, 0.0); glVertex3f(−10.0, −10.0, 0.0);
 glColor3f(0.7, 0.7, 0.7); glVertex3f(10.0, −10.0, 0.0);
 glColor3f(1.0, 1.0, 1.0); glVertex3f(−10.0, 10.0, 0.0);
 glEnd();
 glBegin(GL_POLYGON);
 glColor3f(1.0, 1.0, 0.0); glVertex3f(0.0, −10.0, −10.0);
 glColor3f(0.0, 1.0, 0.7); glVertex3f(0.0, −10.0, 10.0);
 glColor3f(0.0, 0.0, 1.0); glVertex3f(0.0, 5.0, −10.0);
 glEnd();
 glBegin(GL_POLYGON);
 glColor3f(1.0, 1.0, 0.0); glVertex3f(−10.0, 6.0, 4.0);
 glColor3f(1.0, 0.0, 1.0); glVertex3f(−10.0, 3.0, 4.0);
 glColor3f(0.0, 0.0, 1.0); glVertex3f(4.0, −9.0, −10.0);
 glColor3f(1.0, 0.0, 1.0); glVertex3f(4.0, −6.0, −10.0);
 glEnd();
 if (doubleBuffer) glXSwapBuffers(dpy, XtWindow(glxarea));
 if (!glXIsDirect(dpy, glxcontext))
 glFinish(); /* avoid indirect rendering latency from queuing */
}

glw.c (11): input callback

Input callback starts and stops animation on key press:
void input_callback(Widget w, XtPointer clientData, XtPointer callData)
{
 XmDrawingAreaCallbackStruct *cd = (XmDrawingAreaCallbackStruct *) callData;
 char buffer[1]; KeySym keysym;

 switch (cd−>event−>type) {
 case KeyRelease:
 if(XLookupString((XKeyEvent *) cd−>event, buffer, 1, &keysym, NULL) > 0) {
 switch (keysym) {
 case XK_S: XK_s: /* the S key */
 if (spinning) {
 XtRemoveWorkProc(workId);
 spinning = GL_FALSE;
 } else {
 workId = XtAppAddWorkProc(app, spin, NULL);
 spinning = GL_TRUE;
 }
 break;
 case XK_Escape: /* the Escape key exists */
 exit(0);
 } }
 break;
} }

glw.c (12): spin WorkProc

Spin routine is registered as an Xt WorkProc to keep
the scene spinning. Do rotate, redraw scene, keep
WorkProc registered:

Boolean
spin(XtPointer clientData)
{
 glRotatef(2.5, 1.0, 0.0, 0.0);
 draw();
 return False; /* leave work proc active */
}

Basic X Topics

OpenGL Integration with X: GLX (mjk)

OpenGL with Motif

GLX Extensions
CCC
CCC
CCC
CCC
CCC
CCC

4
8

GLX Extensions

Adds window system dependent
functionality.

Typically deal with new context
handling or video capabilities or
frame buffer capabilities.

Capability for GLX extensions added
with GLX 1.1.

Pbuffer extension (SGIX)

Pbuffer = pixel buffer; new off−screen
hardware accelerated drawable type.

Brian talks about using these.

A bit difficult to use.

Often pbuffers are limited by hardware
frame buffer memory limits.

Available on RealityEngine, InfiniteReality,
O2, Impact and Octane. Probably other
vendors will support too.

FBconfig extension (SGIX)

FBconfig = frame buffer configuration.

FBconfigs are more general than X visuals.

FBconfigs work for new non−window
drawables like pbuffers.

FBconfigs relax compatibility requires.

FBconfigs permit off−screen drawable better
than displayable window types.

Likely for GLX 1.3.

Make Current Read extension (SGI)

Normally, glCopyPixels copies from rectangle
in current window to rectangle in the same
window (source & destination drawable).

glXMakeCurrentReadSGI allows a different
source & destination drawable.

Enables:

Window to window copies.

Pbuffer to window copies.

GLXPixmap to window copies, etc.

4
9

Import Context extension (EXT)

Lets you share an indirect rendering context
between multiple X connections.

Limited usefulness.

Easy to implement because of how GLX
protocol works so easy for X vendors to
support.

See: glXImportContextEXT

Visual Info extension (EXT)

Adds more frame buffer attributes.

Permits matching on overlay transparency
mode.

Better control of X visual type selected.

Visual Rating extension (EXT)

Adds one more frame buffer attributes.

Indicates if an X visual or FBconfig has an
caveats:

 None,

 Non−conformant, or

 Slow.

Allows vendors to expose slow or
non−compliant visuals and FBconfigs without
confusing programs that probably don’t want
caveated visuals.

Multisample extension (SGIS)

Supports multisample antialiasing mode.

Expensive; probably only available on
high−end machines such as InfiniteReality
and RealityEngine.

No brainer way to eliminate (reduce) jaggies
in your scenes. Greatly improves visual
quality, particularly for animated scenes.

New frame buffer attribute added.

5
0

More Advanced Topics

CCC
CCC
CCC
CCC
CCC

Advanced Topics: overlays, stereo, etc.

Performance, Performance! (not just X)

A Few Advanced Topics

Double Buffering

Stereo

Font Support

Overlays

OpenGL over a network

Mixing 2D rendering with OpenGL

Alternative Input Devices

Double Buffering

OpenGL supports hardware double buffering.
Call glXSwapBuffers.

Visuals can be either exported as single or
double buffered.

The buffer naming scheme for OpenGL is
‘‘relative’’ scheme meaning buffers are
referred to as front and back.

glDrawBuffer determines what buffer gets
drawn to.

Double Buffering in Action (2)

glXSwapBuffers(...)

Draw(40 degree)

OpenGL
application

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

OpenGL
application

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

displayed

rendering to

&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&
&&&&&&&&&&&&&

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

rotate

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

rotate

rendering to

displayed

rotate

rotate

rotate

frame buffer A

frame buffer A

buffer buffer B

rotate

5
1

Double Buffering in Action (1)

glXSwapBuffers(...)

Draw(40 degrees)

OpenGL
application

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

Displayed screen

displayed

rendering to

frame buffer A

buffer buffer B

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

rotate

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

OpenGL
application

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

displayed

rendering to

&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

rotate

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

rotate

frame buffer A

buffer buffer B

Hardware Double Buffering

Per−pixel frame
buffer information

Buffer A

Buffer B

Single Buffer

5

Ancillary buffer
data: depth buffer, etc.

Display ID

5

31

DblBuffer: A
ColorIndex

Display ID table
0

Scanned out
to video controller

Changing display ID
table entry, changes
which buffer is displayed!

Double buffer hardware usually splits the image data bits
in a frame buffer into 2 buffers.

Each pixel is usually assigned a display ID which indicates
if the pixel is double buffered, and if so which buffer is
currently displayed.

Hardware Double Buffering (2)

For display ID style double buffer hardware, a
buffer swap involves flipping the display buffer
bit in the display ID table entry for the window.

Normally this is synchronized with the vertical
retrace to avoid any tearing artifacts.

Sophisticated graphics systems also block the
buffer swap initiator’s further rendering to
ensure no more rendering takes place until the
swap has completed.

OpenGL Stereo

Stereo support built into OpenGL standard.

Model: ‘‘stereo in a window’’

Stereo window gets left & right color buffers.

glDrawBuffer and glReadBuffer can choose
left and/or right buffers.

Almost always needs to be double buffered so
left & right for front & back.

4 buffers, so called ‘‘quad buffering’’.

Unfortunately, expensive style of stereo.

5
2

Quad buffered Stereo

Video display hardware switches between
displaying left & right buffers, typically 120 Hz
refresh rate. LCD shutter goggles show left or
right based on stereo emitter signal.

Left
Back

Left
Front

Right
Back

Right
Front

Stereo OpenGL app renders scene twice from
slightly different eye points.

Actually Using OpenGL Stereo

Render left eye, then right eye. Slight
different eye points for stereo effect.

One shared depth buffer. Left and right
renders must be done serially.

glXSwapBuffers swaps both left and right
buffers.

Nice, clean stereo model, but takes up twice
the color buffer memory as a mono window.

Cheaper OpenGL Stereo

Split from buffer into top & bottom half.

Top half is left; bottom half is right.

Special video format ‘‘streches’’ screen halves
to fill entire screen (1x2 pixel aspect ratio).

120 Hertz video refresh.

Requires switching between two windows in
top & bottom half of the screen.

SGI has proprietary X server extension for this
(does split screen stereo; X nicely draws into
both top and bottom of frame buffer).

Cheaper OpenGL Stereo Scheme

top (left)

bottom (right)

left (top)

right (bottom)

Screen split to make stereo; actual
stereo visuals have stretched pixels.

5
3

Font Support

glXUseXFont makes X fonts into an array of
OpenGL bitmap display lists.

These display lists can be called using
glCallLists (and glListBase) to print out strings
of text.

Therefore, all available X fonts are available to
OpenGL.

Of course, X fonts are fairly limited since they
are simply bitmaps in a single orientation, ie.
limited utility within 3D scenes.

Using glXUseXFont generated fonts

glXUseXFont makes X fonts into an array of
OpenGL bitmap display lists.

Font xfont;
GLuint font_base;

xfont = XLoadFont(dpy, "fixed");
if(xfont == NULL) fatalError("font not found.");
base = glGenLists(128 /* 7−bit ASCII range */);
glXUseXFont(xfont, 0, 128, base);

Then, render a string by calling:

output_string(int x, int y, char *string) {
 glRasterPos2i(x, y);
 glListBase(base);
 glCallLists(strlen(string), GL_UNSIGNED_BYTE,
 (GLubyte *)string);
}

More sophisticated fonts

OpenGL programmers are not limited to using
X bitmap fonts via glXUseXFont.

OpenGL’s rendering facilities are well suited
to other more sophisticated font rendering
techniques:

scalable outline fonts
scalable stroke fonts
anti−aliased fonts
texture mapped fonts

New GLC (OpenGL Character) API supports
font rendering via OpenGL.

Overlays

An overlay is an alternate set of frame buffer bitplanes
that can be preferentially displayed instead of the
standard bitplanes.

Imagine a stack of frame buffer layers with transparent
pixel values. Example:

00
00
00

Weather Map

1/5/94

======
======

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

00
00
00

Weather Map

1/5/94

=====
=====

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Normal Planes Overlay Planes Normal & Overlay

5
4

X/OpenGL’s overlay support

OpenGL considers frame buffer layers to exist in
a single window hierarchy.

One of the OpenGL visual attributes is
GLX_LEVEL that indicates what frame buffer
layers the visual belongs to (0=normal,
>0=overlay).

OpenGL is compatible with the
SERVER_OVERLAY_VISUALS convention. Used
by SGI, HP, and others; Sun now supporting it!

OpenGL doesn’t advertise a transparent pixel
value; either get it from the
SERVER_OVERLAY_VISUALS property.

Creating an Overlay Sandwich

To support the weather map example of using
the overlay planes, do the following:

Create a normal plane window.

Create a subwindow with an overlay plane
visual with the same size and position. Set the
background pixel to be the overlay’s
transparent pixel value.

Only select for input events in the subwindow.

For OpenGL rendering, use glXMakeCurrent to
switch between windows.

Efficient 3D over the network

OpenGL supports non−editable display lists.

Display lists can reside in the X server to
efficiently execute large batches of OpenGL
rendering commands.

Display lists and immediate mode can be mixed.

If running efficiently over the network is
important to your 3D application, use display
lists.

Mixing GUI and OpenGL rendering

Most OpenGL X applications will use Motif or
some other X toolkit for their user interface
needs.

The use of OpenGL is generally limited to 3D
application windows. The buttons and scroll bars
continue to be using core X rendering.

This makes good sense; segregating OpenGL and
X rendering by windows avoids the overhead of
synchronizing the OpenGL and X execution
streams.

5
5

OpenGL and the X Input Extension

OpenGL applications often want access to
sophisticated input devices like:

The X Input extension provides access to such
devices.

Basics of the X Input extension

Distinct extension to the X server. Query for it
separately from OpenGL GLX extension.

The X Input extension augments the input events
generated by the core X11 protocol.

Header file for the X Input extension API:

 #include <X11/extensions/XInput.h>

Required library link options for using X Input
extension:

 −lXi −lXext −lX1 1

Using the X Input Extension

Query for server’s support of the extension
using XGetExtensionVersion.

List available input devices using
XListInputDevices and determine what devices
to use.

Call XOpenDevice to open desired devices.

Determine device event types and classes, then
select desired events using
XSelectExtensionEvent.

Get XInput events by calling XNextEvent.

Next topic:

Advanced Topics: overlays, stereo, etc.

Performance, Performance! (not just X)
CC
CC
CC
CC
CC

5
6

Pipeline Oriented Tuning

 Most computer programs are tuned
 based on ‘‘hot−spots.’’

 ‘‘80% of the time is spent in 20% of
 the code.’’

 With graphics hardware, you need
 to think about ‘‘pipeline’’ oriented
 tuning...

The Graphics Pipeline

Display
List

Evaluator

Per−Vertex
Operations
Primitive
Assembly

Pixel
Operations

Rasteriz−
ation

Texture
Memory

Per−
Fragment
Operations

Frame−
buffer

Application
Generation

Application
Traversal

Generation Traversal Xformation Rasterization Display

Video
Display

G T X R D

What work is off−loaded to gfx hardware?

Akeley’s
taxonomy

Example Architectures

 ‘‘Dumb frame buffer’’ (VGA)

 GTXR−D

 Silicon Graphics Indy

 GTX−RD

 Silicon Graphics Indigo IMPACT

 GT−XRD

2

Tuning a Pipeline

Two basic ideas:

 Keep the graphics pipeline busy.

 Keep the graphics pipeline balanced.

5
7

Maximizing performance

High−level issue:
How can I structure my application to
achieve maximum performance?

Low−level issue:
How do I get the best performance
from OpenGL?

Maximizing performance (2)

High−level techniques:
Multiprocessing (IRIS Performer)
Image quality vs performance
Culling and level of detail management

Low−level techniques:
Efficient data structures
Efficient traversal
Careful use of OpenGL features

High−level techniques

Multiprocessing
Perform rendering, computation, database
generation in separate threads.

Image quality vs performance
Use high−resolution model and features for static
images, low−resolution model and simpler features
for animation.

Level of detail management and culling
Monitor application performance and modify
database to meet minimum frame rate.

Low−level techniques

Efficient data structures and traversal

Maximize vertices between glBegin/glEnd.

Minimize extraneous code between
glBegin/glEnd.

Store vertex data with zero stride in compact
representations.

Use efficient forms of glVertex, glColor, etc.

5
8

Example: data structs and traversal

Drawing cities for a road map:

#define VILLAGE 1
#define CITY 2

struct city {
float latitude, longitude;
int size; /* VILLAGE or CITY */

};

Want to draw a small dot for villages and
a large dot for cities.

Ex: data structures and traversal (2)

Poor implementation:

void draw_cities(int n, struct city list[]) {
for (i=0;i<n;i++) {

glPointSize(list[i].size==CITY ? 3.0, 1.0);
glBegin(GL_POINTS);
glVertex2f(list[i].latitude, list[i].longitude);
glEnd();

}
}

Ex: data structures and traversal (3)

Better implementation:

void draw_cities(int n, struct city list[]) {
glPointSize(1.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)

if (list[i].size==VILLAGE)
 glVertex2f(list[i].latitude,list[i].longitude);

glEnd();
glPointSize(3.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)

if (list[i].size==CITY)
 glVertex2f(list[i].latitude,list[i].longitude);

glEnd();
}

Ex: data structures and traversal (4)

Better yet− a new data structure and drawing
function:

float cities[MAX][2];
float villages[MAX][2];

void draw_cities(int n, int size, float position[][2]) {
glPointSize(size==CITY ? 3.0, 1.0);
glBegin(GL_POINTS);
for (i=0;i<n;i++)

glVertex2fv(position[i]);
glEnd();

}

(even better, the vertex array extension)

5
9

OpenGL optimization

Traversal
Transformation
Rasterization
Texturing
Clearing
Miscellaneous
Window system integration
Mesa−specific
Hardware/implementation−specific

OpenGL optimization: traversal

Use connected primitives (triangle and line strips).
Store vertex data in consecutive memory locations.
Use the vector versions of glVertex, glNormal,

glColor, and glTexCoord.
Use the vertex arrays (extension or OpenGL 1.1).
Reduce the number of primitives (tessellation).
Use display lists.
Don’t specify unneeded per−vertex data.

(texcoords)
Minimize extraneous code between glBegin/glEnd.

OpenGL optimization: transformation

Disable normal vector normalization when not needed.
Use long connected primitives such as GL_LINE_STRIP,

GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, and
GL_QUAD_STRIP.

Don’t over−tessellate your primitives (NURBS, spheres,
etc).

Use efficient forms of glVertex, glNormal, etc. such as
glVertex3fv and glNormal3fv.

Disable clipping planes that aren’t needed.

OpenGL optimization: lighting

Avoid positional lights.
Avoid spotlights.
Avoid two−sided lighting.
Avoid negative material and light coefficients.
Avoid using the local viewer option.
Avoid frequent changes to GL_SHININESS.
Some implementations optimized for using a single

light source.
Consider pre−lighting your model.
Don’t use too many light sources.
Avoid frequent material changes.

6
0

OpenGL optimization: rasterization

Disable smooth shading when not needed.
Disable depth testing when not needed.
Disable dithering if not needed (esp. glClear).
Use polygon culling whenever possible.
Use few large polygons rather than many small

polygons to reduce raster setup time.
Avoid extra fragment operations such as scissoring,

stenciling, blending, stippling, alpha testing and
logic operations.

Reduce your window size or screen resolution.
Use integer glPixelZoom() values.
Antialiased lines of width 1 often optimized.

OpenGL optimization: texturing

Use efficient image formats such as GL_UNSIGNED_BYTE or
one of the internal packed formats optimized for your
hardware.

Use fewer texture color components.
Encapsulate textures in texture objects or display lists to reduce

binding time.
Use simple sampling functions such as GL_LINEAR and

GL_NEAREST.
Use a simple texture environment function such as GL_DECAL

instead of GL_MODULATE for 3−component textures.
Compile many small textures into one larger texture and use

offset texture coordinates to address them.
Use smaller texture maps.
Pre−dither or pre−light textures to avoid dithering and lighting.

OpenGL optimization: clearing

Be aware glClear takes a bitmask; don’t use multiple glClear calls.
Disable dithering before clearing.
Use scissoring to limit clearing to subregions.
Don’t clear the color buffer at all if redrawing the entire window.
Eliminate depth buffer clearing if redrawing entire window:

if (EvenFlag) {
glDepthFunc(GL_LESS);
glDepthRange(0.0, 0.5);

} else {
glDepthFunc(GL_GREATER);
glDepthRange(1.0, 0.5);

}

OpenGL optimization: misc (1)

Avoid round trip calls such as glGet*(), glIsEnabled()
and glGetString() in your rendering loop.

Avoid glPushAttrib(), especially with
GL_ALL_ATTRIB_BITS.

Use glColorMaterial() instead of glMaterial() for
frequent material changes.

Avoid using viewports which are larger than the
window.

Check for GL errors during development with
glGetError().

6
1

OpenGL optimization: misc (2)

Don’t allocate alpha, stencil, accumulation, or
overlay planes unless you really need them.

Try implementing transparency with stippling
instead of blending.

Avoid using glPolygonMode() for drawing unfilled
polygons. glBegin(GL_LINE_LOOP) may be
faster.

Group GL state changes together.
Be aware of your depth buffer’s depth (ex 16 vs

32−bit) and your hardware’s optimized
configuration.

Optimizations: window system

Minimize calls to the MakeCurrent function.
Context switching is expensive.

Be aware of tradeoffs in visual/pixel formats with
respect to precision (bits) versus speed.

Avoid mixing OpenGL rendering with native
window system (X11) rendering in the same
window.

Don’t redraw more often than needed. Example: X
expose events often come in groups.

Be aware that SwapBuffers may stall the graphics
pipe until the next vertical retrace.

Mesa optimizations

Double buffering may be implemented with an XImage or
Pixmap. Experiment to learn which is faster for you.

Some X visuals can be rendered into quicker than others
(8−bit vs 24−bit).

Mesa supports 16 or 32−bit depth buffers. 16−bit is usually
faster but may not be not precise enough for some
applications.

When drawing constant, flat shaded primitives put the
glColor call before the glBegin call.

The GLubyte versions of glColor are the fastest.
The GLfloat versions of glVertex, glNormal, and glTexCoord

are the fastest.
See the README file for optimized rendering combinations.

System−specific optimizations

Read your vendor’s release notes and documentation
carefully to learn the optimal parameters of your
hardware and OpenGL: lengths of triangle strips,
texture sizes, texture formats, pixel depths, etc.

Use the glGetString(GL_RENDERER) call to test for
specific hardware configurations and use specialized
OpenGL code.

Write test programs to determine what’s fast and slow or
to compare relative speeds of different code
fragments.

6
2

OpenGL & Window System Integration

Mark J. Kilgard

SIGGRAPH ’97 Cours e
August 4, 1997

Silicon Graphics, Inc.

‘‘Most portable 3D, fastest 3D.’ ’

Brian Pau l Avid Technology

Nate Robins SGI, University of Utah,
Parametric Technology

Worked for Evans & Sutherland in the Graphics
Systems Group

Worked for Parametric Technology porting
Pro/3DPAINT to Windows NT.

Currently an Intern at SGI

Ported the OpenGL Utility Toolkit (GLUT) to
Windows NT/95.

My background

Nate Robins

CCC
CCC
CCC
CCC
CCC
CCC

A simple example to get started

Processing messages & using menus

Pixel formats & palettes

Overlays & underlays

WGL reference

OpenGL & Win32 Topics

Create a window

Set the pixel format

Create a rendering

A simple example

Three basic steps

6
3

Creating a window

Two−fold process

Register a window class

Create a window in the new class

Registering a window class

What is a window class?

A template used to create a
window in an application

specifies certain basic attributes (such as
window procedure)

identified by character string name

every window must be associated with a class

Registering a window class (2)

How do I register a window class?

Fill in a WNDCLASS structure
 WNDCLASS wc;

 wc.style = 0; /* no special styles */
 wc.lpfnWndProc = (WNDPROC)WindowProc; /* message handler */
 wc.cbClsExtra = 0; /* no extra class data */
 wc.cbWndExtra = 0; /* no extra window data */
 wc.hInstance = GetModuleHandle(NULL); /* instance */
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); /* load a default icon */
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); /* load a default cursor */
 wc.hbrBackground = NULL; /* redraw our own bg */
 wc.lpszMenuName = NULL; /* no menu */
 wc.lpszClassName = "OpenGL"; /* use a special name */

The hbrBackground member should be
NULL

The lpszClassName can be any
character string

Registering a window class (3)

How do I register a window class?

Call the RegisterClass() function
RegisterClass(&wc);

returns TRUE on success, FALSE if
an error occurred

when the application that registered
a window class exits, the window
class is destroyed

see the course notes for a more
complete example

6
4

Creating a window from the class

Call CreateWindow() function
HWND hWnd;

hWnd = CreateWindow("OpenGL", /* class */
 "Simple Example", /* title (caption) */
 WS_CLIPSIBLINGS |
 WS_CLIPCHILDREN, /* style */
 x, y, width, height, /* dimensions */
 NULL, NULL, /* no parent, no menu */
 GetModuleHandle(NULL), /* instance */
 NULL); /* nothing for WM_CREATE */

The style argument must include the
WS_CLIPSIBLINGS and
WS_CLIPCHILDREN attributes

Final preparation forthe window

 ShowWindow(hWnd, SW_SHOW);
 /* send an initial WM_PAINT message (expose) */
 UpdateWindow(hWnd);

Setting the pixel format

What is a pixel format?

Specifies properties of a
rendering context

number of color bits

depth of the Z buffer

single/double buffered

number of stencil bits

etc

Setting the pixel format (2)

How do I set the pixel format?
Simplest method is to fill out a
PIXELFORMATDESCRIPTOR and call
the ChoosePixelFormat() command

HDC hDC;
PIXELFORMATDESCRIPTOR pfd;

pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
pfd.nVersion = 1; /* version (should be 1) */
pfd.dwFlags = PFD_DRAW_TO_WINDOW | /* draw to window (not bitmap) */
 PFD_SUPPORT_OPENGL, /* draw using opengl */
pfd.iPixelType = PFD_TYPE_RGBA; /* PFD_TYPE_RGBA or COLORINDEX */
pfd.cColorBits = 24;

pf = ChoosePixelFormat(hDC, &pfd);
 returns a valid pixel format index on

success, 0 if none match

More on this later! (better methods)

Creating a rendering context

What is a rendering context?

Port through which all OpenGL
commands pass

Link between OpenGL and
Windows NT/95 windowing systems

Win32 context has the type HGLRC
(analog in X is the GLXContext)

6
5

Creating a rendering context (2)

How do I create a rendering context?
Just wiggle! (Use WGL)

HDC hDC; /* device context */
HGLRC hRC; /* opengl context */

hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

remember to clean up when done (see the
course notes for details)

Screenshot of simple.c program

CCC
CCC
CCC
CCC
CCC

A simple example to get started

Processing messages & using menus

Pixel formats & palettes

Overlays & underlays

WGL reference

OpenGL & Win32 Topics Processing messages & using menus

About messages

Peeking at messages

Using window procedures

Using menus

Topics

6
6

About messages

Method of communicating user input to
an application

MSG structure contains data pertinent to
each message

Analog of an X Window event

What is a message?

About messages (2)

Two methods will be discussed (peeking
& window procedure)

Structure common to all messages

How do I use messages?

all message names begin with WM_ (can be used in a
switch statement)

all messages have an lParam and a wParam (long word
and word parameter)

values in lParam and wParam depend on the message

Peeking at messages

Keep checking the message
queue until a message appears

 MSG msg;
 while (1) {
 /* check for (and process) messages in the queue */
 while(PeekMessage(&msg, hWnd, 0, 0, PM_REMOVE)) {
 switch(msg.message) {
 case WM_KEYDOWN:
 if(msg.wParam == 27) /* ESC */
 /* do something */
 break;
 /* case for other messages */
 default:
 DefWindowProc(hWnd, msg.message,
 msg.wParam, msg.lParam);
 break;
 }
 }
 }

PeekMessage() can’t retrieve all message types

Using window procedures

Special function registered with the
window class designed to handle
messages

Usually has a large switch() statement

What is a window procedure?

LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 LONG lRet = 1;

 switch(uMsg) {
 case WM_CREATE:
 break;
 /* other message cases */
 default:
 lRet = DefWindowProc(hWnd, uMsg, wParam, lParam);
 break;
 }

 return lRet;
}

6
7

Using window procedures (2)

Translate and dispatch messages

How do I use a window procedure?

while(PeekMessage(&msg, hWnd, 0, 0, PM_NOREMOVE)) {
 if(GetMessage(&msg, hWnd, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 } else {
 /* bail out − window was destroyed */
 }
}

If you want to yield until a message
appears on the queue, use GetMessage()
in place of PeekMessage() and
translate/dispatch within the while loop

Using menus

Built in to Win32

Simple to use

Professional looking :−)

Why use menus?

Using menus (2)

Use CreateMenu() then insert items & attach
it to the window

How do I create a menu bar?

HMENU hFileMenu; /* file menu handle */
HMENU hMenu; /* menu bar */
MENUITEMINFO item; /* item info */

hFileMenu = CreateMenu();
hMenu = CreateMenu();
item.cbSize = sizeof(MENUITEMINFO);
item.fMask = MIIM_ID | MIIM_TYPE | MIIM_SUBMENU;
item.fType = MFT_STRING;
item.hSubMenu = NULL;
item.wID = ’x’;
item.dwTypeData = "E&xit";
item.cch = strlen("E&xit");
InsertMenuItem(hFileMenu, 0, FALSE, &item);

item.wID = 0;
item.dwTypeData = "&File";
item.cch = strlen("&File");
item.hSubMenu = hFileMenu;
InsertMenuItem(hMenu, 0, FALSE, &item);

SetMenu(hWnd, hMenu);

Using menus (3)

All menu items send a WM_COMMAND
message to the window when selected

How do I get messages from a menu?

 case WM_COMMAND:
 switch(LOWORD(wParam)) {
 case ’x’:
 PostQuitMessage(0);
 break;
 }
 break;

6
8

Using menus (4)

Create the menu as outlined earlier
How do I handle a popup menu?

When a mouse button is pressed, call
TrackPopupMenu()

 case WM_RBUTTONDOWN:
 point.x = LOWORD(lParam);
 point.y = HIWORD(lParam);
 ClientToScreen(hWnd, &point);
 TrackPopupMenu(hPopup, TPM_LEFTALIGN, point.x, point.y,
 0, hWnd, NULL);
 break;

position of the popup menu must be in
screen coordinates

use ClientToScreen() function to convert

Screenshot of menu.c program

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A simple example to get started

Processing messages & using menus

Pixel formats & palettes

Overlays & underlays

WGL reference

OpenGL & Win32 Topics Pixel formats & palettes

The Pixel Format Descriptor

Using Palettes

Topics

6
9

A structure whose fields indicate
properties of an OpenGL context

Gateway to choosing a pixel format
suitable for a given application

Similar to an XVisualInfo structure in
X Windows but tailored to OpenGL

The pixel format descriptor

What is a pixel format descriptor? How do I use it?

The simplest way is to fill in the fields of the
structure with desired properties & call
ChoosePixelFormat() (see simple.c)

We can do better than ChoosePixelFormat()

Enumerate all formats and compare against
our own criteria

See the course notes for a detail on each field
of the pixel format descriptor

The pixel format descriptor (2)

 int pf, maxpf;
 PIXELFORMATDESCRIPTOR pfd;

 /* get the maximum number of pixel formats */
 maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

 /* loop through all the pixel formats */
 for (pf = 1; pf <= maxpf; pf++) {
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
 if (pfd.dwFlags & PFD_DRAW_TO_WINDOW &&
 pfd.dwFlags & PFD_SUPPORT_OPENGL &&
 pfd.dwFlags & PFD_DOUBLEBUFFER &&
 pfd.cDepthBits >= 24)
 {
 /* found a matching pixel format */
 }
 }

The pixel format descriptor (3)

Use the DescribePixelFormat() function to
enumerate all the pixel formats

Using Palettes

Two basic reasons to use a palette

When exact control over colors is
needed or for palette animation
(color index mode)

When Truecolor display can’t be
used (must simulate Truecolor
with ramp & dithering)

7
0

Must use a logical palette (user
defined table of colors)

Select and Realize the palette for
Win32 to recognize it (next slide)

Intercept the proper messages
 case WM_QUERYNEWPALETTE:
 SelectPalette(GetDC(hWnd), hPalette, FALSE);
 lRet = RealizePalette(GetDC(hWnd));
 break;

 case WM_PALETTECHANGED:
 if(hWnd == (HWND)wParam) break;
 SelectPalette(GetDC(hWnd), hPalette, FALSE);
 RealizePalette(GetDC(hWnd));
 UpdateColors(GetDC(hWnd));
 lRet = 0;
 break;

Using color index mode Using color index mode (2)

 LOGPALETTE lgpal; /* custom logical palette */
 int nEntries = 5; /* number of entries in palette */
 PALETTEENTRY peEntries[5] = { /* entries in custom palette */
 0, 0, 0, NULL, /* black */
 255, 0, 0, NULL, /* red */
 0, 255, 0, NULL, /* green */
 0, 0, 255, NULL, /* blue */
 255, 255, 255, NULL /* white */
 };

 /* create a logical palette (for color index mode) */
 lgpal.palVersion = 0x300; /* version should be 0x300 */
 lgpal.palNumEntries = nEntries; /* number of entries in palette */
 hPalette = CreatePalette(&lgpal);

 SetPaletteEntries(hPalette, 0, nEntries, peEntries);
 SelectPalette(hDC, hPalette, TRUE); /* map logical into physical palette */
 RealizePalette(hDC);

Create, select and realize a logical
palette

A bit tricky deciding what the
palette should look like

Must have an adequate range of
colors

Functions exist to generate such
palettes

See the course notes for a
detailed example

Simulating Truecolor with a palette Screenshot of index.c program

7
1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

A simple example to get started

Processing messages & using menus

Pixel formats & palettes

Overlays & underlays

WGL reference

OpenGL & Win32 Topics Overlays & Underlays

Overlay/Underlay associated
with a particular pixel format

Cannot be free floating over any
window (as in X Windows)

Same basic process as before, but
now must use special WGL
functions designed for overlays
when setting pixel formats,
creating contexts and swapping
buffers

Overlays & Underlays (2)

Same basic process as before, but
now must use special WGL functions
designed for overlays when setting
pixel formats, creating contexts and
swapping buffers

How do I use overlay/underlays?

 int pf, maxpf;
 PIXELFORMATDESCRIPTOR pfd;
 LAYERPLANEDESCRIPTOR lpd; /* layer plane descriptor */

 maxpf = DescribePixelFormat(hDC, 0, 0, NULL);
 for(pf = 0; pf < maxpf; pf++) {
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
 if (pfd.bReserved > 0) {
 /* aha! This format has overlays/underlays */
 wglDescribeLayerPlane(hDC, pf, 1,
 sizeof(LAYERPLANEDESCRIPTOR), &lpd);
 if (lpd.dwFlags & LPD_SUPPORT_OPENGL &&
 lpd.dwFlags & LPD_DOUBLEBUFFER) /* any other flags */
 {
 /* found one! */
 }

Overlays & Underlays (3)

Must ALWAYS set the palette for an
overlay/underlay

How do I use overlay/underlays?

 /* set the pixel format */
 if(SetPixelFormat(hDC, pf, &pfd) == FALSE) {
 MessageBox(NULL,
 "SetPixelFormat() failed: Cannot set format specified.",
 "Error", MB_OK);
 return 0;
 }

 /* set up the layer palette */
 wglSetLayerPaletteEntries(hDC, 1, 0, nEntries, crEntries);

 /* realize the palette */
 wglRealizeLayerPalette(hDC, 1, TRUE);

 /* announce what we’ve got */
 printf("Number of overlays = %d\n", pfd.bReserved);
 printf("Color bits in the overlay = %d\n", lpd.cColorBits);

7
2

Screenshot of overlay.c program OpenGL & Win32 Topics

CCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCC

A simple example to get started

Processing Messages & Using Menus

Pixel Formats & Palettes

Overlays & Underlays

WGL Reference

WGL Reference

Rendering Context Functions

Font and Text Functions

Overlay, Underlay and Main Plane Functions

Miscellaneous Functions

Rendering Context Functions

 wglCreateContext

 Creates a new rendering context.

 wglMakeCurrent

 Sets a thread’s current rendering context.

 wglGetCurrentContext

 Obtains a handle to a thread’s current rendering

 context.

 wglGetCurrentDC

 Obtains a handle to the device context associated

 with a thread’s current rendering context.

 wglDeleteContext

 Deletes a rendering context.

7
3

Font and Text Functions

 wglUseFontBitmaps

 Creates a set of character bitmap display lists.

 Characters come from a specified device context’s

 current font. Characters are specified as a

 consecutive run within the font’s glyph set.

 wglUseFontOutlines

 Creates a set of display lists, based on the glyphs of

 the currently selected outline font of a device

 context, for use with the current rendering context.

 The display lists are used to draw 3−D characters of

 TrueType fonts.

Overlay, Underlay & Main Plane (1)

 wglCopyContext

 Copies selected groups of rendering states from one OpenGL rendering context to

 another.

 wglCreateLayerContext

 Creates a new OpenGL rendering context for drawing to a specified layer plane on

 a device context.

 wglDescribeLayerPlane

 Obtains information about the layer planes of a given pixel format.

 wglGetLayerPaletteEntries

 Retrieves the palette entries from a given color−index layer plane for a specified

 device context.

Overlay, Underlay & Main Plane (2)

 wglRealizeLayerPalette

 Maps palette entries from a given color−index layer plane into the physical

 palette or initializes the palette of an RGBA layer plane.

 wglSetLayerPaletteEntries

 Sets the palette entries in a given color−index layer plane for a specified device

 context.

 wglSwapLayerBuffers

 Swaps the front and back buffers in the overlay, underlay, and main planes of the

 window referenced by a specified device context.

Miscellaneous Functions

 wglShareLists

 Enables a rendering context to share the display−list

 space of another rendering context.

 wglGetProcAddress

 Returns the address of an OpenGL extension

 function for use with the current OpenGL rendering

 context.

7
4

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

Comparison of OpenGL Window Sytem
Interfaces

Contents

1. Introduction
2. Basic functionality
3. Data types and objects
4. Interface functions

4.1 Testing for OpenGL availability
4.2 Getting OpenGL version information
4.3 Selection of a visul or pixel format
4.4 Query visual/pixel format attributes
4.5 Creating a rendering context
4.6 Destroying a rendering context
4.7 Context binding
4.8 Copying context state
4.9 Testing for direct rendering
4.10 Swapping color buffers
4.11 Off-screen rendering
4.12 Bitmap fonts
4.13 Querying the current context and drawable
4.14 Synchronization
4.15 Miscellaneous

5. To learn more

1. Introduction

Since OpenGL is designed to be independent of any window system, integration of OpenGL with a
window system is accomplished with a special interface. This interface is dependent on the window
system and is typically designed and implemented by the window system vendor.

Though each OpenGL window system interface is different they are all similar in functionality. This
document compares the functionality of several interfaces. Programmers writing applications for more

75

than one window systems should find this information especially relevant.

The following interfaces are compared:

AGL for the Apple Macintosh
GLX for the X Window System
PGL for OS/2’s Presentation Manager
WGL for Microsoft Windows ’95 and NT

2. Basic Functionality

There are five basic steps to OpenGL and window system integration in an application:

1. Test for OpenGL capability - be sure that the system supports OpenGL rendering.
2. Select a visual/pixel type - based on criteria such as RGB vs color index, single vs double

buffering, depth buffering, stenciling, etc select a visual/pixel type.
3. Create an OpenGL rendering context - create a rendering context for the visual/pixel type

selected.
4. Create a drawable - create a window or color buffer using the window system’s API. One of the

parameters to the window creation function will probably be the visual/pixel type.
5. Bind the rendering context to the drawable - binding a context to a drawable activates the

context and directs rendering to that drawable.

Note that the rendering context and drawable must usually use the same visual/pixel type. In other
words, if you need two rendering windows which don’t share the same visual/pixel type you’ll need to
create a separate context for each window.

3. Data types and objects

There are several data types or handles which are used for similar purposes in all the OpenGL interfaces.

Display/Session handle
The notion of a display or drawing/device context.

Datatypes
AGL: none
GLX: Display
PGL: HAB
WGL: HDC

Visual/Pixel format
The way in which pixel data in a frame buffer is displayed is controlled by a visual or pixel format.
OpenGL typically augments a window system’s visuals/pixel formats with information about

76

double buffering, depth buffers, stencil buffers, etc.

Datatypes
AGL: AGLPixelFmtID
GLX: XVisualInfo
PGL: PVISUALCONFIG
WGL: an integer pixel format number or a PIXELFORMATDESCRIPTOR structure

OpenGL rendering context
OpenGL is designed as a state machine. OpenGL state is encapsulated in a context. Multiple
contexts may be created but only one may be active at a time. If an application needs to render into
several windows, one context may be used for both windows if the windows use the same visual or
pixel format. If different pixel formats are used then different OpenGL contexts may be required.

Datatypes
AGL: AGLContext
GLX: GLXContext
PGL: HGC
WGL: HGLRC

Window/drawable
The destination of OpenGL rendering is typically a window on your terminal screen. The OpenGL
interface may also allow rendering into an off-screen color buffer. The handle for an off-screen
buffer is typically compatible with a window handle.

An OpenGL rendering context is activated by binding a context to a window or drawable.

Datatypes
AGL: AGLDrawable
GLX: GLXDrawable (a Window or GLXPixmap)
PGL: HWND
WGL: HDC

4. Interface Functions

This section presents the major function of the interfaces catagorized according to their purpose.

4.1 Testing for OpenGL availability

At runtime it may be necessary to determine if a display or terminal is capable of OpenGL rendering.

GLX
Bool glXQueryExtension(Display *dpy, int *errorBase, int *eventBase)

PGL
LONG pglQueryCapability(HAB hab)

77

4.2 Getting OpenGL version information

Since OpenGL is an evolving standard it’s sometimes useful to be able to determine which version of
OpenGL render is being used.

AGL
GLboolean aglQueryVersion(int *major, int *minor)

GLX
Bool glXQueryVersion(Display *dpy, int *major, int *minor)

PGL
void pglQueryVersion(HAB hab, int *major, int *minor)

4.3 Selection of a visual or pixel format

A visual or pixel format describes the frame buffer and ancillary buffers. Attributes include RGB vs
color index, bits per color component, single vs double buffered, size of depth buffer, size of stencil
buffer, etc.

The application programmer should know what frame buffer attributes are needed and select a visual or
pixel format accordingly.

These functions return a visual or pixel format based on a attribute list provided by the programmer.

AGL
AGLPixelFmtID aglChoosePixelFmt(GDHandle *dev, int ndev, int *attribs)

GLX
XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attribList)

PGL
PVISUALCONFIG pglChooseConfig(HAB hab, int *attriblist)

WGL
int ChoosePixelFormat(HDC hdc, PIXELFORMATDESCRIPTOR *pfd)

4.4 Query visual/pixel format attributes

As an alternative to asking the window system for a visual/pixel format which matches an attribute list,
one may query the attributes of a particular visual or pixel format. This allows the programmer complete
control over visual/pixel format selection. These functions return the value of an attribute for a given
visual/pixel format.

AGL
GLboolean aglGetConfig(AGLPixelFmtID pix, int attrib, int *value)

GLX
int glXGetConfig(Display *dpy, XVisualInfo *vis, int attrib, int *value)

78

PGL
PVISUALCONFIG *pglQueryConfigs(HAB hab)

WGL
int DescribePixelFormat(HDC hdc, int pixelformat, UINT bytes,
LPPIXELFORMATDESCRIPTOR pfd)

4.5 Creating a rendering context

After a visual/pixel format has been selected an OpenGL rendering context may be allocated. Rendering
contexts may share display lists and texture maps if the contexts are compatible. Contexts are considered
to be compatible if they share the same address space and pixel format and are both direct or indirect.

Direct contexts provide a means of utilizing local graphics hardware in the most efficient means
possible. Indirect contexts are used in other situations such as when rendering remotely.

In the case of GLX, a direct context may be used when using local graphics hardware; the GLX protocol
encoding/decoding is bypassed. An indirect context allows remote display to X servers which support
the GLX extension.

Some OpenGL interfaces make no distinction between direct and indirect rendering.

AGL
AGLContext aglCreateContext(AGLPixelFmtID pix, AGLContext shareList)

GLX
GLXContext glXCreateContext(Display *dpy, XVisualInfo *vis, GLXContext
shareList, Bool direct)

PGL
HGC pglCreateContext(HAB hab, PVISUALCONFIG pVisualConfig, HGC ShareList, BOOL
IsDirect)

WGL
HGLRC wglCreateContext(HDC hdc)

BOOL wglShareLists(HGLRC hglrc1, HGLRC hglrc2)

4.6 Destroying a rendering context

When finished with a context it may be destroyed.

AGL
GLboolean aglDestroyContext(AGLContext ctx)

GLX
void glXDestroyContext(Display *dpy, GLXContext ctx)

PGL
BOOL pglDestroyContext(HAB hab, HGC hgc)

79

WGL
wglDeleteContext(HRC hrc)

4.7 Context binding

When a rendering context is bound to a window it becomes the current context. OpenGL rendering may
then begin. Note that it is not until this point that one may test for OpenGL extensions.

AGL
GLboolean aglMakeCurrent(AGLDrawable drawable, AGLContext ctx)

GLX
Bool glXMakeCurrent(Display *dpy, GLXDrawable drawable, GLXContext ctx)

PGL
BOOL pglMakeCurrent(HAB hab, HGC hgc, HWND hwnd)

WGL
wglMakeCurrent(HDC hdc, HGLRC hrc)

4.8 Copying context state

These functions copy a subset of a context state from one context to another. The mask parameter takes
the same values as glPushAttrib().

AGL
GLboolean aglCopyContext(AGLContext src, AGLContext dst, GLuint mask)

GLX
void glXCopyContext(Display *dpy, GLXContext src, GLXContext dst, GLuint mask
)

PGL
BOOL pglCopyContext(HAB hab, HGC hgc_src, HGC hgc_dst, GLuint attrib_mask)

WGL
BOOL wglCopyContext(HGLRC hglrcSrc, hglrcDst, UINT mask)

4.9 Testing for direct rendering

These functions test if a rendering context is direct.

GLX
Bool glXIsDirect(Display *dpy, GLXContext ctx)

PGL
LONG pglIsIndirect(HAB hab, HGC hgc)

4.10 Swapping color buffers

80

The swap buffers operation exchanges the front and back color buffers when double buffering is
enabled. The contents of the back buffer become undefined after the swap operation.

AGL
GLboolean aglSwapBuffers(AGLDrawable drawable)

GLX
void glXSwapBuffers(Display *dpy, GLXDrawable drawable)

PGL
void pglSwapBuffers(HAB hab, HWND hwnd)

WGL
BOOL SwapBuffers(HDC hdc)

4.11 Off-screen rendering

These functions create an off-screen color buffer or pixmap. Be aware that rendering to an off-screen
color buffer may not be accelerated by your graphics hardware.

AGL
AGLPixmap aglCreateAGLPixmap(AGLPixelFmtID pix, GWorldPtr pixmap)

GLboolean aglDestroyAGLPixmap(AGLPixmap pix)

GLX
GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisualInfo *vis, Pixmap pixmap)

void glXDestroyGLXPixmap(Display *dpy, GLXPixmap pix);

4.12 Bitmap fonts

Fonts provided by the window system may be converted to glBitmap() format and stored in display
lists. Character strings may then be rendered with glCallLists() . These functions convert font glyphys
from the window system to a sequence of display lists.

AGL
GLboolean aglUseFont(int familyID, int size, int first, int count, int
listBase)

GLX
void glXUseXFont(Font font, int first, int count, int listBase)

PGL
BOOL pglUseFont(HAB hab, HPS hps, FATTRS fatAttrs, LONG llcid, int first, int
count, int listbase)

WGL
BOOL wglUseFontBitmaps(HDC hdc, DWORD first, DWORD count, DWORD listBase)

BOOL wglUseFontOutlines(HDC hdc, DWORD first, DWORD count, DWORD listBase,
FLOAT deviation, FLOAT extrusion, int format, LPGLYPHMETRICSFLOAT lpgmf)

81

4.13 Querying the current context and drawable

The ID of the current rendering context and current window/drawable may be queried with these
functions.

AGL
AGLContext aglGetCurrentContext(void)

AGLDrawable aglGetCurrentDrawable(void)

GLX
GLXContext glXGetCurrentContext(void)

GLXDrawable glXGetCurrentDrawable(void)

PGL
HGC pglGetCurrentContext(HAB hab)

HWND pglGetCurrentWindow(HAB hab)

WGL
HGLRC wglGetCurrentContext(void)

HDC wglGetCurrentDC(void)

int GetPixelFormat(HDC hdc)

4.14 Synchronization

Since both OpenGL and the native window system renderer may both draw into the same window
synchronization is needed to be sure operations are performed in the correct order.

GLX
void glXWaitGL(void)

void glXWaitX(void)

PGL
HPS pglWaitGL(HAB hab)

void pglWaitPM(HAB hab)

4.15 Miscellaneous

Each OpenGL window system interface has some unique functions. Some of them are described here.

AGL
GLenum aglGetError(void)

Returns the current error setting or GL_OK if none.

int aglListPixelFmts(GDHandle dev, AGLPixelFmtID **fmts)

82

Returns a list of all pixel formats offered for the given device.

GLboolean aglSetOptions(int options)

Sets AGL-specific options.

GLboolean aglUpdateCurrent(void)

Causes the current context’s state to be updated from the window system. This should be called
whenever the window is moved, resized, or the screen resolution or depth is changed.

GLX: (version 1.1)
const char *glXQueryExtensionsString(Display *dpy, int screen)

Returns a list of space separated GLX extensions on the specified display.

const char *glXGetClientString(Display *dpy, int name)

Returns a string describing an attribute of the OpenGL client library.

const char *glXQueryServerString(Display *dpy, int screen, int name)

Returns a string describing an attribute of the OpenGL display server.

PGL
INT pglSelectColorIndexPalette(HAB hab, HPAL hpal, HGC hgc)

This function specifies the color index palette for OpenGL to use when drawing in RGB mode.

BOOL pglGrabFrontBitmap(HAB hab, HPS phps, HBITMAP phbitmap)

BOOL pglReleaseFrontBitmap(HAB hab)

These functions are used to gain exclusive access to a window.

WGL
wglCreateLayerContext, wglDescribeLayerPlane, wglGetLayerPaletteEntries,

wglSetLayerPaletteEntries, and wglSwapLayerBuffers

Provide support for overlay and underlay color buffers.

5. To learn more

Introduction to OpenGL and X, Part 1: An Introduction
(http://www.sgi.com/Technology/openGL/mjk.intro/intro.html) by Mark Kilgard of SGI describes how
to get started with OpenGL and the X Window System.

83

The Unix man pages for GLX and the GLX specification documents describe the GLX functions in
detail.

agl.txt describes the AGL interface. This information provided courtesy of Template Graphics Software.

OpenGL for OS/2 including documentation can be obtained from
ftp://ftp.austin.ibm.com/pub/developer/os2/OpenGL/.

Using OpenGL in Visual C++ Version 4.x (http://www.iftech.com/oltc/opengl/opengl0.stm) by N. Alan
Oursland of Interface Technologies, Inc. describes how to get started using OpenGL with Microsoft’s
Visual C++.

OpenGL I: Quick Start (http://www.microsoft.com/msdn/library/technote/gl1.htm) by Dale Rogerson of
Microsoft is the first in a series of articles explaining how to use OpenGL with Windows 95 and
Windows Nt.

Microsoft’s Developer Studio / Visual C++ product includes online documentation of the WGL
interface.

Last edited on April 13, 1997 by Brian Paul.

84

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Application Design and Organization
Notes

Contents

1. Introduction
2. Organization
3. An example: Vis5D
4. Graphics library functionality
5. Multi-window system applications

1. Introduction

This document presents information which may help you in designing your OpenGL application and
organizing its source code such that it may be portable to different window systems or graphics libraries.

Why would we want to do this? One, we may want our application to work on both X and Windows
platforms. Two, we may want to support both OpenGL and IRIS GL (or PEX) during a transition period.

2. Organization

The basics:

isolate window system-dependent code (including WGL and GLX code) in separate modules.
isolate OpenGL code, and other graphics library code, in separate modules

The practicality of this depends on the nature and size of the application. One one hand, modern window
system toolkits are quite similar in that GUIs are designed with the callback/event loop paradigm:

Create user interface

85

Setup callback functions
Enter event loop

Furthermore, rendering can be encapsulated in wrapper functions which present a higher-level API
which is independent of the graphics library.

On the other hand, a complex application may be so tightly integrated with a user interface toolkit or
graphics library that it’s impractical to support alternative interfaces or libraries.

3. An example: Vis5D

Vis5D is a system for interactive visualization of three dimensional atmospheric data. It can use
OpenGL, IRIS GL, or PEX for 3-D rendering. An Xlib-based GUI toolkit provides the only user
interface at this time but it’s quite feasible to write a new one.

OpenGL, IRIS GL and PEX code is isolated into separate source files:

graphics.ogl.c
graphics.gl.c
graphics.pex.c

Each file performs the rendering functions defined by a single header file, graphics.h, defining functions
such as:

create_3d_window()
clear_3d_window()
swap_3d_window()
draw_isosurface()
draw_trajectory()
draw_contour_slice()

which graphics.ogl.c, graphics.gl.c and grahics.pex.c each implements in its own way. The Makefile
determines which source file is compiled.

The core of Vis5Ds functionality is isolated from the user interface by an internal API. Everything
"below" the API is GUI independent. Everything "above" the API is considered user interface code.
While Vis5D’s user interface code is substantial, it could be replaced by an alternative toolkit with
minimal impact on the rest of the system.

4. Graphics library functionality

When supporting multiple graphics libraries, a difficult problem to deal with is subsetting. While
OpenGL mandates that all its features be implemented other graphics libraries aren’t as stringently

86

defined. PEX implementations, for example, vary greatly in terms of what features are implemented.

The simplest solution to this problem is to only use functionality which is common to all libraries. This
can actually be quite practical in simple applications which don’t require elaborate renderering
techniques.

The other solution is to poll the graphics system to determine its capabilities and work around those it
doesn’t support. Vis5D, for example, offers volume rendering only on systems with alpha blending
capability.

5. Multi-window system applications

Suppose your OpenGL application must work on several window system such as X and Microsoft
Windows. How can this be accomplished?

5.1 Cross-platform GUIs

Consider using a cross-platform GUI such as GLUT or Tcl/Tk which is available for several window
systems. GLUT is appropriate for demos or small applications. Tcl/Tk is appropriate for any size demo
or application. Both are free.

5.2 Commercial porting tools

There are commercial solutions which provide Motif emulation for Windows:

NuTCRACKER from DataFocus, Inc. (http://www.datafocus.com/)
OpenNT from Softway Systems, Inc. (http://www.softway.com/OpenNT/)
Exceed from Hummingbird Communications, Ltd. (http://www.hummingbird.com/)

Commercial solutions for porting Windows applications to Unix/X/Motif include:

Wind/U from Bristol Technology, Inc. (http://www.bristol.com/)
MainWin Studio from Mainsoft Corporation (http://www.mainsoft.com/)

5.3 Native support for multiple GUIs

Larger applications which use native window system toolkits will have to be partitioned into modules
which isolate window and operating system-specific code.

If one is going to use multiple window systems (for example X/Motif and Win32) it’s best to first survey
the GUIs to determine what they have in common or what is unique to each. It may be wise then to
avoid using GUI features which can’t be implemented in all window systems.

The OpenGL window system interface (WGL, GLX) calls should be considered window system code
and not be put in the OpenGL modules. This includes the swapbuffers operation.

87

Last edited on April 13, 1997 by Brian Paul.

88

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

Using OpenGL Extensions

Contents

1. Introduction
2. Naming conventions
3. Compile-time extension testing
4. Run-time extension testing
5. An extension sampler
6. OpenGL 1.1
7. GLU extensions and versions
8. GLX extensions and versions
9. Fall-back scenarios
10. Using Extensions with Microsoft OpenGL or SGI Cosmo OpenGL
11. References

1. Introduction

The designers of OpenGL anticipated the need to extend OpenGL in the future. Thus they clearly
defined how extensions are to be implemented and used. To be sure your application is portable it is
very important that one uses extensions correctly.

There are three tenets to using extensions:

1. Compile-time extension testing
2. Run-time extension testing
3. Fall-back scenarios

These are discussed below. Furthermore, one may also have to deal with different versions of OpenGL
and the GLU and GLX libraries.

We begin with a discussing of extension naming conventions.

89

2. Naming conventions

OpenGL extension are named according to the convention:

GL_type_name

Where type is EXT or a vendor-specific identifier such as SGI or IBM.

The EXT indentifier generally indicates that an extension has been adopted by at least two vendors.

Vendors may also extend the type convention to indicate the class of the extension. Silicon Graphics, for
example, use SGIS to indicate an extension may only be available on particular systems and SGIX to
indicate that the extension is experimental.

name is a string of lowercase characters such as polygon_offset .

Example extension names:

GL_EXT_polygon_offset
GL_SGI_color_table
GL_SGIS_detail_texture
GL_MESA_window_pos

If an extension defines any new GLenum values they will be suffixed with the extension type. For
example, the GL_EXT_blend_minmax extension adds the following GLenum values:

GL_FUNC_ADD_EXT
GL_MIN_EXT
GL_MAX_EXT
GL_BLEND_EQUATION_EXT

If an extension defines any new API functions they will be suffixed with the extension type as well. For
example, the GL_EXT_polygon_offset extension adds the function:

void glPolygonOffset EXT(GLfloat factor, GLfloat bias)

3. Compile-time extension testing

If an OpenGL extension is supported at compile-time the host’s gl.h file will define a preprocessor
symbol named for that extension. For example, the gl.h file will have

#define GL_EXT_texture3D 1

if the GL_EXT_texture3D extension is supported.

90

Any references to constants or functions defined by the extension must be surrounded by
#ifdef/#endif . For example:

#ifdef GL_EXT_texture3D
 glTexImage3DEXT(GL_TEXTURE_3D_EXT, 0, format, w, h, d, border,
 format, type, pixels);
#endif

Failure to test for extensions at compile time can result in compilation and linking errors such as
Undefined symbol or Undefined function .

It is critical to properly test for extensions at compile time if you want your application to be
recompilable on different systems.

4. Run-time extension testing

We must also test for OpenGL extensions at runtime. There are two reasons for this:

1. An OpenGL application may be dynamically linked to the OpenGL library. When the application
is moved to another system with a different OpenGL library there’s no guarantee that this library
will implement the same extensions as the first library.

2. OpenGL on the X Window System supports remote display and there’s no guarantee that any X
server’s OpenGL renderer will support a given extension.

To test for OpenGL extensions at runtime we must call glGetString(GL_EXTENSIONS) . This function
returns a list of extensions which are supported by the OpenGL renderer. This list can be searched to
determine if a specific extension is supported.

Be aware that glGetString(GL_EXTENSIONS) must be called after we’ve established an active
OpenGL rendering context. For example, we must call glXMakeCurrent or wglMakeCurrent before
calling glGetString . The reason is that OpenGL extensions are dependant on the OpenGL renderer and
the renderer isn’t bound until MakeCurrent is called.

Be careful when searching the extensions list! The C library function strstr is not sufficient because it
may match a substring of the extension name you’re testing for. For example, if you’re testing for the
GL_EXT_texture extension and glGetString(GL_EXTENSIONS) returns "GL_EXT_texture3D" then
simply using strstr will incorrectly tell you that GL_EXT_texture is supported.

The following function can be used for reliable runtime extension testing:

 GLboolean CheckExtension(char *extName)
 {
 /*
 ** Search for extName in the extensions string. Use of strstr()
 ** is not sufficient because extension names can be prefixes of
 ** other extension names. Could use strtok() but the constant
 ** string returned by glGetString can be in read-only memory.
 */
 char *p = (char *) glGetString(GL_EXTENSIONS);

91

 char *end;
 int extNameLen;

 extNameLen = strlen(extName);
 end = p + strlen(p);

 while (p < end) {
 int n = strcspn(p, " ");
 if ((extNameLen == n) && (strncmp(extName, p, n) == 0)) {
 return GL_TRUE;
 }
 p += (n + 1);
 }
 return GL_FALSE;
 }

5. An extension sampler

This section lists some OpenGL extensions with short descriptions. Many extensions are implemented in
groups. For example, the blending extensions are interdependent and usually implemented together. See
your OS/OpenGL release notes and man pages for detailed descriptions.

Core extensions

Many of these extensions to OpenGL 1.0 have been incorporated into OpenGL 1.1.

GL_EXT_abgr - adds the GL_ABGR_EXT pixel format to glDrawPixels, glReadPixels, and
glTexImage[12]D. A performance improvement over GL_RGBA on systems designed for IRIS
GL.
GL_EXT_blend_color - adds blending operations with constant colors
GL_EXT_blend_logic_op - extends glLogicOp functionality to RGB blending
GL_EXT_blend_minmax - adds min/max operators to RGB blending
GL_EXT_blend_equation - adds subtractive blending equations
GL_EXT_convolution - adds 1 and 2 dimensional image convolution
GL_EXT_copy_texture - allows one to load texture images directly from the frame buffer
GL_EXT_histogram - counts occurances of specific color components during rasterization
GL_EXT_packed_pixels - adds packed pixel formats for glDrawPixels, glReadPixels,
glTexImage, etc.
GL_EXT_polygon_offset - adds the glPolygonOffsetEXT function which displaces the Z value
of polygon fragments to facilitate drawing cleanly outlined polygons
GL_EXT_subtexture - allows subregions of texture images to be replaced
GL_EXT_texture - adds many packed texture format data types and the texture proxy mechanism
GL_EXT_texture3D - three dimensional texture image support, useful for volume rendering
GL_EXT_texture_object - named texture objects; improves performance when multiple textures
are needed.
GL_EXT_vertex_array - specifies geometric primitives with arrays of coordinate data as an
alternative to using many glVertex, glColor, glNormal, or glTexCoord calls.

SGI-specific core extensions

92

GL_SGI_color_matrix - adds another 4x4 transformation matrix which effects RGBA colors
GL_SGI_color_table - extends the color lookup table functionality of OpenGL
GL_SGIX_interlace - causes glDrawPixels and glTexImage to skip rows of pixels (for working
with video data (fields vs frames))
GL_SGIS_sharpen_texture - adds a texture magnification filter which uses extrapolation to
improve sharpness of magnified textures
GL_SGIS_texture_border_clamp - adds a new texture coordinate clamping function which doesn’t
average the border and edge colors when interpolating samples
GL_SGIS_texture_color_table - adds a color lookup table to texturing
GL_SGIS_texture_edge_clamp - adds a new texture coordinate clamping function which prohibits
sampling of the texture border color
GL_SGIS_texture_filter4 - adds support for user-defined 4x4 texture sampling functions

GLX Extensions (see section 8)

GLX_EXT_import_context - allows multiple X clients to share an indirect rendering context
GLX_EXT_visual_info - extends RGB mode rendering to PseudoColor, StaticColor, GrayScale,
and StaticGray visuals. Also, adds support for transparent overlay pixels.
GLX_EXT_visual_rating - classifies GLX visuals according to performance and visual quality

SGI-specific GLX extensions

GLX_SGI_make_current_read - independently set pixel draw and read drawables so, for example,
glCopyPixels can copy from one window into another
GLX_SGIS_multisample - an antialiasing mechanism for high-end hardware
GLX_SGI_swap_control - adds a function to control the rate of glXSwapBuffers and a function
for synchronized swapping of multiple displays
GLX_SGIX_video_source - allows sourcing of pixel data from a video stream
GLX_SGI_video_sync - provides a way to synchronize with the video frame rate

Microsoft OpenGL Extensions

GL_WIN_swap_hint - specify a sub-window to swap, rather than the whole window. This is a
performance improvement. For more information see
http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/ogl/gl/src/glfunc01_1.htm

6. OpenGL 1.1

Many extensions designed for OpenGL 1.0 have been incorporated into OpenGL 1.1 as standard
features.

A program written for OpenGL 1.0 which uses no extensions will work with OpenGL 1.1 unchanged.
However, a program written for OpenGL 1.0 with extensions may require some modifications to work
with OpenGL 1.1.

93

If you want your program to compile and execute cleanly with either OpenGL 1.0 or OpenGL 1.1 you
will need to observe the following guidelines.

Compile time

To detect whether a particular feature is available at compile time you will need to use the C
preprocessor to test for either an OpenGL 1.0 extension name or test for the OpenGL 1.1 version
symbol: GL_VERSION_1_1.

For example:

#if defined(GL_EXT_texture_object) || defined(GL_VERSION_1_1)
 your code
#endif

Sometime in the future you may need

#if defined(GL_EXT_texture_object) || defined(GL_VERSION_1_1) || defined(GL_VERSION_1_2)
 your code
#endif

Runtime

At runtime you must check if the renderer supports OpenGL 1.1 or the 1.0 extension:

/* After calling MakeCurrent()! */
char *version = (char*) glGetString(GL_VERSION);
GLboolean HaveTexObjExtension;

if (strncmp(version,"1.1",3)==0
 || CheckExtension("GL_EXT_texture_object")) {
 HaveTexObjExtension = GL_TRUE;
}
else {
 HaveTexObjExtension = GL_FALSE;
}

Example

Implementing these checks correctly can be a bit complicated. Here’s an approach you may find useful:

Step 1

Declare a boolean variable for each extension or OpenGL 1.1 feature you would like to use:

GLboolean HaveTextureObjects = GL_FALSE;
GLboolean HavePolygonOffset = GL_FALSE;

Step 2

94

Write a function which tests for each feature at runtime. Call it after your first call to MakeCurrent .

void check_gl_features(void)
{
 char *version = (char*) glGetString(GL_VERSION);
 char *exten = (char*) glGetString(GL_EXTENSIONS);

 if (strncmp(version,"1.1",3)==0) {
 HaveTextureObjects = GL_TRUE;
 HavePolygonOffset = GL_TRUE;
 }
 else {
 HaveTextureObjects = CheckExtension("GL_EXT_texture_object");
 HavePolygonOffset = CheckExtension("GL_EXT_polygon_offset");
 }
}

Step 3

Write wrapper functions to hide some of the ugliness of dealing with OpenGL 1.1 or 1.0 extensions. For
example:

/* call to allocate a set of texture objects */
void myGenTextures(GLsizei n, GLuint *textures)
{
 if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
 glGenTextures(n, textures);
#elif defined(GL_EXT_texture_object)
 glGenTexturesEXT(n, textures);
#endif
 }
 else {
 /* fallback code: use display lists */
 GLuint first;
 first = glGenLists(n);
 if (first>0) {
 GLuint i;
 for (i=0; i < n; i++) {
 textures[i] = first+i;
 }
 }
 }
}

/* call to start defining a texture object */
void myBeginTexture(GLenum target, GLuint texture)
{
 if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
 glBindTexture(target, texture);
#elif defined(GL_EXT_texture_object)
 glBindTextureEXT(texture);
#endif
 }
 else {
 /* fallback code: use display lists */
 glNewList(texture, GL_COMPILE);

95

 }
}

/* call to finish defining a texture object */
void myEndTexture(GLenum target)
{
 if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
 glBindTexture(target, 0);
#elif defined(GL_EXT_texture_object)
 glBindTextureEXT(texture, 0);
#endif
 }
 else {
 /* fallback code: use display lists */
 glEndList();
 }
}

/* call to use a texture object */
void myBindTexture(GLenum target, GLuint texture)
{
 if (HaveTextureObjects) {
#if defined(GL_VERSION_1_1)
 glBindTexture(target, texture);
#elif defined(GL_EXT_texture_object)
 glBindTextureEXT(target, texture);
#endif
 }
 else {
 /* fallback code: use display lists */
 glCallList(texture);
 }
}

/* turn polygon offset on/off */
void myPolygonOffset(GLboolean onoff)
{
 if (HavePolygonOffset) {
#if defined(GL_VERSION_1_1)
 if (onoff) {
 glPolygonOffset(1.0f, 1.0f); /* tune this */
 glEnable(GL_POLYGON_OFFSET_FILL);
 }
 else {
 glDisable(GL_POLYGON_OFFSET_FILL);
 }
#elif defined(GL_EXT_texture_object)
 if (onoff) {
 glPolygonOffsetEXT(1.0f, 0.0001f); /* tune this */
 glEnable(GL_POLYGON_OFFSET_EXT);
 }
 else {
 glDisable(GL_POLYGON_OFFSET_EXT);
 }
#endif
 }
 else {

96

 /* fallback code: no offset */
 }
}

When designing wrapper functions it’s usually best to look at the big picture and design simple,
high-level wrappers rather than try to make wrappers which directly corresponds to individual OpenGL
functions.

A collection of wrappers like these may be put in a separate source file and reused in many applications.

7. GLU extensions and versions

There have been several versions of the GLU (GL Utility) library and the library may have extensions.
Again, for safety, the GLU version and extensions should be tested for at compile-time and run-time if
you need their specific features. At this time, there are no known GLU extensions.

Compile-time testing

If a GLU extension is available at runtime the glu.h file will define a preprocessor symbol with the
prefix GLU_EXT_. As with OpenGL extensions, there should be #ifdef/#endif tests surrounding any
references to functions or symbols unique to the extension.

Run-time testing

GLU version 1.0 had no function to call at run-time to query the GLU version or extensions list. GLU
version 1.1 added the gluGetString function which takes two possible values: GLU_EXTENSIONS or
GLU_VERSION.

Therefore, if you want to get a list of GLU extensions you’ll need to use something like this:

char *extensions;
#ifdef GLU_VERSION_1_1
extensions = (char *) gluGetString(GLU_EXTENSIONS);
#else
extensions = "";
#endif

Be careful of accidently matching substrings while searching the string.

GLU versions

There have been several versions of the GLU library. As shown above, you can test for the GLU version
at compile-time by checking for preprocessor symbols like GLU_VERSION_1_1 and GLU_VERSION_1_2.
At run-time you can determine the GLU version by calling gluGetString(GLU_VERSION) .

Version 1.1 of GLU only added the gluGetString function.

97

Version 1.2 of GLU introduced a new polygon tessellator. The new tessellator functions all begin with
the prefix gluTess . For more information about the changes in the GLU tesselator from version 1.0 to
1.1 see http://www.digital.com:80/pub/doc/opengl/opengl_new_glu.html

Note that if the GLU_VERSION_1_2 symbol is defined then the GLU_VERSION_1_1 symbol is also defined.
One can expect this trend of backward compatibility to continue.

8. GLX extensions

The GLX interface offers extensions in a manner very similar to core OpenGL. Again, extensions must
be tested for both at compile-time and run-time. If a GLX extension is not available there should be a
fall-back strategy.

Compile-time testing

If a GLX extension is available at runtime the glx.h file will define a corresponding preprocessor
symbol. For example, if the GLX_EXT_import_context extension is available, then glx.h (or
glxtokens.h) will contain

#define GLX_EXT_import_context 1

Run-time testing

After we’ve established a connection to an X server we can determine which GLX extensions are
available by calling glXQueryExtensionsString(dpy, screen) . This function returns a list of
supported GLX extensions separated by white space. Again, we have to be careful when searching the
extensions list. A function similar to CheckExtension should be used.

GLX version testing

There have been several versions of the GLX interface. Version 1.0 was the first version. Version 1.1
added the glXQueryExtensionsString, glXQueryServerString and glXGetClientString

functions. Version 1.2 may include several of the 1.0 and 1.1 GLX extension features.

Testing for the GLX version at runtime involves checking for a preprocessor symbol such as
GLX_VERSION_1_1 or GLX_VERSION_1_2.

The GLX version can be determined at runtime by calling glXQueryVersion .

9. Fall-back scenarios

Your program should be prepared for the likely situation in which a desired extension is not available.

98

Depending on the nature of the extension you may elect to limit functionality, fall-back to an equivalent
but slower implementation, or to simply abort.

Examples:

If the GL_SGIS_multisample extension is not present then antialiasing may simply be disabled.
If the GL_EXT_vertex_array extension is not available then you should fall-back to the regular
glVertex/glColor/glNormal functions at the expense of performance.
If your application is a 3-D volume rendering program based on the 3-D texture map extension
you may have no choice but to abort if the GL_EXT_texture3D extension is not available.

Aborting when an extension isn’t available is stronly discouraged. In most cases users will prefer
reduced performance/functionality over complete failure. At the very least, the user should be informed
why an OpenGL application can’t operate if an extension isn’t present.

10. Using Extensions with Microsoft OpenGL or SGI Cosmo
OpenGL

Unfortunately, there is a complication in using OpenGL extensions with Microsoft OpenGL or SGI
Cosmo OpenGL.

Instead of simply calling extension functions directly one must use wglGetProcAddress to get a pointer
to extension functions.

For example, instead of this:

#if defined(GL_WIN_swap_hint)
 if (CheckExtension("GL_WIN_swap_hint")) {
 glAddSwapHintRectWIN(x, y, width, height);
 }
#endif

One must use:

#if defined(WIN32) && defined(GL_WIN_swap_hint)
 if (CheckExtension("GL_WIN_swap_hint")) {
 PFNGLADDSWAPHINTRECTWINPROC glAddSwapHintRectWIN;
 glAddSwapHintRectWIN = (PFNGLADDSWAPHINTRECTWINPROC)
 wglGetProcAddress("glAddSwapHintRectWIN");
 (*glAddSwapHintRectWIN)(x, y, width, height);
 }
#endif

By the way, the glAddSwapHintRectWIN function must be called before every SwapBuffers call. The
rectangle list is lost after SwapBuffers .

99

11. References

Other sources of information about OpenGL extensions can be found at:

All about OpenGL Extensions from SGI.
(http://www.sgi.com/Technology/openGL/extensions.html)
Programming OpenGL with the X Window System by Mark Kilgard.
wglGetProcAddress documentation from
(http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/ogl/winext/src/ntopnglr_14.htm)
Using Cosmo OpenGL Extensions
(http://www.sgi.com/Products/cosmo/opengl/beta2/OpenGLonWin-17.html)

Last edited on April 19, 1997 by Brian Paul.

100

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

GLX Portability Notes

Contents

1. Introduction
2. GLX fundamentals
3. GLX visuals
4. Colormaps
5. Double buffering
6. GLX Pixmaps
7. Mesa-specific

1. Introduction

GLX is the OpenGL interface to the X Window System. GLX defines both an API and a wire protocol
which allows remote display of OpenGL applications on GLX-capable X servers.

Many OpenGL portability problems can be traced to GLX programming errors. The purpose of this
document is to help the GLX programmer avoid a number of common problems.

Information relevant to using Mesa is also included. Even if an OpenGL developer isn’t targetting Mesa
it’s a good idea to be aware of Mesa’s idiosyncrasies since it will expand the range of systems on which
the application can be used.

2. GLX fundamentals

After we’ve established a connection to an X server (perhaps with XOpenDisplay) we have to check that
the X server actually supports OpenGL and the GLX X server extension.

The glXQueryExtension(dpy, errorBase, eventBase) function serves this purpose. The returned
errorBase and eventBase values are usually ignored. If glXQueryExtension returns false then the

101

application should inform the user that the display does not support OpenGL.

Next, we’ll proceed with GLX setup which includes selecting a GLX visual, creating a GLX context,
selecting a colormap and creating a window.

3. GLX visuals

A GLX visual is basically an X visual augmented with ancillary (depth, stencil, accumulation, etc)
buffer information.

A visual is usually chosen with glXChooseVisual . Per the OpenGL GLX specification, if an RGB
mode is requested, glXChooseVisual will return either a TrueColor or DirectColor visual. Otherwise,
a PseudoColor or StaticColor visual will be returned for color index mode.

Mesa, however, may potentially return any X visual type for RGB mode. This is because some X
displays on which Mesa may be used do not have TrueColor or DirectColor visuals. Mese prefers
visual types in the order TrueColor , DirectColor , PseudoColor , StaticColor , GrayScale , and
StaticGray and visuals depths from deepest to shallowest. There is one exception: 8-bit PseudoColor

is preferred over 8-bit TrueColor . This is a convention many people prefer for low-end displays which
use an 8-bit PseudoColor visual for the default and only have one hardware colormap.

Similarly, Mesa may return a PseudoColor , StaticColor , GrayScale or StaticGray visual if color
index mode is requested.

Mesa violates the GLX specification but allows rendering on more types of displays than OpenGL
would.

Dealing with Mesa’s expanded offering of visuals is mostly just a matter of handling colormaps
correctly.

A footnote-

I’ve lost count of how many people have reported that depth buffering doesn’t work on system XYZ or
doesn’t work with Mesa. In all cases the problem has been that the programmer neglected to
specify/request a depth-buffered visual. Many OpenGL servers have depth buffers associated with all
GLX visuals so even if a depth buffer isn’t requested one may get lucky and get a depth-buffered visual
anyway.

The point is: be careful that the attribute list passed to glXChooseVisual really specifies what you need.

4. Colormaps

The best way to handle X colormaps depends on whether one is rendering in RGB or color index mode.

102

4.1 RGB mode colormaps

When rendering in RGB mode the colormap is usually never altered (using a DirectColor visual may
be an exception). In general we want to share read-only colormaps among windows to minimize
colormap flashing. Colormap flashing (aka the technicolor effect) occurs when the demand for
colormaps exceeds the hardware’s capacity. As the mouse is moved from window to window different
colormaps may be installed; some windows will be forced to use the wrong colormap.

The following algorithm should pick a good RGB colormap in most cases:

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP atom */
#if defined(__vms)
#include <X11/StdCmap.h> /* for XmuLookupStandardColormap */
#else
#include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap */
#endif
#include <GL/glx.h>
#include <string.h>

/*
 * Return an X colormap to use for OpenGL RGB-mode rendering.
 * Input: dpy - the X display
 * scrnum - the X screen number
 * visinfo - the XVisualInfo as returned by glXChooseVisual()
 * Return: an X Colormap or 0 if there’s a _serious_ error.
 */
Colormap
get_rgb_colormap(Display *dpy, int scrnum, XVisualInfo *visinfo)
{
 Atom hp_cr_maps;
 Status status;
 int numCmaps;
 int i;
 XStandardColormap *standardCmaps;
 Window root = RootWindow(dpy,scrnum);
 int using_mesa;

 /*
 * First check if visinfo’s visual matches the default/root visual.
 */
 if (visinfo->visual==DefaultVisual(dpy,scrnum)) {
 /* use the default/root colormap */
 return DefaultColormap(dpy, scrnum);
 }

 /*
 * Check if we’re using Mesa.
 */
 if (strstr(glXQueryServerString(dpy, scrnum, GLX_VERSION), "Mesa")) {
 using_mesa = 1;
 }
 else {
 using_mesa = 0;
 }

 /*

103

 * Next, if we’re using Mesa and displaying on an HP with the "Color
 * Recovery" feature and the visual is 8-bit TrueColor, search for a
 * special colormap initialized for dithering. Mesa will know how to
 * dither using this colormap.
 */
 if (using_mesa) {
 hp_cr_maps = XInternAtom(dpy, "_HP_RGB_SMOOTH_MAP_LIST", True);
 if (hp_cr_maps
 && visinfo->visual->class==TrueColor
 && visinfo->depth==8) {
 status = XGetRGBColormaps(dpy, root, &standardCmaps,
 &numCmaps, hp_cr_maps);
 if (status) {
 for (i=0; i < numCmaps; i++) {
 if (standardCmaps[i].visualid==visinfo->visual->visualid) {
 Colormap cmap = standardCmaps[i].colormap;
 XFree(standardCmaps);
 return cmap;
 }
 }
 XFree(standardCmaps);
 }
 }
 }

 /*
 * Next, try to find a standard X colormap.
 */
#ifndef SOLARIS_BUG
 status = XmuLookupStandardColormap(dpy, visinfo->screen,
 visinfo->visualid,
 visinfo->depth,
 XA_RGB_DEFAULT_MAP,
 /* replace */ False,
 /* retain */ True);
 if (status == 1) {
 status = XGetRGBColormaps(dpy, root, &standardCmaps,
 &numCmaps, XA_RGB_DEFAULT_MAP);
 if (status == 1) {
 for (i = 0; i < numCmaps; i++) {
 if (standardCmaps[i].visualid == visinfo->visualid) {
 Colormap cmap = standardCmaps[i].colormap;
 XFree(standardCmaps);
 return cmap;
 }
 }
 XFree(standardCmaps);
 }
 }
#endif

 /*
 * If we get here, give up and just allocate a new colormap.
 */
 return XCreateColormap(dpy, root, visinfo->visual, AllocNone);
}

Basically, we use the default/root colormap if the visual matches the default/root visual. Otherwise we
look for a standard colormap. If that fails we must allocate a new, private colormap. If using Mesa on an

104

8-bit TrueColor HP display then we look for a special "Color Recovery" colormap which helps to
produce high-quality dithered images.

Caveat: this algorithm may not work on Sun systems due to a bug in the XmuLookupStandardColormap

function. By defining the SOLARIS_BUG symbol the code in question can be omitted.

Finally, if one intends to render into several different windows with the same RGB context those
window should share the same colormap. This is required with Mesa and helps to reduce colormap
flashing with OpenGL.

4.2 Color index mode colormaps

When designing a color index mode application we must decide if we need a writable colormap and/or
need specific colors associated with specific pixel values. For lighting and fog effects to work in color
index mode one has to store specific colors in consecutive colormap entries. Therefore, a private,
writable colormap is required. It should be allocated/created with XCreateColormap(dpy, win,

visual, AllocAll) .

Otherwise, if your GLX visual type and depth matches the default/root visual then you can probably use
the default/root colormap. To allocate a read/write colorcell from the colormap use XAllocColorCells .
To allocate read-only cells use XAllocColor . In both cases, X will return to you the index of a colorcell.

If XAllocColor fails then you may have to search the colormap for a close match. The following
function will search a colormap for the closest match to your requested color:

#include <X11/Xlib.h>
#include <stdlib.h>

/* A replacement for XAllocColor.
 * This function should never fail to allocate a color. When
 * XAllocColor fails, we return the nearest matching color. If
 * we have to allocate many colors this function isn’t a great
 * solution; the XQueryColors() could be done just once.
 */
static void
noFaultXAllocColor(Display * dpy, Colormap cmap, int cmapSize, XColor * color)
{
 XColor *ctable, subColor;
 int i, bestmatch;
 double mindist; /* 3*2^16^2 exceeds long int precision. */

 /* First try just using XAllocColor. */
 if (XAllocColor(dpy, cmap, color))
 return;

 /* Retrieve color table entries. */
 /* XXX alloca canidate. */
 ctable = (XColor *) malloc(cmapSize * sizeof(XColor));
 for (i = 0; i < cmapSize; i++)
 ctable[i].pixel = i;
 XQueryColors(dpy, cmap, ctable, cmapSize);

 /* Find best match. */
 bestmatch = -1;

105

 mindist = 0.0;
 for (i = 0; i < cmapSize; i++) {
 double dr = (double) color->red - (double) ctable[i].red;
 double dg = (double) color->green - (double) ctable[i].green;
 double db = (double) color->blue - (double) ctable[i].blue;
 double dist = dr * dr + dg * dg + db * db;
 if (bestmatch < 0 || dist < mindist) {
 bestmatch = i;
 mindist = dist;
 }
 }

 /* Return result. */
 subColor.red = ctable[bestmatch].red;
 subColor.green = ctable[bestmatch].green;
 subColor.blue = ctable[bestmatch].blue;
 free(ctable);
 if (!XAllocColor(dpy, cmap, &subColor)) {
 subColor.pixel = (unsigned long) bestmatch;
 }
 *color = subColor;
}

If your application needs several color index mode windows it’s a good idea to try to share one
colormap among the windows. Finally, be sure that glXChooseVisual returns a PseudoColor (or for
Mesa, GrayScale) visual if a writable colormap is needed.

After the colormap has been selected you can create your window, specifying the colormap in the
XSetWindowAttributes structure passed to XCreateWindow .

Furthermore, you should inform the window manager if your top-level window contains children with
non-default colormaps. This is done with the XSetWMColormapWindows function:

 XSetWMColormapWindows(display, top_level_window,
 &window_list, num);

5. Double buffering

Surprisingly, double buffered visuals are not required by OpenGL. If a glXChooseVisual request for a
double buffered visual fails you should try to get a single buffered visual. Be sure to call glFlush to
force completion of rendering where glXSwapBuffers would have been called.

Similarly, OpenGL does not require single buffered visuals to be offered. If you want a single buffered
window but glXChooseVisual fails, you should try again specifying double buffering. Then, issue
glDrawBuffer(GL_FRONT) to direct drawing to the front color buffer.

Be aware that many systems advertised as having 24-bit color, in fact, only offer 12-bit color in double
buffer mode. This is because the 24-bit frame buffer is divided into two 12-bit buffers. Dithering usually
makes up for the loss of color accuracy.

Suppose you want both double buffering and full 24-bit color in this situation. For example, during

106

animation one may want double buffering but to show a static image a full-color single buffered window
would look best.

IRIS GL allowed one to reconfigure a window to single or double buffering on the fly with
doublebuffer , singlebuffer and gconfig . This can’t be done with OpenGL. Instead, you can create
two subwindows contained by a common parent, one window single buffered and the other window
double buffered, and use XMapWidnow/XUnmapWindow to display the one you want to use. Remember to
use separate contexts for each window since they will have different visuals.

6. GLX Pixmaps

GLX pixmaps are used for off-screen OpenGL rendering. A GLX pixmap is basically an X Pixmap
augmented with OpenGL ancillary buffers (depth, stencil, etc). The advantages of GLX pixmaps are
they take no screen space, are never damaged, and not constrained by the size of the screen. The
disadvantage of GLX pixmaps is that 3-D graphics hardware is often unable to render into them; a
software renderer executes the OpenGL instructions.

The usual steps in creating and using a GLX pixmap are:

Select a visual with glXChooseVisual
Create an X pixmap with XCreatePixmap using the depth of the visual returned by
glXChooseVisual
Create the GLX pixmap from the X pixmap with glXCreateGLXPixmap .
Create an OpenGL rendering context with glXCreateContext , usually specifying the indirect
option.
Bind the context to the GLX pixmap with glXMakeCurrent

Notes:

Since one often wants to render into a GLX pixmap and later copy it to an on-screen window, the
X window should have the same depth as the pixmap.
If one wants to use one context for both GLX pixmap rendering and rendering into a window, the
GLX pixmap and window must be created with the same XVisualInfo.
Direct rendering contexts are usually not supported for pixmap rendering. The only way to
determine if direct rendering into GLX pixmaps works is to create a direct context then test if
glXMakeCurrent succeeds.

There is a special problem in using GLX pixmaps with Mesa in RGB mode. Since Mesa supports RGB
mode rendering into any kind of X visual it often needs colormap information so that RGB values can be
converted into logical pixel values. The GLX pixmap facility does not provide a way to indicate which
X colormap is associated with a GLX pixmap.

Mesa (version 1.2.8 and later) has a GLX extension which lets the user specify the colormap associated
with a GLX pixmap. The extension provides a new function very similar to glXCreateGLXPixmap :

GLXPixmap glXCreateGLXPixmapMESA(Display *dpy, XVisualInfo *visual,

107

 Pixmap pixmap, Colormap cmap)

Strictly speaking, the colormap argument is only needed when rendering in RGB mode into a GLX
pixmap which uses a PseudoColor , StaticColor , GrayScale or StaticGray visual. If the colormap is
not specified but is in fact needed, the glXMakeCurrent call will return False.

The proper way to use this function is:

 Pixmap p;
 GLXPixmap q;
 ...
 #ifdef GLX_MESA_pixmap_colormap
 q = glXCreateGLXPixmapMESA(display, visual, p, colormap);
 #else
 q = glXCreateGLXPixmap(display, visual, p);
 #endif

Since the GLX_MESA_pixmap_color extension symbol is only defined if using Mesa’s header files this
technique will be portable to any GLX implementation.

7. Mesa-specific

Since Mesa doesn’t really implement the GLX protocol it isn’t 100% compliant with the GLX
specification. Most of the significant differences have been explained above. The remaining differences
are discussed here.

7.1 GLX_MESA_release_buffers extension

The first time an X window is specified to Mesa’s glXMakeCurrent the X window is augmented with
ancillary (back color, depth, stencil, etc) buffers. Unfortunately, Mesa’s GLX has no way of detecting
when the X window is destroyed with XDestroyWindow . The best Mesa can do is to check for recently
destroyed windows whenever the client calls the glXCreateContext or glXDestroyContext functions.
This may not be sufficient in all situations though. If many windows are used by the application a great
deal of memory may be wasted.

The solution is to call the glXReleaseBuffersMESA function just before destroying the X window. For
example:

#ifdef GLX_MESA_release_buffers
 glXReleaseBuffersMESA(dpy, window);
#endif
XDestroyWindow(dpy, window);

Last edited on April 13, 1997 by Brian Paul.

108

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL "Gotchas"

Even though OpenGL is a well organized and has a simple API there some common pitfalls which new
(and experienced) programmers can run into.

This document describes many such pitfalls and offers explanations or work-arounds.

glDrawPixels problems.

glDrawPixels draws a skewed image
Be sure the GL_UNPACK_ALIGNMENT value is set correctly. The default is four and if you’re
drawing GLubyte GL_RGB images it may have to be set to one.

glDrawPixels() draws the wrong colors
Be sure texture mapping is disabled as texturing is applied even to glDrawPixels. Also, be sure
you’re using the correct data type for your imagery. A common mistake is to use GLuint instead of
GLubyte when drawing images with single-byte red, green, blue and alpha components.

glDrawPixels() of imagery obtained from glReadPixels() looks different than the original image
Try disabling dithering with glDisable(GL_DITHER).

glDrawPixels isn’t as fast as expected
Some older graphics systems handle ABGR-order pixels faster than RGBA-order. Try the
GL_EXT_abgr extension. Also, be sure to disable rasterization options such as depth testing, fog,
stenciling, scissoring, pixel scaling, dithering and biasing, if you don’t need them.
GL_UNSIGNED_BYTE is typically the fastest data type.

How can I make glDrawPixels() draw an image flipped upside down?
Try glPixelZoom(1.0, -1.0). Similarly, an image can be flipped left to right with glPixelZoom().
Note that you may have to adjust your raster position to position the image correctly.

glRasterPos Problems

glRasterPos() doesn’t put the raster position at the window coordinate I specify

109

glRasterPos transforms coordinates by the modelview and projection matrices just like vertices.
Set your matrices appropriately.

Why can’t I position a bitmap outside of the window?
If glRasterPos() evaluates to a position outside of the viewport the raster position becomes invalid.
Subsequent glBitmap() and glDrawPixels() calls will have no effect.

Solution; extend the viewport beyond the window bounds or use glBitmap() with an NULL bitmap
and your desired delta X,Y movement from the current, valid raster position. Be sure to restore the
viewport to a normal position before rendering other primitives.

The following function will set the raster position to an arbitrary window coordinate:

void window_pos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
 GLfloat fx, fy;

 /* Push current matrix mode and viewport attributes */
 glPushAttrib(GL_TRANSFORM_BIT | GL_VIEWPORT_BIT);

 /* Setup projection parameters */
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glLoadIdentity();

 glDepthRange(z, z);
 glViewport((int) x - 1, (int) y - 1, 2, 2);

 /* set the raster (window) position */
 fx = x - (int) x;
 fy = y - (int) y;
 glRasterPos4f(fx, fy, 0.0, w);

 /* restore matrices, viewport and matrix mode */
 glPopMatrix();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 glPopAttrib();
}

The sequence of glRasterPos(), glColor(), glBitmap() doesn’t result in the desired bitmap color
Call glColor() before glRasterPos().

Texture Mapping Problems

Texturing just isn’t working
There are several possible explanations.

If texture minification is happening and the GL_MIN_FILTER is not GL_NEAREST or
GL_LINEAR then you must have a complete set of mipmaps defined. If you don’t it is as if

110

texturing were disabled.
Be sure your texture sizes are powers of two. Some OpenGL implementations fail to
generate an error for this condition.

Textures with borders don’t work
Several implementations of OpenGL have bugs which prevent textures with borders from working
correctly. OpenGL on SGI Infinite Reality systems is an example.

Texturing isn’t working on a Reality Engine 2 system
There’s a known bug which requires glEnable(GL_TEXTURE_2D) be called before
glTexImage2D() in some situations.

Performance Problems

Overall slow performance
Be sure a direct rendering context is being selected so that graphics hardware is accessed directly.

Motif/OpenGL Problems

Problems with glViewport and window resizing with Motif
In the resize callback for your application you should put a call to glXWaitX before the
glViewport call to be sure the X server has actually resized the window before glViewport is
called.

Lighting and Coloring Problems

glColor3b(255, 255, 255) doesn’t give me white
Be careful with color values and data types. The correct function in this case is glColor3ub(255,
255, 255).

When lighting is enabled, the colors are not what’s expected
Try glEnable(GL_NORMALIZE) to scale your normal vectors to unit length. glScale() effects
normal vectors, not just vertices.

Lines and points aren’t colored as expected
Lighting may be enabled. All vertices are lit if lighting is enabled, even when drawing points and
lines.

In color index mode glClearIndexi(0) doesn’t clear the window to black.
There is no guarantee that color index 0 corresponds to black in the colormap. It is up to you to be
sure the colormap entries are correctly loaded in your application.

Miscellaneous Problems

111

Nothing is drawn when in single-buffer mode
Call glFlush() after rendering. Your drawing commands may accumulate in a buffer and not be
executed until you explicitly issue a flush.

How do I draw outlined polygons?
If you’ve tried this you’ve probably seen the "shimmer" effect caused by erroneous depth
buffering of the polygon vs the outline. There are several solutions. The polygon offset extension,
standard in OpenGL 1.1, is one. A slightly more complex solution is to use stenciling as described
in the OpenGL Programming Guide.

Be sure no errors are being generated
Use glGetError() inside your rendering/event loop to catch errors. With Mesa, set the
MESA_DEBUG environment variable.

Can I restrict SwapBuffers to a subregion of a window?
No. However, you may be able to use glCopyPixels to copy pixels from the back to front buffer or
create subwindows for the regions you want swapped.

Depth testing isn’t working
If you’ve called glEnable(GL_DEPTH_TEST) and depth testing still isn’t happening be sure that
you’ve requested a visual (GLX) or pixel format (WGL) which has a depth buffer. This is done by
specifying the GLX_DEPTH_SIZE parameter to glxChooseVisual() or specifying a non-zero
cDepthBits value in the PIXELFORMATDESCRIPTOR structure passed to ChoosePixelFormat() .

Last edited on April 20, 1997 by Brian Paul.

112

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Hardcopy

Contents

1. Introduction
2. Bitmap-based Output
3. Vector-based Output
4. Microsoft Windows OpenGL Printing

1. Introduction

OpenGL was designed for realtime 3-D raster graphics, which is very different from 2-D printed copy.
Nevertheless, many OpenGL applications need hardcopy output. There are basically two approaches:

1. raster/bitmap-based
2. vector-based

The following two sections describe the raster and vector approaches. Microsoft OpenGL users may
elect to use the built-in printing support described in the last section.

2. Bitmap-based Output

A simple solution to OpenGL hardcopy is to simply save the window image to an image file, convert the
file to Postscript, and print it. Unfortunately, this usually gives poor results. The problem is that a typical
printer has much higher resolution than a CRT and therefore needs higher resolution input to produce an
image of reasonable size and fidelity.

For example, a raster image of size 1200 by 1200 pixels would more than fill the typical 20-inch CRT
but only result in a printed image of only 4 by 4 inches if printed at 300 dpi.

To print an 10 by 8-inch image at 300 dpi would require a raster image of 3000 by 2400 pixels. This is a

113

situation in which off-screen, tiled rendering is useful. For more information see OpenGL/Mesa
Offscreen Rendering and TR, a tile rendering utility library for OpenGL.

Once you have a raster image in memory it needs to be written to a file. If printing is the only intended
purpose for the image than directly writing an Encapsulated Postscript file is best.

Mark Kilgard’s book Programming OpenGL for the X Window System contains code for generating
Encapsulated Postscript files. The source code may be downloaded from
ftp://ftp.sgi.com/pub/opengl/opengl_for_x/xlib.tar.Z.

3. Vector-based Output

In general, high quality vector-style hardcopy is difficult to produce for arbitrary OpenGL renderings.
The problem is OpenGL may generate arbitrarily complex raster images which have no equivalent
vector representation. For example, how are smooth shading and texture mapping to be converted to
vector form?

Getting the highest quality vector output is application dependant. That is, the application should
probably generate vector output by examining its scene data structures.

If a more general solution is desired there are at least two utilities which may help:

GLP (http://dns.easysw.com/~mike/glp/) is a C++ class library which uses OpenGL’s feedback
mechanism to generate Postscript output. GLP is distributed with a GNU copyright.

GLPrint (http://www.ceintl.com/products/GLPrint/) from Computational Engineering International, Inc.
is a utility library OpenGL printing. The product is currently in beta release.

4. Microsoft Windows OpenGL Printing

Microsoft’s OpenGL support printing of OpenGL images via metafiles. The basic steps are:

1. Call StartDoc to associate a print job to your HDC handle
2. Call StartPage to setup the document
3. Create a rendering context with wglCreateContext
4. Bind the context with wglMakeCurrent
5. Do your OpenGL rendering
6. Unbind the context with wglMakeCurrent(NULL, NULL)
7. Call EndPage to finish the document
8. Call EndDoc to finish the print job

This procedure is raster-based and may require much memory. To circumvent this problem, printing is
done in bands. This however takes more time.

114

Last edited on April 22, 1997 by Brian Paul.

115

116

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Language Bindings

Contents

1. Introduction
2. Bindings
3. Notes

1. Introduction

The OpenGL API is defined in terms of C/C++ but bindings for several other languages exist.

Fortunately, the OpenGL function parameters are all simple types (boolean, integer, floating point,
constants, arrays) so the API translates easily from C to other languages.

The OpenGL Architecture Review Board (ARB) controls the C, C++, Fortran, Pascal and Ada binding
specifications at this time.

2. Bindings

C++
Same as the C bindings. The ARB voted not to use the C++ function overloading facility.
Therefore, the C++ OpenGL interface is identical to that for C.

Fortran
Fortran bindings are shipped by several vendors including SGI. The Fortran API functions are
prefixed with f. For example, glVertex3f() becomes fglVertex3f().

The OpenGL constants are not supposed to be prefixed with F (i.e. GL_POLYGON, not
FGL_POLYGON) but SGI’s IRIX 5.3 Fortran header file for OpenGL does use the F prefix. The
GLUT toolkit includes an fgl.h header file with correctly named constants.

117

Finally, the maximum length of identifiers varies among Fortran compilers. Since OpenGL has
several long (+32 character) identifiers they may be truncated in the header file.

Bill Mitchell of the NIST has written fortran 77 and fortran 90 bindings for OpenGL and Mesa.
(http://math.nist.gov/f90gl/)

Ada
Discussed by the ARB, but yet to be implemented by a vendor.

Modula-3
OpenGL bindings for Modula-3 are available from Columbia University.
(http://www.cs.columbia.edu:80/graphics/modula3/opengl/)

Pascal
No Pascal bindings for OpenGL are known to exist.

Tcl/Tk
TIGER (Tcl-based Interpretative Graphics EnviRonment) is a tool for interpretive
programming of OpenGL with Tcl.
(ftp://metallica.prakinf.tu-ilmenau.de/pub/PROJECTS/TIGER1.0)
TkOGL provides Tcl/Tk wrappers for the OpenGL API
(http://aquarius.lcg.ufrj.br/~esperanc/tkogl.html). The following program, for example, draws
a triangle:

 pack [OGLwin .gl]
 .gl main -clear colorbuffer \
 -begin triangle \
 -vertex 0 1 0 \
 -vertex -1 -1 0 \
 -vertex 1 -1 0 \
 -end

OGLTK is a Tk widget/shell for OpenGL rendering.
(http://www.cs.unm.edu/~bederson/ogl.html)
Togl is another Tk widget for OpenGL rendering based on OGLTK but with a few more
features. (http://www.ssec.wisc.edu/~brianp/Togl.html)

Python
David Ascher at Brown University has information about Python and OpenGL.
(http://maigret.cog.brown.edu:80/python/opengl/)

Java
At the time these notes were written the status of official OpenGL / 3D support for Java was still
indeterminate. Unfortunatley, It appears that Sun and Silicon Graphics are not collaborating
further on Cosmo3D.

In the mean time, one is probably best off with the unoffical port of OpenGL to Java by Leo Chan
of the University of Waterloo. (ftp://cgl.uwaterloo.ca/pub/software/meta/OpenGL4java.html)

118

STk (Scheme/Tk)
Carnegie Mellon University has OpenGL bindings for StK, a Scheme interpreter with a Tk
interface. Contact James Grandy (jcg@cs.cmu.edu) for more information.

Delphi
Delphi bindings for OpenGL 1.0 (written by Rick Hansen, 71043.2142@compuserve.com) and 1.1
(written by Mike Lischke, Lischke@imib.med.tu-dresden.de) are available from the Delphi Super
Page (http://sunsite.icm.edu.pl/delphi/"). Search for opengl.

3. Notes

While OpenGL’s API is easily adapted to many languages the same can’t be said of most window
system interfaces. For example, a Fortran-based OpenGL application may still need some C code to
interface OpenGL with Xlib since there’s no Fortran interface to Xlib.

In some cases, such as Tcl/Tk, a special interface layer written in C may encapsulate the details of the
OpenGL window system interface. Another example is GLUT. GLUT hides the details of OpenGL
window system integration, providing a simple, window system-independent interface with both C and
Fortran bindings.

Last edited on April 14, 1997 by Brian Paul.

119

120

The Mesa 3-D Graphics Library
A White Paper

Brian Paul

Second Edition, April 1997

Abstract
Mesa is a free 3-D graphics library which uses the OpenGL API and semantics. It works on most
modern computers allowing people without OpenGL to write and use OpenGL-style applications. This
paper gives an overview of Mesa and describes a bit of its implementation.

Contents
1. Introduction
2. Mesa vs. OpenGL
3. Implementation

3.1 Library State
3.2 Point, Line and Polygon Rendering
3.3 Fragment Processing
3.4 Device Driver Functions
3.5 The X Device Driver

4. Extensions
4.1 OpenGL extensions
4.2 Mesa extensions

5. Future Plans
6. Summary
A. Obtaining Mesa

1. Introduction
Mesa began as an experiment in writing a 3-D graphics library. After about a year of "spare time"
development it was released on the Internet. It has since evolved with the help of many contributors to
the point where it is a viable and popular alternative to OpenGL.

In the spirit of free software, Mesa is distributed under the terms of the GNU library copyright.

The Mesa distribution includes implementations of the core OpenGL library functions, the GLU utility

121

functions, the aux and tk toolkits, Xt/Motif widgets, drivers for X11, Microsoft Windows ’95/NT and
DOS, NeXTStep, and many demonstration programs. Macintosh and Amiga drivers are available
separately.

Mesa compiles easily, requiring only an ANSI C compiler and standard development headers and
libraries.

From the application programmer’s point of view, Mesa is a nearly seemless replacement for OpenGL.
The Mesa header files are named the same as OpenGL’s (GL/gl.h, GL/glu.h, GL/glx.h, etc) and contain
equivalent datatypes, constants and function prototypes. The Mesa library files may be renamed to
match the typical OpenGL library names and locations. On some operating systems Mesa may be built
as a shared library.

After Mesa has been installed most OpenGL applications should compile and execute without
modification.

Since version 2.0 of Mesa the OpenGL 1.1 API is implemented.

2. Mesa vs. OpenGL
While Mesa uses the OpenGL API and follows the OpenGL specification very closely, it is important to
understand that Mesa is not a true implementation of OpenGL. Official OpenGL products are licensed
and must completely implement the OpenGL specification and pass a suite of conformance tests. Mesa
meets none of these requirements.

At first, Mesa may seem to be a competitor to official OpenGL products. Actually, Mesa has helped to
promote the OpenGL API by expanding the range of computers which may execute OpenGL programs.
There are many systems which are not supported by OpenGL vendors but can run Mesa instead. People
who are curious about OpenGL may try Mesa at no cost and later purchase an OpenGL implementation
which perhaps utilizes 3-D graphics hardware. Mesa has been very popular in computer graphics
courses. Many students and colleges without the resources to obtain commercial OpenGL
implementations successfully use Mesa instead.

Mesa does not implement the full OpenGL specification. For example, antialiasing, trimmed NURBS,
and a few glGet* functions are not yet implemented. The GLX interface is only an emulation; it does not
generate GLX protocol. It is expected that these features will eventually be implemented.

Mesa doesn’t typically perform as well as commercial OpenGL implementations for several reasons.
First, portability to a wide range of computers is considered more important than optimizing for a
particular architecture. Second, the features of the underlying hardware can’t be directly accessed since
Mesa exists as a software library above the operating system and window system programming
interfaces. And finally, Mesa’s development is not supported by any sort of development team. Only so
much can be accomplished by people working in their spare time.

In other respects Mesa has some advantages over OpenGL.

122

Mesa is free.
Mesa works on many computers which lack real OpenGL implementations.
There is a simple built-in profiling facility which can measure and report performance information.
There is an option to enable immediate error message reporting. As soon as an error is generated it
is printed to the stdout stream.
Mesa can warn the user when attempting to do illogical things (such as enabling depth testing
without a depth buffer).
Users may attempt to optimize Mesa’s source code in areas which impact the performance of their
particular application.

3. Implementation
Mesa is written in ANSI C. The core library contains no operating system or window system dependent
code which makes it extremely portable. A special device driver interface insulates the core Mesa library
from the underlying operating/window system.

3.1 Library State

OpenGL is designed around the concept of a state machine. In Mesa this state is stored in a large C
structure. Much of the state is stored in substructures which directly correspond to the attribute groups
such as the polygon group, lighting group and texture group. Pushing and popping of attribute groups is
just a matter of copying C structs to and from a stack.

Many API functions simply modify state values and produce no output. Before rendering functions are
invoked it is often necessary to evaluate the current state to compute derived state values and setup
pointers to specific instances of rendering functions. Lazy evaluation is used to updated the state.

For example, Mesa has many instances of specialized polygon drawing functions. The function to use
depends on the state of smooth vs flat shading, dithering, depth testing, texturing, etc. When any of these
state values are changed the new state flag is set. When glBegin is called the new state flag is tested and
if set, the state is evaluated to select the specialized polygon function and the flag is cleared.

3.2 Point, Line and Polygon Rendering

Arguably the most important feature of Mesa is efficient point, line and polygon rendering. The two
major components of this are vertex transformation and rasterization.

Vertices specified between glBegin and glEnd are accumulated in a vertex buffer. When the buffer is
full or glEnd is called the buffer is processed. Processing the vertex buffer includes transforming
vertices from object coordinates to eye coordinates, lighting, transforming eye coordinates to clip
coordinates, clip testing, and mapping clip coordinates to window coordinates.

Each transformation and clip test stage is implemented in a tight loop which compilers can unroll for
efficient executution. The size of the vertex buffer was chosen so that all vertex data touched in the

123

transformation loops will fit in a 16KB CPU data cache.

Several optimization are used during transformation. The modelview and projection matrices often have
particular elements with values of zero or one. These elements are tested to determine if simplified
vector/matrix multiplications can be used. Depending on the current lighting parameters, either a
full-featured or specialized, optimized lighting function is used. Lookup tables are used to compute the
exponential spotlight and material shininess functions.

After a vertex buffer has been processed it is rendered as a set of points, lines or polygons as specified
by glBegin .

Arrays of points are rendered by either calling a specialized device driver function or by falling back to a
core Mesa drawing function. Points whose clip flag is set are discarded.

Line segments are clipped if either endpoint’s clip flag is set. Then, the line is rasterized by calling either
a specialized device driver function or a fallback Mesa line drawing function. Different line drawing
functions are called for flat or smooth shading, RGB or color index mode, texturing, etc.

Polygons are clipped with the Sutherland-Hodgman algorithm if any of the vertex clip flags are set.
Next, the equation of the plane containing the polygon is computed. The coefficients of the plane
equation ax+by+cz=d are used for determining front/back orientation and implementing the polygon
offset feature.

Polygons with more than three vertices are decomposed into triangles. Then, as with line segments, the
triangle is rasterized either by a specialized device driver function or by a core fall-back function.

The specialized device driver functions for point, line and triangle rendering take vertices as input and
directly modify the frame buffer. Alternatively, the fallback rendering functions in Mesa handle
rendering of primitives with arbitrary raster operations. Point, line and bitmap functions generate
fragments which are stored in a pixel buffer. The triangle rasterizers and glDrawPixels generate
horizontal runs of pixels called spans. The pixel buffer and spans are subjected to fragment processing
before being written to the frame buffer.

3.3 Fragment processing

Fragments are the pixels generated by rasterization augmented with auxiliary information such as color,
depth (Z) and texture coordinates. OpenGL defines an extremely flexible fragment processing pipeline
which includes texturing, fogging, clipping, scissoring, alpha testing, stenciling, depth testing, blending,
dithering, bitwise logic operations, and masking.

Pixel buffer and span-based fragment processing are very similar, the only difference is that the pixel
buffer stores fragments with arbitrary window coordinates while spans are continuous horizontal runs of
fragments.

Since fragments may be culled during processing, each fragment has a write flag associated with it.
Initially, all fragments have their write flags set to true. Clipping, scissoring, alpha testing, stenciling,
and depth testing may set a flag to false to indicate that it should not be considered in further stages. In
the end, only those fragments with their flags set are written to the color buffer.

124

Each stage of fragment processing is implemented in succession with code similar to:

if (stage is enabled) {
 for (each fragment in the buffer or span) {
 apply the fragment operation,
 possibly setting some write flags to false
 }
}

Finally, fragments are written to the color buffer by device driver functions similar to:

for (each fragment) {
 if (fragment flag is true) {
 write fragment color to color buffer
 }
}

The special cases of all write flags set to true or false are handled appropriately. Also, optimized code is
used when all fragments have the same color.

The only fragment operation which must be handled below the device driver level is dithering. Depth
testing, bitwise logic operators and masking may optionally be implemented by the device driver.

3.4 Device Driver Functions

A Mesa driver implements two things:

1. A public OpenGL/window system API (the GLX API, for example)
2. A set of priver driver functions (line and triangle drawing functions, for example)

The device driver interface is a set of function pointers which point to implementations specific to the
window system. It includes functions for:

setting the glClear color or index
clearing the color buffer
setting the current drawing color or index
selecting the front or back color buffer as current source or destination
returning the dimensions of the current color buffer
drawing points, lines, triangles in specific situations
implementing glDrawPixels for specific situations
drawing horizontal runs of pixels
reading horizontal runs of pixels
drawing arrays of randomly positioned pixels
reading arrays of randomly positioned pixels
implementing glFlush and glFinish
setting the index and color component write masks
setting the pixel logic operator
enabling/disabling dithering
implementing depth buffer facilities

125

Some device driver functions are optional. If a particular function isn’t implemented by the device driver
then we fall back to an internal Mesa function.

The next section explains this in more detail for the X device driver.

3.5 The X Device Driver

The X device driver is the most mature of the Mesa device drivers so it is the example we elaborate
upon.

3.5.1 GLX Emulation

Mesa’s interface to the X Window System is defined by the X/Mesa interface. There are X/Mesa
functions for creating rendering contexts, destroying contexts, binding contexts to windows and
pixmaps, swapping color buffers and querying the current context. This interface is not intented for use
by application programmers. It’s purpose is to support Mesa’s GLX emulation.

Mesa only emulates the GLX interface since a true implementation requires hooks into the X server.
Mesa and its GLX can be though of as a translator which converts OpenGL API functions to Xlib
commands. The nice side-effect of this is that Mesa can remotely render to any X server, even if the X
server does not have the GLX server extension. Operating systems which support shared libraries can
substitute Mesa for OpenGL at runtime, allowing OpenGL applications to be displayed on non-GLX
capable X servers without recompiling.

Since it’s an emulation, Mesa’s GLX is not 100% compatible with OpenGL’s GLX. In several ways is
actually superior. For example, while OpenGL only supports RGB rendering into TrueColor or
DirectColor X visuals, Mesa allows RGB rendering into virtually any type and depth of X visual. This is
an important feature since many X servers don’t offer TrueColor or DirectColor visuals. Other visuals
are supported by dithering or converting RGB values to gray levels.

This introduces two potential incompatibilities with OpenGL’s GLX.

Rendering into GLX pixmaps requires information about the colormap which isn’t normally
associated with the pixmap.
OpenGL applications expecting only TrueColor or DirectColor visuals may fail when Mesa
returns a different visual type through the glXChooseVisual function.

The first problem is solved with a special Mesa extension to GLX. The second problem can usually be
fixed by modifying the application’s GLX code.

3.5.2 Pixmaps vs XImages

Images in X can be stored in one of two formats. Pixmaps are stored in the X server and cannot be
directly addressed by an X client. XImages are stored in the client’s address space and may be directly
addressed.

126

When operating in single buffered mode, rendering is directed into an X window. When operating in
double buffered mode, rendering is directed into either a Pixmap or XImage. A Pixmap can be accessed
in the same way as a window (both are considered to be drawables). Whether a Pixmap or XImage gives
best performance depends on a number of factors.

Using a Pixmap can be quite efficient for rendering plain, flat-shaded points, lines and polygons since
the intrinsic X point, line and polygon drawing functions can be used. Performance is relatively good
whether displaying locally or remotely. However, when using smooth shading or per-pixel fragment
operations pixels must be drawn individually with XSetForeground and XDrawPoint calls. The amount
of data transferred from the client to X server is directly proportional to the number of X calls made. For
XSetForeground/XDrawPoint rendering this is usually unacceptably slow.

In most cases using an XImage yields best performance in double buffer mode. The reason is individual
pixels can be directly "poked" into the image since it resides in the client’s address space. Front/back
buffer swapping is implemented by copying the XImage to the X window. The X Shared Memory
extension is used when displaying on the local host to accelerate this operation. In the case of remote
display, the amount of data transferred from the client to the X server is directly proportional to the
window size and not the number of pixels generated during rendering.

Programmers should note that double buffering using an XImage can be faster than single buffering.

3.5.3 Pixel Processing

The most important factor in device driver performance is efficient access to the frame/image buffer for
reading and writing fragments.

The code for writing RGB pixels to the color buffer could be expressed as:

for (each pixel i) {
 pixel_value = convert_rgb_to_pixel(red[i], green[i], blue[i]);
 put_pixel(x[i], y[i], pixel_value);
}

However, this would be very inefficient since the convert_rgb_to_pixel and put_pixel functions must
cope with many types of X visuals and depths. The best method to convert RGB values to pixel values
depends on the X visual. The best method to write pixels to the color buffer depends on whether the
buffer is implemented as an X Pixmap or XImage. Therefore, almost all inner-loops in the X device
driver are optimized for special pixel formats.

For example, there are specialized span and pixel-array writing functions for 24-bit TrueColor, 16-bit
TrueColor, 8-bit PseudoColor, N-bit GrayScale, etc. Furthermore, there are many line and triangle
rasterizer functions optimized for these pixels formats with popular combination of flat/smooth shading,
depth-tested/non-depth-tested rasterization modes.

When the device driver’s UpdateState state function is called the driver’s pointers for span, line and
triangle functions are updated to point to the appropriate optimized function. If no optimized function
satisfies the current library state then a core Mesa fall-back function is used instead.

The device driver’s point, line and triangle functions are also used for hardware acceleration. In this case

127

the driver function will simply set hardware registers and trigger an interupt or DMA to make the
hardware render the primitive.

4. Extensions
Mesa implements several popular OpenGL extensions and adds a few of its own.

4.1 OpenGL Extensions

Mesa has the following OpenGL extensions:

GL_EXT_blend_color
GL_EXT_blend_minmax
GL_EXT_blend_logic_op
GL_EXT_blend_subtract
GL_EXT_polygon_offset
GL_EXT_vertex_array
GL_EXT_texture_object
GL_EXT_texture3D

Several, such as texture objects and vertex arrays, are also standard OpenGL 1.1 (Mesa 2.x) features.
Implementing them both as standard features and as extensions is simply a portability convenience to
programmers.

4.2 Mesa Extensions

Like OpenGL, Mesa can have extensions. At this time, Mesa has four unique extensions.

GL_MESA_window_pos

This extension adds the glWindowPos*MESA functions. These functions are convenient alternatives to
glRasterPos* because they set the current raster position to a specific window coordinate, bypassing
the usual modelview, projection and viewport transformations. This is especially useful for setting the
position for glDrawPixels or glBitmap to a desired window coordinate.

For glWindowPosMESA4f(x,y,z,w) the x, y, z, and w parameters directly set the current raster position
except that z is clamped to the range [0,1]. The current raster position valid flag is always set to true.
The current raster distance is set to zero. The current raster color and texture coordinate are updated in
the same manner as for glRasterPos . In selection mode a hit record is always generated.

Programs using OpenGL, not Mesa, may also use the glWindowPos*MESA functions since an
implementation of it in terms of standard OpenGL functions is included with Mesa.

128

Perhaps the GL_MESA_window_pos extension may be incorporated into a future version of OpenGL
since it is so convenient.

GL_MESA_resize_buffers

Mesa can’t determine when a window is resized. When the on-screen window is resized the ancillary
(depth, stencil, accumulation) buffers should be resized. The work-around is for Mesa to query the
window size whenever glViewport is called. This is usually sufficient since glViewport is usually called
soon after a window has been resized. When this isn’t sufficent the programmer can include a call to
glResizeBuffersMESA() which forces Mesa to query the current window size and resize the ancillary
buffers if needed.

GLX_MESA_release_buffers

Mesa can’t determine when an X window has been destroyed. When a window is destroyed the
associated ancillary buffers should also be destroyed. As a work-around, Mesa maintains a list of known
rendering windows and whenever glXCreateContext or glXDestroyContext are called checks if any of
those windows as been recently destroyed. Since this isn’t sufficient in all situations a programmer can
explicitly tell Mesa to free the ancillary buffers by calling glXReleaseBuffersMESA just before calling
XDestroyWindow.

GLX_MESA_pixmap_colormap

This extension adds the GLX function:

GLXPixmap glXCreateGLXPixmapMESA(Display *dpy, XVisualInfo *visual, Pixmap pixmap,
Colormap cmap)

It is an alternative to the standard glXCreateGLXPixmap function. Since Mesa supports RGB rendering
into any X visual, not just TrueColor or DirectColor, Mesa needs colormap information to convert RGB
values into pixel values. An X window carries this information but a pixmap does not. This function
associates a colormap to a GLX pixmap.

An application using GLX pixmaps should use the following code to associate a colormap with the GLX
pixmap when using Mesa.

#ifdef GLX_MESA_pixmap_colormap
 glxpixmap = glXCreateGLXPixmapMESA(display, xvisualinfo,
 xpixmap, colormap);
#else
 glxpixmap = glXCreateGLXPixmap(display, xvisualinfo, xpixmap);
#endif

5. Future Plans

129

There are a number of things planned in the future for Mesa.

More optimization

Each Mesa release has usually been a bit faster then the previous one. Optimization is an on-going
process. Most recently, optimization of vertex transformation, clipping and lighting has been the focus
since the rasterization bottleneck is greatly reduced when 3-D hardware is used.

GLX protocol encoding

Steven Parker (sparker@taz.cs.utah.edu) of the University of Utah has written free GLX
encoder/decoder software. By integrating the encoder into Mesa, an application linked with Mesa could
send true GLX protocol data to a GLX-equipped X server or send ordinary Xlib protocol to non-GLX X
servers.

If the GLX X server has 3-D acceleration hardware the Mesa-linked application would use it.

X server integration

Work is underway to integrate Mesa into the XFree86 X server. This implies implementing the GLX
decoder and integrating Mesa so that GLX client applications could render to computers running the
XFree86 X server.

Hardware acceleration

Recently, 3-D acceleration hardware for personal computers has become very common and affordable.
There have been several efforts to support 3-D hardware with Mesa.

The first was a driver for the GLint chipset written by Ken Adams while at Clemson University.
Development is now maintained by others at the university. Dr. Robert Geist (rmg@cs.clemson.edu) is
the current contact.

The second was a driver for the Cirrus Logic CL5464 chipset written by Peter McDermott while at the
University of Texas at Austin. Again, development continues at the university. Contact Adam Seligman
(adams@cs.utexas.edu).

The most recent hardware support is for the 3Dfx VooDoo chipset written by David Bucciarelli
(tech.hmw@plus.it). This driver is implemented on the 3Dfx GLide rasterization library.

More hardware acceleration projects will probably follow when Mesa has been integrated with XFree86.

Other possibilities

Other long term items for Mesa development include free versions of the GLS (GL Stream
encoder/decoder) library, GLC (GL Character rendering) library and the OpenGL debugger. Work has
not yet begun on these projects.

130

6. Summary
Mesa has turned out to be a very useful and popular 3-D library. Its success can be attributed to the fact
that the library is free, full featured, reliable, portable and compatible with OpenGL. Many volunteers
have contributed to this success.

Mesa has a bright future with many new features planned. No doubt, much of this work will be done by
volunteers who share an enthusiasm for computer graphics and free software.

Appendix A
Obtaining Mesa

Mesa can be downloaded via the Mesa home page at
http://www.ssec.wisc.edu/~brianp/Mesa.html .

Last edited on April 19, 1997 by Brian Paul.

131

132

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL/Mesa Off-screen Rendering

Contents

1. Introduction
2. Microsoft OpenGL Off-Screen Rendering
3. GLX Pixmaps
4. SGI pbuffers
5. Aux Buffers
6. Mesa
7. Tiled Rendering

1. Introduction

Normally, OpenGL is used for rendering into a window which is displayed on your computer’s screen.
But sometimes it’s useful to render into an image buffer which is not displayed. This is called off-screen
rendering.

Some uses of off-screen rendering include:

Generation of intermediate images such as textures
Batch rendering of non-interactive animations
High-resolution image generation for hardcopy

Generaly, off-screen rendering is not a core part of OpenGL; it’s provided by an OpenGL window
system interface such as GLX or WGL. Some systems have more than one facility for off-screen
rendering, each with its own advantages and disadvantages.

The following sections describe the off-screen rendering facilities for WGL, GLX and Mesa with an
emphasis on portablity and performance trade-offs.

2. Microsoft OpenGL Off-Screen Rendering

133

OpenGL for Windows supports off-screen rendering into Windows device-independent bitmaps.

Pros:

A standard WGL feature

Cons:

Only usable with Windows 95/NT OpenGL

Basically, a bitmap is created with CreateDIBSection . A pixel format with the PFD_DRAW_TO_BITMAP,

PFD_SUPPORT_OPENGL, PFD_SUPPORT_GDI flags must be chosen. After creating a WGL context and
binding it, OpenGL rendering can proceed.

3. GLX Pixmaps

A GLX pixmap is an X Pixmap augmented with a set of ancillary buffers such as a depth buffer, stencil
buffer or accumulation buffer.

Pros:

Buffer contents are retained; cannot be damaged like on-screen windows
GLX pixmaps are a standard part of GLX
GLX pixmaps can sometimes be larger than an on-screen window

Cons:

Rendering into GLX pixmaps may not be accelerated with graphics hardware and, in fact, may be
rather slow
Size may be limited to the screen’s size
Connection to X server is required even though rendering is off-screen

The basic steps to create a GLX pixmap are:

1. Call XOpenDisplay to open an X display connection.
2. Select an X visual with glXChooseVisual .
3. Create an X pixmap with XCreatePixmap specifying the depth of the X visual.
4. Create the GLX pixmap with glXCreateGLXPixmap .

The GLXPixmap handle returned by glXCreateGLXPixmap may be passed to glXMakeCurrent to bind an
OpenGL rendering context to the GLX pixmap. Rendering into the GLX pixmap may then begin.

The contents of a GLX pixmap may be read back with glReadPixels or XGetImage .

134

4. SGI pbuffers

Pbuffers are an OpenGL extension available on recent SGI systems. It is an experimental extension- it
may be changed in the future. The purpose of pbuffers is to allow hardware accelerated rendering to an
off-screen buffer, possibly with pixel formats which aren’t normally supported by the X display.

Pros:

Hardware accelerated
May offer pixel formats not available for ordinary windows

Cons:

Currently only available on recent SGI systems
May require special X server configuration
pbuffers contents may be arbitrarily lost at any time
Connection to X server is required even though rendering is off-screen
More difficult to use than GLX pixmaps
Maximum size may be contrained to screen size

If you are using an SGI system and need accelerated off-screen rendering then pbuffers should be
considered. Otherwise, GLX pixmaps are a more attractive off-screen rendering solution.

With that in mind let us consider pbuffers in more detail.

The pbuffers extension name is GLX_SGIX_pbuffers . Prerequisite to the pbuffers extension is the
exerimental fbconfig extension (GLX_SGIX_fbconfig).

The fbconfig extension was introduced for several reasons:

It introduces a new way to describe the capabilities of a GLX drawable, that is, to describe the
resolution of color buffer components and the type and size of ancillary buffers by providing a
GLXFBConfig construct.
It relaxes the "similarity" requirement when associating a current context with a drawable.
It supports RGBA rendering to one- and two-component windows and GLX pixmaps as well as
pbuffers.

For more information about the fbconfig extension see the fbconfig.txt file.

Pbuffer applications must test for both the GLX_SGIX_pbuffers and GLX_SGIX_fbconfig extensions.
See the Using OpenGL Extensions document for details on extension testing. If either extension is not
available the application should fall back to using GLX pixmaps.

The basic steps for creating a pbuffer are:

1. Call XOpenDisplay to open an X display connection.
2. Get a GLXFBConfigSGIX handle by calling glXChooseFBConfigSGIX
3. Create a pbuffer by calling glXCreateGLXPbuffer

135

Several difficulties may arise during these seemingly simple steps:

glXChooseFBConfigSGIX returns a sorted list of fbconfigs which match your attribute list.
However, some or all of the fbconfigs may not be usable for making a pbuffer.
The glXCreateGLXPbuffer call may fail, generating an X protocol error. You must set up an X
error handler to catch this error so your program doesn’t exit abnormally.
You may have to try several different fbconfig attribute lists before you’re able to find one which
works.

These difficulties basically boil down to the fact that pbuffers are allocated from the frame buffer which
is, in general, of fixed size. Also, the fbconfigs may be staticly configured- a particular combination of
buffer attributes may not be supported.

As an example, suppose you need a single-buffered RGB pbuffer with a depth buffer.
glXChooseFBConfigSGIX may return a list of several fbconfig candidates. However, there may not be
enough memory available in the frame buffer for some or any of those fbconfigs. There may be enough
memory for the color buffer but not the depth buffer, for example. Or, it may not be possible to allocate
a single buffered pbuffer; only double buffered pbuffers may exist.

The best approach is a nested loop:

 let fbAttribs = list of fbconfig attribute lists
 foreach fbAttrib in fbAttribs do
 let fbConfigs = list returned by glXChooseFBConfigSGIX(fbAttrib)
 foreach fbConfig in fbConfigs do
 let pBuffer = glXCreateGLXPbufferSGIX(fbConfig)
 if pBuffer then
 SUCCESS!
 endif
 endfor
 endfor

The course notes CD-ROM includes sample pbuffer code in the pbuffer.trz file. The pbdemo.c program
illustrates this approach. See the MakePbuffer function.

The pbutil.c file contains several pbuffer utility functions. The CreatePbuffer handles the X protocol
error problem.

The pbinfo.c program is similar to glxinfo. It prints a list of fbconfigs available on your system and
whether or not a pbuffer of that config can be created.

System Configuration

Some SGI systems require reconfiguring the display / X server to enable pbuffers (or at least useful
pbuffer configurations).

On SGI Impact systems, for example, if you look in the /usr/gfx/ucode/MGRAS/vof/ directory you
will find a list of video output formats supported by the Impact architecture. Look for ones with the
_pbuf suffix. Use the setmon -x utility to configure your X server to use a pbuffer-enabled video
format.

136

5. Auxiliary Buffers

The OpenGL specification includes auxillary buffers. These are buffers intended for off-screen
rendering. They are addressed via the glDrawBuffer and glReadBuffer functions. Up to four auxiliary
buffers named GL_AUX0, GL_AUX1, GL_AUX2, and GL_AUX3 are available. The actual number of
auxiliary buffers available can be queried with glGetIntegerv(GL_AUX_BUFFERS, numBuffers) .

Pros:

A simple off-screen facility standard to OpenGL.

Cons:

Aux buffers are optional and few implementations of OpenGL support them.

6. Mesa

Mesa includes a special off-screen rendering interface called OSMesa. It’s unique in that the interface
has no dependencies on any operating system or window system.

Pros:

No window system or operating system dependencies

Cons:

Only available in Mesa
Probably no chance of hardware accelerated rendering

Mesa’s off-screen rendering interface is quite simple. Documentation for it may be found in the Mesa
README file and there is an example program in the Mesa distribution (demos/osdemo.c).

7. Tiled Rendering

Tiled rendering is a technique in which a large image is produced by tiling together smaller, individually
rendered images. It’s useful for generating images which are larger than what OpenGL would normally
permit.

OpenGL and/or window systems limit the size of rendered imagery in several ways:

137

The window system may not allow one to create windows, pixmaps or pbuffers which larger than
the screen’s size. Typical limits are 1280 by 1024 pixels.
glViewport ’s width and height parameters are silently clamped to an implementation-dependant
limit. These limits can be queried via glGetIntegerv with the argument GL_MAX_VIEWPORT_DIMS.
Typical limits are 2048 by 2048 pixels.

The basic technique of tiled rendering is to draw your entire scene for each tile, adjusting the projection
and viewport parameters such that when the tiles are assembled there are no seams. Unfortunately, this
is easier said than done. To make tiled rendering easier I have developed a tile rendering utility library
for this course.

Here is a modified excerpt of the trdemo1.c example program which demonstrates how to use the tr (tile
rendering) library:

static void Display(void)
{
 GLubyte *image;
 TRcontext *tr;

 /* allocate final image buffer */
 image = malloc(WindowWidth * WindowHeight * 4 * sizeof(GLubyte));
 if (!image) {
 printf("Malloc failed!\n");
 return;
 }

 /* Setup tiled rendering. Each tile is TILESIZE x TILESIZE pixels. */
 tr = trNew();
 trTileSize(tr, TILESIZE, TILESIZE);
 trImageSize(tr, WindowWidth, WindowHeight);
 trImageBuffer(tr, GL_RGBA, GL_UNSIGNED_BYTE, image);

 if (Perspective)
 trFrustum(tr, -1.0, 1.0, -1.0, 1.0, 5.0, 25.0);
 else
 trOrtho(tr, -3.0, 3.0, -3.0, 3.0, -3.0, 3.0);

 /* Draw tiles */
 do {
 trBeginTile(tr);
 DrawScene();
 } while (trEndTile(tr));

 trDelete(tr);

 /* ’image’ buffer now contains the final image.
 * You could now print it, write it to a file, etc.
 */
}

The basic steps are:

1. Allocate memory for the final image.
2. Create a tile rendering context with trNew .
3. Call trTileSize to specify the tile size.
4. Call trImageSize to specify the final image size.

138

5. Call trImageBuffer to specify where the final image is to be stored.
6. Setup a perspective or orthographic projection with trFrustum or trOrtho .
7. Call the trBeginTile and trEndTile functions inside a loop which surrounds your scene drawing

function until trEndTile returns zero.
8. Free the tile rendering context with trDelete .

The final image is typically written to a file or sent to a printer.

There is one caveat to this utility library: glRasterPos, glDrawPixels and glBitmap may be
troublesome. The problem is that if glRasterPos specifies a coordinate which falls outside the current
viewport, the current raster position becomes invalid. If the current raster position is invalid subsequent
calls to glDrawPixels or glBitmap will have no consequence.

The solution to this problem is the trRasterPos3f function. It works just like glRasterPos3f but
doesn’t suffer from the invalid raster position problem. See the trdemo1.c program for example usage.

The trdemo2.c example demonstrates how to generate very large image files without allocating a
full-size image buffer.

Last edited on April 29, 1997 by Brian Paul.

139

140

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Performance Optimization

Contents

1. Hardware vs. Software
2. Application Organization

2.1 High Level Organization
2.2 Low Level Organization

3. OpenGL Optimization
3.1 Traversal
3.2 Transformation
3.3 Rasterization
3.4 Texturing
3.5 Clearing
3.6 Miscellaneous
3.7 Window System Integration
3.8 Mesa-specific

4. Evaluation and tuning
4.1 Pipeline tuning
4.2 Double buffering
4.3 Test on several implementations

1. Hardware vs. Software

OpenGL may be implemented by any combination of hardware and software. At the high-end, hardware
may implement virtually all of OpenGL while at the low-end, OpenGL may be implemented entirely in
software. In between are combination software/hardware implementations. More money buys more
hardware and better performance.

Intro-level workstation hardware and the recent PC 3-D hardware typically implement point, line, and
polygon rasterization in hardware but implement floating point transformations, lighting, and clipping in
software. This is a good strategy since the bottleneck in 3-D rendering is usually rasterization and
modern CPU’s have sufficient floating point performance to handle the transformation stage.

141

OpenGL developers must remember that their application may be used on a wide variety of OpenGL
implementations. Therefore one should consider using all possible optimizations, even those which have
little return on the development system, since other systems may benefit greatly.

From this point of view it may seem wise to develop your application on a low-end system. There is a
pitfall however; some operations which are cheep in software may be expensive in hardware. The moral
is: test your application on a variety of systems to be sure the performance is dependable.

2. Application Organization

At first glance it may seem that the performance of interactive OpenGL applications is dominated by the
performance of OpenGL itself. This may be true in some circumstances but be aware that the
organization of the application is also significant.

2.1 High Level Organization

Multiprocessing

Some graphical applications have a substantial computational component other than 3-D rendering.
Virtual reality applications must compute object interactions and collisions. Scientific visualization
programs must compute analysis functions and graphical representations of data.

One should consider multiprocessing in these situations. By assigning rendering and computation to
different threads they may be executed in parallel on multiprocessor computers.

For many applications, supporting multiprocessing is just a matter of partitioning the render and
compute operations into separate threads which share common data structures and coordinate with
synchronization primitives.

SGI’s Performer is an example of a high level toolkit designed for this purpose.

Image quality vs. performance

In general, one wants high-speed animation and high-quality images in an OpenGL application. If you
can’t have both at once a reasonable compromise may be to render at low complexity during animation
and high complexity for static images.

Complexity may refer to the geometric or rendering attributes of a database. Here are a few examples.

During interactive rotation (i.e. mouse button held down) render a reduced-polygon model. When
drawing a static image draw the full polygon model.
During animation, disable dithering, smooth shading, and/or texturing. Enable them for the static
image.
If texturing is required, use GL_NEAREST sampling and glHint(

GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST).

142

During animation, disable antialiasing. Enable antialiasing for the static image.
Use coarser NURBS/evaluator tesselation during animation. Use glPolygonMode(

GL_FRONT_AND_BACK, GL_LINE) to inspect tesselation granularity and reduce if possible.

Level of detail management and culling

Objects which are distant from the viewer may be rendered with a reduced complexity model. This
strategy reduces the demands on all stages of the graphics pipeline. Toolkits such as Inventor and
Performer support this feature automatically.

Objects which are entirely outside of the field of view may be culled. This type of high level cull testing
can be done efficiently with bounding boxes or spheres and have a major impact on performance. Again,
toolkits such as Inventor and Performer have this feature.

2.2 Low Level Organization

The objects which are rendered with OpenGL have to be stored in some sort of data structure. Some data
structures are more efficient than others with respect to how quickly they can be rendered.

Basically, one wants data structures which can be traversed quickly and passed to the graphics library in
an efficient manner. For example, suppose we need to render a triangle strip. The data structure which
stores the list of vertices may be implemented with a linked list or an array. Clearly the array can be
traversed more quickly than a linked list. The way in which a vertex is stored in the data structure is also
significant. High performance hardware can process vertexes specified by a pointer more quickly than
those specified by three separate parameters.

An Example

Suppose we’re writing an application which involves drawing a road map. One of the components of the
database is a list of cities specified with a latitude, longitude and name. The data structure describing a
city may be:

 struct city {
 float latitute, longitude; /* city location */
 char *name; /* city’s name */
 int large_flag; /* 0 = small, 1 = large */
 };

A list of cities may be stored as an array of city structs.

Our first attempt at rendering this information may be:

 void draw_cities(int n, struct city citylist[])
 {
 int i;
 for (i=0; i < n; i++) {
 if (citylist[i].large_flag) {
 glPointSize(4.0);
 }
 else {
 glPointSize(2.0);

143

 }
 glBegin(GL_POINTS);
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 glEnd();
 glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
 glCallLists(strlen(citylist[i].name),
 GL_BYTE,
 citylist[i].name);
 }
 }

This is a poor implementation for a number of reasons:

glPointSize is called for every loop iteration.
only one point is drawn between glBegin and glEnd
the vertices aren’t being specified in the most efficient manner

Here’s a better implementation:

 void draw_cities(int n, struct city citylist[])
 {
 int i;
 /* draw small dots first */
 glPointSize(2.0);
 glBegin(GL_POINTS);
 for (i=0; i < n ;i++) {
 if (citylist[i].large_flag==0) {
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 }
 }
 glEnd();
 /* draw large dots second */
 glPointSize(4.0);
 glBegin(GL_POINTS);
 for (i=0; i < n ;i++) {
 if (citylist[i].large_flag==1) {
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 }
 }
 glEnd();
 /* draw city labels third */
 for (i=0; i < n ;i++) {
 glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
 glCallLists(strlen(citylist[i].name),
 GL_BYTE,
 citylist[i].name);
 }
 }

In this implementation we’re only calling glPointSize twice and we’re maximizing the number of
vertices specified between glBegin and glEnd .

We can still do better, however. If we redesign the data structures used to represent the city information
we can improve the efficiency of drawing the city points. For example:

 struct city_list {
 int num_cities; /* how many cities in the list */

144

 float *position; /* pointer to lat/lon coordinates */
 char **name; /* pointer to city names */
 float size; /* size of city points */
 };

Now cities of different sizes are stored in separate lists. Position are stored sequentially in a dynamically
allocated array. By reorganizing the data structures we’ve eliminated the need for a conditional inside
the glBegin/glEnd loops. Also, we can render a list of cities using the GL_EXT_vertex_array

extension if available, or at least use a more efficient version of glVertex and glRasterPos .

 /* indicates if server can do GL_EXT_vertex_array: */
 GLboolean varray_available;

 void draw_cities(struct city_list *list)
 {
 int i;
 GLboolean use_begin_end;

 /* draw the points */
 glPointSize(list->size);

 #ifdef GL_EXT_vertex_array
 if (varray_available) {
 glVertexPointerEXT(2, GL_FLOAT, 0, list->num_cities, list->position);
 glDrawArraysEXT(GL_POINTS, 0, list->num_cities);
 use_begin_end = GL_FALSE;
 }
 #else
 use_begin_end = GL_TRUE;
 #endif

 if (use_begin_end) {
 for (i=0; i < list->num_cities; i++) {
 glVertex2fv(&position[i*2]);
 }
 }

 /* draw city labels */
 for (i=0; i < list->num_cities ;i++) {
 glRasterPos2fv(list->position[i*2]);
 glCallLists(strlen(list->name[i]),
 GL_BYTE, list->name[i]);
 }
 }

As this example shows, it’s better to know something about efficient rendering techniques before
designing the data structures. In many cases one has to find a compromize between data structures
optimized for rendering and those optimized for clarity and convenience.

In the following sections the techniques for maximizing performance, as seen above, are explained.

3. OpenGL Optimization

There are many possibilities to improving OpenGL performance. The impact of any single optimization

145

can vary a great deal depending on the OpenGL implementation. Interestingly, items which have a large
impact on software renderers may have no effect on hardware renderers, and vice versa! For example,
smooth shading can be expensive in software but free in hardware While glGet* can be cheap in
software but expensive in hardware.

After each of the following techniques look for a bracketed list of symbols which relates the significance
of the optimization to your OpenGL system:

H - beneficial for high-end hardware
L - beneficial for low-end hardware
S - beneficial for software implementations
all - probably beneficial for all implementations

3.1 Traversal

Traversal is the sending of data to the graphics system. Specifically, we want to minimize the time taken
to specify primitives to OpenGL.

Use connected primitives
Connected primitives such as GL_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN, and GL_QUAD_STRIP require fewer vertices to describe an object than
individual line, triangle, or polygon primitives. This reduces data transfer and transformation
workload. [all]

Use the vertex array extension
On some architectures function calls are somewhat expensive so replacing many
glVertex/glColor/glNormal calls with the vertex array mechanism may be very beneficial. [all]

Store vertex data in consecutive memory locations
When maximum performance is needed on high-end systems it’s good to store vertex data in
contiguous memory to maximize through put of data from host memory to graphics subsystem.
[H,L]

Use the vector versions of glVertex , glColor , glNormal and glTexCoord
The glVertex , glColor , etc. functions which take a pointer to their arguments such as
glVertex3fv(v) may be much faster than those which take individual arguments such as
glVertex3f(x,y,z) on systems with DMA-driven graphics hardware. [H,L]

Reduce quantity of primitives
Be careful not to render primitives which are over-tesselated. Experiment with the GLU
primitives, for example, to determine the best compromise of image quality vs. tesselation level.
Textured objects in particular may still be rendered effectively with low geometric complexity.
[all]

Display lists
Use display lists to encapsulate frequently drawn objects. Display list data may be stored in the
graphics subsystem rather than host memory thereby eliminating host-to-graphics data movement.
Display lists are also very beneficial when rendering remotely. [all]

146

Don’t specify unneeded per-vertex information
If lighting is disabled don’t call glNormal . If texturing is disabled don’t call glTexCoord , etc.

Minimize code between glBegin/glEnd
For maximum performance on high-end systems it’s extremely important to send vertex data to the
graphics system as fast as possible. Avoid extraneous code between glBegin/glEnd .

Example:

 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n; i++) {
 if (lighting) {
 glNormal3fv(norm[i]);
 }
 glVertex3fv(vert[i]);
 }
 glEnd();

This is a very bad construct. The following is much better:

 if (lighting) {
 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n ;i++) {
 glNormal3fv(norm[i]);
 glVertex3fv(vert[i]);
 }
 glEnd();
 }
 else {
 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n ;i++) {
 glVertex3fv(vert[i]);
 }
 glEnd();
 }

Also consider manually unrolling important rendering loops to maximize the function call rate.

3.2 Transformation

Transformation includes the transformation of vertices from glVertex to window coordinates, clipping
and lighting.

Lighting
Avoid using positional lights, i.e. light positions should be of the form (x,y,z,0) [L,S]
Avoid using spotlights. [all]
Avoid using two-sided lighting. [all]
Avoid using negative material and light color coefficients [S]
Avoid using the local viewer lighting model. [L,S]
Avoid frequent changes to the GL_SHININESS material parameter. [L,S]
Some OpenGL implementations are optimized for the case of a single light source.

147

Consider pre-lighting complex objects before rendering, ala radiosity. You can get the effect
of lighting by specifying vertex colors instead of vertex normals. [S]

Two sided lighting
If you want both the front and back of polygons shaded the same try using two light sources
instead of two-sided lighting. Position the two light sources on opposite sides of your object. That
way, a polygon will always be lit correctly whether it’s back or front facing. [L,S]

Disable normal vector normalization when not needed
glEnable/Disable(GL_NORMALIZE) controls whether normal vectors are scaled to unit length
before lighting. If you do not use glScale you may be able to disable normalization without ill
effects. Normalization is disabled by default. [L,S]

Use connected primitives
Connected primitives such as GL_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, and GL_QUAD_STRIP decrease traversal and transformation load.

glRect usage
If you have to draw many rectangles consider using glBegin(GL_QUADS) ... glEnd() instead. [all]

3.3 Rasterization

Rasterization is the process of generating the pixels which represent points, lines, polygons, bitmaps and
the writing of those pixels to the frame buffer. Rasterization is often the bottleneck in software
implementations of OpenGL.

Disable smooth shading when not needed
Smooth shading is enabled by default. Flat shading doesn’t require interpolation of the four color
components and is usually faster than smooth shading in software implementations. Hardware may
perform flat and smooth-shaded rendering at the same rate though there’s at least one case in
which smooth shading is faster than flat shading (E&S Freedom). [S]

Disable depth testing when not needed
Background objects, for example, can be drawn without depth testing if they’re drawn first.
Foreground objects can be drawn without depth testing if they’re drawn last. [L,S]

Disable dithering when not needed
This is easy to forget when developing on a high-end machine. Disabling dithering can make a big
difference in software implementations of OpenGL on lower-end machines with 8 or 12-bit color
buffers. Dithering is enabled by default. [S]

Use back-face culling whenever possible.
If you’re drawing closed polyhedra or other objects for which back facing polygons aren’t visible
there’s probably no point in drawing those polygons. [all]

The GL_SGI_cull_vertex extension
SGI’s Cosmo GL supports a new culling extension which looks at vertex normals to try to improve
the speed of culling.

148

Avoid extra fragment operations
Stenciling, blending, stippling, alpha testing and logic ops can all take extra time during
rasterization. Be sure to disable the operations which aren’t needed. [all]

Reduce the window size or screen resolution
A simple way to reduce rasterization time is to reduce the number of pixels drawn. If a smaller
window or reduced display resolution are acceptable it’s an easy way to improve rasterization
speed. [L,S]

3.4 Texturing

Texture mapping is usually an expensive operation in both hardware and software. Only high-end
graphics hardware can offer free to low-cost texturing. In any case there are several ways to maximize
texture mapping performance.

Use efficient image formats
The GL_UNSIGNED_BYTE component format is typically the fastest for specifying texture images.
Experiment with the internal texture formats offered by the GL_EXT_texture extension. Some
formats are faster than others on some systems (16-bit texels on the Reality Engine, for example).
[all]

Encapsulate texture maps in texture objects or display lists
This is especially important if you use several texture maps. By putting textures into display lists
or texture objects the graphics system can manage their storage and minimize data movement
between the client and graphics subsystem. [all]

Use smaller texture maps
Smaller images can be moved from host to texture memory faster than large images. More small
texture can be stored simultaneously in texture memory, reducing texture memory swapping. [all]

Use simpler sampling functions
Experiment with the minification and magnification texture filters to determine which performs
best while giving acceptable results. Generally, GL_NEAREST is fastest and GL_LINEAR is
second fastest. [all]

Use a simpler texture environment function
Some texture environment modes may be faster than others. For example, the GL_DECAL or
GL_REPLACE_EXT functions for 3 component textures is a simple assignment of texel samples to
fragments while GL_MODULATE is a linear interpolation between texel samples and incoming
fragments. [S,L]

Combine small textures
If you are using several small textures consider tiling them together as a larger texture and modify
your texture coordinates to address the subtexture you want. This technique is a good way to
eliminate texture binding time.

Use glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST)
This hint can improve the speed of texturing when perspective- correct texture coordinate

149

interpolation isn’t needed, such as when using a glOrtho() projection.

Animated textures
If you want to use an animated texture, perhaps live video textures, don’t use glTexImage2D to
repeatedly change the texture. Use glTexSubImage2D or glTexCopyTexSubImage2D . These
functions are standard in OpenGL 1.1 and available as extensions to 1.0.

3.5 Clearing

Clearing the color, depth, stencil and accumulation buffers can be time consuming, especially when it
has to be done in software. There are a few tricks which can help.

Use glClear carefully [all]
Clear all relevant color buffers with one glClear .

Wrong:

 glClear(GL_COLOR_BUFFER_BIT);
 if (stenciling) {
 glClear(GL_STENCIL_BUFFER_BIT);
 }

Right:

 if (stenciling) {
 glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
 }
 else {
 glClear(GL_COLOR_BUFFER_BIT);
 }

Disable dithering
Disable dithering before clearing the color buffer. Visually, the difference between dithered and
undithered clears is usually negligable.

Use scissoring to clear a smaller area
If you don’t need to clear the whole buffer use glScissor() to restrict clearing to a smaller area.
[L].

Don’t clear the color buffer at all
If the scene you’re drawing opaquely covers the entire window there is no reason to clear the color
buffer.

Eliminate depth buffer clearing
If the scene you’re drawing covers the entire window there is a trick which let’s you omit the
depth buffer clear. The idea is to only use half the depth buffer range for each frame and alternate
between using GL_LESS and GL_GREATER as the depth test function.

Example:

150

 int EvenFlag;

 /* Call this once during initialization and whenever the window
 * is resized.
 */
 void init_depth_buffer(void)
 {
 glClearDepth(1.0);
 glClear(GL_DEPTH_BUFFER_BIT);
 glDepthRange(0.0, 0.5);
 glDepthFunc(GL_LESS);
 EvenFlag = 1;
 }

 /* Your drawing function */
 void display_func(void)
 {
 if (EvenFlag) {
 glDepthFunc(GL_LESS);
 glDepthRange(0.0, 0.5);
 }
 else {
 glDepthFunc(GL_GREATER);
 glDepthRange(1.0, 0.5);
 }
 EvenFlag = !EvenFlag;

 /* draw your scene */
 }

Avoid glClearDepth(d) where d!=1.0
Some software implementations may have optimized paths for clearing the depth buffer to 1.0. [S]

3.6 Miscellaneous

Avoid "round-trip" calls
Calls such as glGetFloatv, glGetIntegerv, glIsEnabled, glGetError, glGetString

require a slow, round trip transaction between the application and renderer. Especially avoid them
in your main rendering code.

Note that software implementations of OpenGL may actually perform these operations faster than
hardware systems. If you’re developing on a low-end system be aware of this fact. [H,L]

Avoid glPushAttrib
If only a few pieces of state need to be saved and restored it’s often faster to maintain the
information in the client program. glPushAttrib(GL_ALL_ATTRIB_BITS) in particular can be
very expensive on hardware systems. This call may be faster in software implementations than in
hardware. [H,L]

Check for GL errors during development
During development call glGetError inside your rendering/event loop to catch errors. GL errors
raised during rendering can slow down rendering speed. Remove the glGetError call for
production code since it’s a "round trip" command and can cause delays. [all]

151

Use glColorMaterial instead of glMaterial
If you need to change a material property on a per vertex basis, glColorMaterial may be faster
than glMaterial . [all]

glDrawPixels
glDrawPixels often performs best with GL_UNSIGNED_BYTE color components [all]
Disable all unnecessary raster operations before calling glDrawPixels . [all]
Use the GL_EXT_abgr extension to specify color components in alpha, blue, green, red order on
systems which were designed for IRIS GL. [H,L].

Avoid using viewports which are larger than the window
Software implementations may have to do additional clipping in this situation. [S]

Alpha planes
Don’t allocate alpha planes in the color buffer if you don’t need them. Specifically, they are not
needed for transparency effects. Systems without hardware alpha planes may have to resort to a
slow software implementation. [L,S]

Accumulation, stencil, overlay planes
Do not allocate accumulation, stencil or overlay planes if they are not needed. [all]

Be aware of the depth buffer’s depth
Your OpenGL may support several different sizes of depth buffers- 16 and 24-bit for example.
Shallower depth buffers may be faster than deep buffers both for software and hardware
implementations. However, the precision of of a 16-bit depth buffer may not be sufficient for some
applications. [L,S]

Transparency may be implemented with stippling instead of blending
If you need simple transparent objects consider using polygon stippling instead of alpha blending.
The later is typically faster and may actually look better in some situations. [L,S]

Group state changes together
Try to mimimize the number of GL state changes in your code. When GL state is changed, internal
state may have to be recomputed, introducing delays. [all]

Avoid using glPolygonMode
If you need to draw many polygon outlines or vertex points use glBegin with GL_POINTS,

GL_LINES, GL_LINE_LOOP or GL_LINE_STRIP instead as it can be much faster. [all]

3.7 Window System Integration

Minimize calls to the make current call
The glXMakeCurrent call, for example, can be expensive on hardware systems because the
context switch may involve moving a large amount of data in and out of the hardware.

Visual / pixel format performance
Some X visuals or pixel formats may be faster than others. On PCs for example, 24-bit color
buffers may be slower to read/write than 12 or 8-bit buffers. There is often a tradeoff between

152

performance and quality of frame buffer configurations. 12-bit color may not look as nice as 24-bit
color. A 16-bit depth buffer won’t have the precision of a 24-bit depth buffer.

The GLX_EXT_visual_rating extension can help you select visuals based on performance or
quality. GLX 1.2’s visual caveat attribute can tell you if a visual has a performance penalty
associated with it.

It may be worthwhile to experiment with different visuals to determine if there’s any advantage of
one over another.

Avoid mixing OpenGL rendering with native rendering
OpenGL allows both itself and the native window system to render into the same window. For this
to be done correctly synchronization is needed. The GLX glXWaitX and glXWaitGL functions
serve this purpose.

Synchronization hurts performance. Therefore, if you need to render with both OpenGL and native
window system calls try to group the rendering calls to minimize synchronization.

For example, if you’re drawing a 3-D scene with OpenGL and displaying text with X, draw all the
3-D elements first, call glXWaitGL to synchronize, then call all the X drawing functions.

Don’t redraw more than necessary
Be sure that you’re not redrawing your scene unnecissarily. For example, expose/repaint events
may come in batches describing separate regions of the window which must be redrawn. Since one
usually redraws the whole window image with OpenGL you only need to respond to one
expose/repaint event. In the case of X, look at the count field of the XExposeEvent structure. Only
redraw when it is zero.

Also, when responding to mouse motion events you should skip extra motion events in the input
queue. Otherwise, if you try to process every motion event and redraw your scene there will be a
noticable delay between mouse input and screen updates.

It can be a good idea to put a print statement in your redraw and event loop function so you know
exactly what messages are causing your scene to be redrawn, and when.

SwapBuffer calls and graphics pipe blocking
On systems with 3-D graphics hardware the SwapBuffers call is synchronized to the monitor’s
vertical retrace. Input to the OpenGL command queue may be blocked until the buffer swap has
completed. Therefore, don’t put more OpenGL calls immediately after SwapBuffers. Instead, put
application computation instructions which can overlap with the buffer swap delay.

3.8 Mesa-specific

Mesa is a free library which implements most of the OpenGL API in a compatible manner. Since it is a
software library, performance depends a great deal on the host computer. There are several
Mesa-specific features to be aware of which can effect performance.

Double buffering

153

The X driver supports two back color buffer implementations: Pixmaps and XImages. The
MESA_BACK_BUFFER environment variable controls which is used. Which of the two that’s
faster depends on the nature of your rendering. Experiment.

X Visuals
As described above, some X visuals can be rendered into more quickly than others. The
MESA_RGB_VISUAL environment variable can be used to determine the quickest visual by
experimentation.

Depth buffers
Mesa may use a 16 or 32-bit depth buffer as specified in the src/config.h configuration file. 16-bit
depth buffers are faster but may not offer the precision needed for all applications.

Flat-shaded primitives
If one is drawing a number of flat-shaded primitives all of the same color the glColor command
should be put before the glBegin call.

Don’t do this:

 glBegin(...);
 glColor(...);
 glVertex(...);
 ...
 glEnd();

Do this:

 glColor(...);
 glBegin(...);
 glVertex(...);
 ...
 glEnd();

glColor*() commands
The glColor[34]ub[v] are the fastest versions of the glColor command.

Avoid double precision valued functions
Mesa does all internal floating point computations in single precision floating point. API functions
which take double precision floating point values must convert them to single precision. This can
be expensive in the case of glVertex, glNormal, etc.

4. Evaluation and Tuning

To maximize the performance of an OpenGL applications one must be able to evaluate an application to
learn what is limiting its speed. Because of the hardware involved it’s not sufficient to use ordinary
profiling tools. Several different aspects of the graphics system must be evaluated.

154

Performance evaluation is a large subject and only the basics are covered here. For more information see
"OpenGL on Silicon Graphics Systems".

4.1 Pipeline tuning

The graphics system can be divided into three subsystems for the purpose of performance evaluation:

CPU subsystem - application code which drives the graphics subsystem
Geometry subsystem - transformation of vertices, lighting, and clipping
Rasterization subsystem - drawing filled polygons, line segments and per-pixel processing

At any given time, one of these stages will be the bottleneck. The bottleneck must be reduced to improve
performance. The strategy is to isolate each subsystem in turn and evaluate changes in performance. For
example, by decreasing the workload of the CPU subsystem one can determine if the CPU or graphics
system is limiting performance.

4.1.1 CPU subsystem

To isosulate the CPU subsystem one must reduce the graphics workload while presevering the
application’s execution characteristics. A simple way to do this is to replace glVertex() and glNormal

calls with glColor calls. If performance does not improve then the CPU stage is the bottleneck.

4.1.2 Geometry subsystem

To isoslate the geometry subsystem one wants to reduce the number of primitives processed, or reduce
the transformation work per primitive while producing the same number of pixels during rasterization.
This can be done by replacing many small polygons with fewer large ones or by simply disabling
lighting or clipping. If performance increases then your application is bound by geometry/transformation
speed.

4.1.3 Rasterization subsystem

A simple way to reduce the rasterization workload is to make your window smaller. Other ways to
reduce rasterization work is to disable per-pixel processing such as texturing, blending, or depth testing.
If performance increases, your program is fill limited.

After bottlenecks have been identified the techniques outlined in section 3 can be applied. The process
of identifying and reducing bottlenecks should be repeated until no further improvements can be made
or your minimum performance threshold has been met.

4.2 Double buffering

For smooth animation one must maintain a high, constant frame rate. Double buffering has an important
effect on this. Suppose your application needs to render at 60Hz but is only getting 30Hz. It’s a mistake
to think that you must reduce rendering time by 50% to achive 60Hz. The reason is the swap-buffers
operation is synchronized to occur during the display’s vertical retrace period (at 60Hz for example). It
may be that your application is taking only a tiny bit too long to meet the 1/60 second rendering time
limit for 60Hz.

155

Measure the performance of rendering in single buffer mode to determine how far you really are from
your target frame rate.

4.3 Test on several implementations

The performance of OpenGL implementations varies a lot. One should measure performance and test
OpenGL applications on several different systems to be sure there are no unexpected problems.

Last edited on April 14, 1997 by Brian Paul.

156

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Portability Notes

Contents

1. Introduction
2. OpenGL Limits
3. OpenGL Bugs

1. Introduction

Though OpenGL is an extremely portable 3-D graphics API there are some things to be careful of.
OpenGL has some built-in limits and there are a number of too-common implementation errors that
OpenGL developers should be aware of to ensure portability.

2. OpenGL Limits

The OpenGL specification calls for certain minimum requirements in any OpenGL implementation.
These limits may be extended in some implementations but to be safe, developers should be aware of the
minimum requirements.

Limits may be queried with the glGetInteger and related functions.

Texture Size
Implementations must support textures of at least 64 by 64 texels. Larger textures are usually
supported but consider the possibility that you may be limited to 64 by 64. 512 by 512 is a
common limit.

The maximum texture size can also depend on whether you’re using texture borders or
mipmapping. OpenGL 1.1 and the GL_EXT_texture extension offer proxy textures which better
indicate the maximum texture size than glGet .

Pixel Maps
Pixel maps (glPixelMap) must support at least 32 entries. Larger maps of 256 or 4096 entries are

157

common.

Selection stack
The selection stack may be as small as 64 names.

Evaluators
Evaluators may be limited to 8 control points. A larger number of control points is frequently
supported.

Stacks Depths
The MODELVIEW matrix stack size is at least 32 matrices.

The PROJECTION matrix stack size is at least 2 matrices.

The TEXTURE matrix stack size is at least 2 matrices.

The attribute stack size is at least 16. Similarly, the client attribute stack (OpenGL 1.1) size is at
least 16.

Point and line sizes
Maximum point size may be 1 pixel. Maximum line width may be 1 pixel. Antialiased points and
lines are often limited to one size.

Viewports
The maximum viewport size may be limited to your screen size. Frequently, the maximum
viewport size is 2048 by 2048.

Lights
At least eight light sources must be available. Seldom are more supported.

Clipping Planes
At least six user-definable clipping planes must be available. Seldom are more supported.

3. OpenGL Bugs

Unfortunately, OpenGL implementations often have some minor (and occasionally, major) bugs.
Typically, these bugs are found in the more obscure corners of OpenGL so they don’t effect most
applications.

In some cases the hardware is at fault and the likelihood of a fix is slim, short of hardware redesign. In
other cases a subsequent OpenGL software release may fix the problem.

Here are some tips on dealing with OpenGL bugs:

Read your system’s OpenGL release notes. They often include lists of known bugs and
work-arounds.

158

Read the man pages for OpenGL commands which you suspect may have bugs. They’re often
document at the end.
If you’ve found an undocumented OpenGL bug check if a new release of the software is available.
Finally, if you’ve really found a new bug you should report it to your OpenGL vendor. If you can
provide a simple test case with the bug report you’ll make it much easier for the vendor to verify
and hopefully fix the bug.

Here is a small collection of known OpenGL problems discovered from personal experience. Please
note that the following information may become obsolete at any time upon the release of updated
software.

Texture borders
Texture borders are not supported on some systems such as the SGI Infinite Reality system.
Luckily, the functionality provided by texture borders can be achieved with the
GL_SGIS_texture_border_clamp and GL_SGIS_texture_edge_clamp extensions.

It’s probably best to avoid using OpenGL texture borders in general.

Texture formats
Several SGI systems (Impact and possibly Reality Engine) don’t support GL_ALPHA (internal
format) textures.

glTexImage error checking
glTexImage[12]D doesn’t generate an error if the texture sizes are not powers of two on some SGI
systems.

Line Stippling
The line stipple counter isn’t reset upon glBegin() on SGI Impact and IR systems.

Texture objects
Texture objects which are shared by several rendering contexts don’t work correctly on SGI
Impact systems.

Last edited on April 14, 1997 by Brian Paul.

159

160

Togl - a Tk OpenGL widget
Version 1.2

Copyright (C) 1996 Brian Paul and Ben Bederson

Introduction

Togl is a Tk widget for OpenGL rendering. Togl is originally based on OGLTK, written by Benjamin
Bederson at the University of New Mexico. Togl adds the new features:

color-index mode support including color allocation functions
support for requesting stencil, accumulation, alpha buffers, etc
multiple OpenGL drawing widgets
OpenGL extension testing from Tcl
simple, portable font support

Togl allows one to create and manage a special Tk/OpenGL widget with Tcl and render into it with a C
program. That is, a typical Togl program will have Tcl code for managing the user interface and a C
program for computations and OpenGL rendering.

Togl is copyrighted by Brian Paul (brianp@elastic.avid.com) and Benjamin Bederson
(bederson@cs.unm.edu). See the LICENSE file for details.

The Togl WWW page is available from:

Wisconsin at http://www.ssec.wisc.edu/~brianp/Togl.html
New Mexico at http://www.cs.unm.edu/~bederson/Togl.html

Prerequisites

You should have Tcl and Tk installed on your computer, including the Tk source code files. Togl has
been tested with Tcl 7.4/Tk 4.0, Tcl 7.5/Tk 4.1 and Tcl 7.6/Tk 4.2 at this time. It is currently configured
for Tcl7.6/Tk4.2.

You must also have OpenGL or Mesa (a free alternative to OpenGL) installed on your computer.

One should be familiar with Tcl, Tk, OpenGL, and C programming to use Togl effectively.

Getting Togl

161

The current version of Togl is 1.2. You may download it from either:

Wisconsin at ftp://iris.ssec.wisc.edu/pub/misc/Togl-1.2.tar.gz
New Mexico at ftp://ftp.cs.unm.edu/pub/bederson/Togl-1.2.tar.gz

Togl may also be obtained manually with ftp:

Host: iris.ssec.wisc.edu
Login: anonymous
Password: your email address
Directory: pub/misc
File: Togl-1.2.tar.gz

The Makefile included with Togl is configured for SGI systems. It shouldn’t be hard to adapt it for
others. In practice, you’ll just add togl.c to your application’s Makefile.

Using Togl With Your Application

Since the Togl code is in just three files (togl.c, togl.h and tkInt.h) it’s probably most convenient to just
include those files with your application sources. The Togl code could be made into a library but that’s
not necessary.

C Togl Functions

These are the Togl commands one may call from a C program.

#include "togl.h"

Setup and Initialization Functions

int Togl_Init(Tcl_Interp *interp)
Initializes the Togl module. This is typically called from the Tk_Main() callback function.

void Togl_CreateFunc(Togl_Callback *proc)
void Togl_DisplayFunc(Togl_Callback *proc)
void Togl_ReshapeFunc(Togl_Callback *proc)
void Togl_DestroyFunc(Togl_Callback *proc)

Register C functions to be called by Tcl/Tk when a widget is realized, must be redrawn, is resized,
or is destroyed respectively.

Each C callback must be of the form:

 void callback(struct Togl *togl)
 {
 ...your code...
 }

162

void Togl_CreateCommand(char *cmd_name, Togl_CmdProc *cmd_proc)
Used to create a new Togl sub-command. The C function which implements the command must be
of the form:

 int callback(struct Togl *togl, int argc, char *argv[])
 {
 ...your code...
 return TCL_OK or TCL_ERROR;
 }

Drawing-related Commands

void Togl_PostRedisplay(struct Togl *togl)
Signals that the widget should be redrawn. When Tk is next idle the user’s C render callback will
be invoked. This is typically called from within a Togl sub-command which was registered with
Togl_CreateCommand().

void Togl_SwapBuffers(struct Togl *togl)
Swaps the front and back color buffers for a double-buffered widget. glFlush() is executed if the
window is single-buffered. This is typically called in the rendering function which was registered
with Togl_DisplayFunc().

Query Functions

char *Togl_Ident(struct Togl *togl)
Returns a pointer to the identification string associated with an Togl widget or NULL if there’s no
identifier string.

int Togl_Width(struct Togl *togl)
Returns the width of the given Togl widget. Typically called in the function registered with
Togl_ReshapeFunc().

int Togl_Height(struct Togl *togl)
Returns the height of the given Togl widget. Typically called in the function registered with
Togl_ReshapeFunc().

Tcl_Interp *Togl_Interp(struct Togl *togl)
Returns the Tcl interpreter associated with the given Togl widget.

Color Index Mode Functions

These functions are only used for color index mode.

unsigned long Togl_AllocColor(struct Togl *togl, float red, float green, float blue

)
Allocate a color from a read-only colormap. Given a color specified by red, green, and blue return
a colormap index (aka pixel value) whose entry most closely matches the red, green, blue color.
Red, green, and blue are values in [0,1]. This function is only used in color index mode when the

163

-privatecmap option is false.

void Togl_FreeColor(struct Togl *togl, unsigned long index)
Free a color in a read-only colormap. Index is a value which was returned by the
Togl_AllocColor() function. This function is only used in color index mode when the
-privatecmap option is false.

void Togl_SetColor(struct Togl *togl, int index, float red, float green, float blue

)
Load the colormap entry specified by index with the given red, green and blue values. Red, green,
and blue are values in [0,1]. This function is only used in color index mode when the -privatecmap
option is true.

Font Functions

GLuint Togl_LoadBitmapFont(struct Togl *togl, const char *fontname)
Load the named font as a set of glBitmap display lists. fontname may be one of

TOGL_BITMAP_8_BY_13

TOGL_BITMAP_9_BY_15

TOGL_BITMAP_TIMES_ROMAN_10

TOGL_BITMAP_TIMES_ROMAN_24

TOGL_BITMAP_HELVETICA_10

TOGL_BITMAP_HELVETICA_12

TOGL_BITMAP_HELVETICA_18

or any X11 font name
Zero is returned if this function fails.
After Togl_LoadBitmapFont() has been called, returning fontbase, you can render a string s with:
glListBase(fontbase);
glCallLists(strlen(s), GL_BYTE, s);

void Togl_UnloadBitmapFont(struct Togl *togl, GLuint fontbase)

Destroys the bitmap display lists created by by Togl_LoadBitmapFont().

Client Data Functions

void Togl_SetClientData(struct Togl *togl, ClientData clientData)
clientData is a pointer to an arbitrary user data structure. Each Togl struct has such a pointer. This
function set’s the Togl widget’s client data pointer.

ClientData Togl_GetClientData(const struct Togl *togl)
clientData is a pointer to an arbitrary user data structure. Each Togl struct has such a pointer. This
function returns the Togl widget’s client data pointer.

Overlay Functions

These functions are modelled after GLUT’s overlay sub-API.

void Togl_UseLayer(struct Togl *togl, int layer)

164

Select the layer into which subsequent OpenGL rendering will be directed. layer may be either
TOGL_OVERLAY or TOGL_NORMAL.

void Togl_ShowOverlay(struct Togl *togl)
Display the overlay planes, if any.

void Togl_HideOverlay(struct Togl *togl)
Hide the overlay planes, if any.

void Togl_PostOverlayRedisplay(struct Togl *togl)
Signal that the overlay planes should be redraw. When Tk is next idle the user’s C overlay display
callback will be invoked. This is typically called from within a Togl sub-command which was
registered with Togl_CreateCommand().

void Togl_OverlayDisplayFunc(Togl_Callback *proc)
Registers the C callback function which should be called to redraw the overlay planes. This is the
function which will be called in response to Togl_PostOverlayRedisplay(). The callback must be
of the form:

 void RedrawOverlay(struct Togl *togl)
 {
 ...your code...
 }

Tcl Togl commands

These are the Togl commands one may call from a Tcl program.

togl pathName [options]
Creates a new togl widget with name pathName and an optional list of configuration options.
Options include:

Option Default Comments
--------------- ------- --
-width 400 Width of widget in pixels.
-height 400 Height of widget in pixels.

-ident "" A user identification string ignored by togl.
 This can be useful in your C callback functions
 to determine which Togl widget is the caller.

-rgba true If true, use RGB(A) mode
 If false, use Color Index mode

-double false If false, request a single buffered window
 If true, request double buffered window

-depth false If true, request a depth buffer

-accum false If true, request an accumulation buffer

165

-alpha false If true and -rgba is true, request an alpha
 channel

-stencil false If true, request a stencil buffer

-privatecmap false Only applicable in color index mode.
 If false, use a shared read-only colormap.
 If true, use a private read/write colormap.

-overlay false If true, request overlay planes.

-stereo false If true, request a stereo-capable window.

pathName configure
Returns all configuration records for the named togl widget.

pathName configure -option
Returns configuration information for the specifed option which may be one of:
-width

Returns the width configuration of the widget in the form:
-width width Width W w
where W is the default width in pixels and w is the current width in pixels

-height
Returns the height configuration of the widget in the form:
-height height Height H h
where H is the default height in pixels and h is the current height in pixels

-extensions
Returns a list of OpenGL extensions available. For example: GL_EXT_polygon_offset

GL_EXT_vertex_array

pathName configure -option value
Reconfigure an togl widget. option may be one of:
-width

Resize the widget to value pixels wide
-height

Resize the widget to value pixels high

pathName render
Causes the render callback function to be called for pathName.

pathName swapbuffers
Causes front/back buffers to be swapped if in double buffer mode.

pathName makecurrent
Make the widget specified by pathName the current one.

Demo programs

There are three demo programs:

166

double - compares single vs double buffering with two Togl widgets
texture - lets you play with texture mapping options
index - demo of using color index mode

To compile the demos, edit the Makefile to suit your system, then type "make". The Makefile currently
works with Linux. To run a demo just type "double" or "texture" or "index".

Reporting Bugs

If you find a bug in Togl please report it to both Ben and Brian. When reporting bugs please provide as
much information as possible. Also it’s very helpful to us if you can provide an example program which
demonstrates the problem.

Version History

Version 1.0, March 1996

Initial version

Version 1.1 (never officially released)

Added Togl_LoadBitmapFont function
Fixed a few bugs

Version 1.2, November 1996

added swapbuffers and makecurrent Tcl commands
More bug fixes
Upgraded to suport Tcl 7.6 and Tk 4.2
Added stereo and overlay plane support
Added Togl_Get/SetClientData() functions
Added Togl_DestroyFunc()

Future plans

Port to Windows NT

Last edited on December 14, 1996 by Brian Paul.

167

168

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

OpenGL Toolkit Choices

Contents

1. Introduction
2. GLX and Xlib
3. AGL, PGL and WGL (GLX-like) interfaces
4. Xt/Motif
5. GLUT
6. aux/tk
7. Tcl/Tk
8. XForms
9. Inventor
10. Performer
11. OpenGL Optimizer
12. OpenGL++ / OpenGL Scene Graph
13. Others

1. Introduction

A 3-D graphics application has two important components: the graphics library and user interface
toolkit. While choosing OpenGL as the graphics library may be an easy choice, the decision of which
GUI toolkit to use is not.

A number of factors influence the toolkit selection:

Size, complexity and purpose of application: a simple graphics demo will have different user
interface requirements than a 3-D modeller, for example.
Target platform : few toolkits work on more than one operating system or window system.
Free vs commercial application: a commercial application may have more stringent GUI
requirements than a free program.
Free vs commercial toolkit: some toolkits are free, others aren’t.

This document presents a survey of toolkit options for the OpenGL application programmer. For each
toolkit the following attributes are discussed:

169

Overview: Basic information about the toolkit or interface.
OpenGL integration method: How does the toolkit/interface work?
Appropriate uses: When is this toolkit most appropriate to use?
Advantages: What are the pros of this toolkit?
Disadvanges: What are the cons of this toolkit?
References: Where to find more information.

2. GLX and Xlib

Overview
GLX is the OpenGL extension to X. It provides the "glue" functions for integrating OpenGL with
the X window system in C or C++. GLX is also the protocol which allows remote display of
OpenGL on X suitable X servers. While Xlib is not a user interface toolkit, it is a means of
integrating OpenGL into an X application.

OpenGL integration method
Functions are provided to select OpenGL-enhanced visuals, create rendering contexts, bind
contexts to X windows, synchronize with X, swap color buffers, etc.

Appropriate uses
Any X-based application may use the GLX interface. Toolkits build on X such as Xt/Motif and
GLUT are built on top of GLX and hide its details.

Advantages
Low level: complete access to unique facilities of the hardware (stereo, overlay planes,
multi-sampling, etc)
It’s the standard low level X/OpenGL interface.

Disadvantages
Low level: does not provide GUI elements such as menus and buttons
limited to X-based (and usually Unix-based) systems
requires considerable Xlib knowledge

References:
Appendix D of the OpenGL Programming Guide from Addison-Wesley
Introduction to OpenGL and X, Part 1: An Introduction by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.intro/intro.html)
Introduction to OpenGL and X, Part 2: Using OpenGL with Xlib by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.xlib/xlib.html)

3. AGL, PGL and WGL (GLX-like) interfaces

Overview

170

There are OpenGL glue libraries for other window systems such as IBM’s Presentation Manager
(PGL), Macintosh (AGL), and Microsoft Windows (WGL for NT and ’95). These interfaces are
similar to GLX in functionality and API design. Function bindings are typically only availabe for
C and C++.

OpenGL integration method
Again, functions are provided to select visual/pixel formats, create/bind rendering contexts,
synchronize with the window system, swap color buffers, etc.

Appropriate uses
These low level interfaces are often needed for any OpenGL application on a PC or Mac since
higher level toolkits don’t encapsulate them. Caveat: There is an effort among OS/2 developers to
write a PGL wrapper for PM.

Advantages
provide access to all OpenGL/window system integration features (off-screen rendering, font
handling, etc.)

Disadvantages
requires knowledge of details specific to the window system

References
IBM’s OpenGL for OS/2 (http://www.austin.ibm.com/software/OpenGL/)
OpenGL for OS/2 FAQ (http://www.utsi.com/~kgl/os2-opengl/faq.html)
IBM’s The OpenGL libraries for OS/2
(ftp://ftp.austin.ibm.com/pub/developer/os2/OpenGL/)
OpenGL for Microsoft Windows ’95 and NT
(http://www.sgi.com/Technology/openGL/vendor/microsoft.html)
OpenGL for the Macintosh from Conix Graphics (http://www.conix3d.com/)

4. Xt/Motif

Overview
Xt is the X Toolkit Instrinsics, a library built on Xlib designed to support user interface toolkits.
Motif is a popular widget set built on Xt. Xt and Motif may be used with C/C++.

OpenGL integration method
The special GLwMDrawingArea widget supports OpenGL rendering. The IRIS ViewKit library
provides a framework which offers an OpenGL widget as well.

Appropriate uses
Commercial, professional applications for the X environment.

Advantages
Motif is standardized and full featured.
Other widget sets are available: Athena, OPEN LOOK.

171

Disadvantages
Xt/Motif is large and complicated
Probably overkill for small applications
Motif is not free

References
OpenGL and X, Part 3: Integrating OpenGL with Motif by Mark Kilgard
(http://www.sgi.com/Technology/openGL/mjk.motif/motif.html)
Programming OpenGL with the X Window System by Mark Kilgard

5. GLUT

Overview
The GL Utility Toolkit, written by Mark Kilgard, is a free, portable toolkit which provides
functions for creating windows, pop-up menus, event handling, drawing simple geometric
primitives and much more.

GLUT will replace aux in the next edition of the OpenGL Programming Guide.

OpenGL integration method
GLUT is built on top of OpenGL and the underlying window system. It has a simple C/C++ API.
Simply make GLUT calls to create windows and setup event handling then make OpenGL calls to
draw your imagery.

Appropriate uses
applications which don’t require a sophisticated GUI
teaching, instruction, experimentation
demos

Advantages
free
simple
portable; operating system and window system independent. Available for Xlib, Windows
’95/NT, and OS/2.
provides access to advanced input devices, stereo viewing, overlay planes, etc
the GLUT source code provides excellent examples of programming advanced OpenGL and
window system features.

Disadvantages
doesn’t provide the user interface elements such as buttons and sliders needed for many
applications

References
GLUT 3.0 WWW page by Mark Kilgard
(http://reality.sgi.com/employees/mjk_asd/glut3/glut3.html)

172

Programming OpenGL with the X Window System by Mark Kilgard
GLUT for Windows ’95/NT by Nate Robins. (http://www.cs.utah.edu/~narobins/opengl.html)

6. aux/tk

Overview
aux and tk (not to be confused with Tcl/Tk) are simple OpenGL toolkits developed by SGI for the
OpenGL Programming Guide (first edition) and for OpenGL demos. They are very similar to each
other, often only different in function prefixes. The major features of aux/tk are window creation
and event handling.

These toolkits are very limited in functionality and are not intended for any sort of application
development. The GLUT toolkit does everything that aux/tk does plus much more and should be
prefered over aux/tk in any situation.

OpenGL integration method
tk is built on top of Xlib/GLX. aux has been implemented on several window systems and in the
case of X, implemented on top of tk.

Appropriate uses
Small demo programs and examples from the OpenGL programming guide. GLUT is a much
better choice.

Advantages
small and simple
aux is available on several operating systems

Disadvantages
very limited funtionality
several different API implementations of aux exist
has no features which GLUT doesn’t also provide

References
OpenGL Programming Guide (first edition) from Addison-Wesley
A README documentat is included with most implementations

7. Tcl/Tk

Overview
Tcl is a popular, free, interpreted "script" language invented by John Ousterhout. Tk is a graphics
user interface toolkit for Tcl. Tcl/Tk handles user interface and event processing while C is used
for computation and rendering. Originally designed for X, both are now available for Windows
and Macintosh systems.

173

OpenGL integration method
1. A number of free OpenGL/Tk widgets are available which allow one to create OpenGL

"canvases" from Tk. Rendering is done from C code calling the OpenGL API.
2. Another approach taken by several people is to provide Tcl/Tk wrappers for all OpenGL

function so an application may be written with Tcl/Tk alone.

Appropriate uses
Good for demos through large applications.
Good for experimentation, learning and small programs.

Advantages
Free
Easy to learn
Full featured GUI
Quick prototyping
Tcl/Tk applications are portable across Unix, Windows, and Mac.
hides low level details of GUI/OpenGL integration

Disadvantages
OpenGL/Tk support not available on Windows or Macintosh at this time.
Since Tcl is interpreted it may not meet the demands of high performance applications.

References
TIGER by Ekkehard Beier of the Technical University of Ilmenau, Germany
(ftp://metallica.prakinf.tu-ilmenau.de/pub/PROJECTS/TIGER1.0)
TkOGL - a Tk OpenGL widget by Claudio Esperanca of Brazil
(http://aquarius.lcg.ufrj.br/~esperanc/tkogl.html)
OGLTK by Benjamin Bederson of the University of New Mexico
(http://www.cs.unm.edu/~bederson/ogl.html)
Togl (http://www.ssec.wisc.edu/~brianp/Togl.html)

8. XForms

Overview
XForms is a free X-based GUI toolkit written by T. C. Zhao based on the original Forms library by
Mark Overmars.

OpenGL Integration method
A special OpenGL canvas can be created for OpenGL rendering.

Appropriate use
Small to large applications and demos.

Advantages
Free

174

Easy to use
Available for most Unix/X workstations

Disadvantages
OpenGL integration is minimal, one would have to modify the OpenGL canvas code if you
need anything more than double buffered RGB rendering.
May not be as powerful as Motif

References
XForms home page (http://bragg.phys.uwm.edu/~zhao/xforms_home.html)

9. Inventor

Overview
A high-level 3-D graphics toolkit for C and C++ built on top of OpenGL. Inventor provides
object-oriented database construction, rendering, interaction, file I/O, etc.

OpenGL Integration method
Inventor provides library functions for creating OpenGL- rendering windows. However, lower
level window system integration (Xt) is also allowed.

Appropriate uses
Interactive, "object"-oriented graphical applications, possibly in conjuction with a GUI toolkit
such as Motif.

Advantages
provides powerful high-level graphics structures and interaction
object/model file I/O
now available on many platforms from vendors such as Template Graphics Software and
Portable Graphics

Disadvantages
not free
doesn’t in itself provide all the GUI elements needed for full applications

References
Open Inventor home page at SGI (http://www.sgi.com/Technology/Inventor/)
Open Inventor Products from Template Graphics Software, Inc. (http://www.sd.tgs.com/)
The Visual 3Space Browser Control from Template Graphics Software is a 3D/VRML OLD
Custom Control for Win32, allowing VRML/Inventor integration into OCX container
applications. (http://www.tgs.com/Products/v3space.htm)

10. SGI Performer

175

Overview
A high-level graphics library built on top of OpenGL designed for high-performance realtime
applications such as virtual reality, visual simulation, entertainment. C/C++ language bindings.

OpenGL integration method
Performer 2.0 is built on OpenGL. It also privides a simple set of window management routines
(pfWindow).

Appropriate uses
Applications which require maximum interactive performance.

Advantages
provides high-level graphics structures, interaction, multi-CPU support, scene (LOD)
management
object description file I/O

Disadvantages
Proprietary
Targeted to high-end hardware
doesn’t provide GUI elements

References
Performer information from SGI (http://www.sgi.com/Technology/Performer/)

11. OpenGL Optimizer

Overview
The OpenGL Optimizer is a toolkit built on top of OpenGL. It’s designed for CAD/CAE and
visualization applications which deal with large, complex models. The OpenGL Optimizer offers
advanced culling, occlusion testing and NURBS tesselation features.

OpenGL integration method
The OpenGL Optimizer is a C++ toolkit layered upon OpenGL.

Appropriate uses
Applications which deal with large, complicated object models can use the OpenGL Optimizer to
simplify their models for faster interactive rendering.

Advantages
provides performance advantages over straight OpenGL rendering
adopted as a standard among CAD/CAE vendors/developers

Disadvantages
The OpenGL Optimizer is a very new product and may not be widely available at this time.

176

References
The OpenGL Optimizer home page (http://www.sgi.com/Technology/OpenGL/optimizer/).

12. OpenGL++ / OpenGL Scene Graph

Overview
At the time of this writing, OpenGL++ (aka the OpenGL Scene Graph) is under development by
the OpenGL ARB. The purpose of OpenGL++ is to provide a higher-level toolkit for OpenGL
which manages a scene graph with facilities for interaction, compilation, culling, multi-processing,
sorting, etc.

OpenGL integration method
OpenGL++ will likely have C++ and Java APIs built upon OpenGL (or possibly other low-level
3-D APIs).

Appropriate uses
OpenGL++, like Open Inventor or Performer, will be appropriate for applications which require
higher-level functionality than what OpenGL provides.

Advantages
Will relieve the application programmer of low-level OpenGL concerns.
Will provide high-level 3-D features such as scene-graph management, interaction, culling,
LOD management, etc.

Disadvantages
May not be available for some time.

References
OpenGL ARB meeing notes from February 17-19, 1997
(http://www.sgi.com/Technology/openGL/arb-feb.html)

13. Others

Python
While still a work in progress there is some information available from Brown University
regarding OpenGL/Python integration. (http://maigret.cog.brown.edu:80/python/opengl/)

Java
There is an unofficial port of OpenGL to Java.
(ftp://cgl.uwaterloo.ca/pub/software/meta/OpenGL4java.html)

MET++
MET++ is an extension to the ET++ Application Framework, an object-oriented class library that

177

integrates interface building blocks, basic data structures, input/output, printing, and high-level
application framework components. The MET++ extensions include PEX, GL, and OpenGL
support. (http://www.ifi.unizh.ch/groups/mml/projects/met++/met++.html)

On a related note, Steven Baum maintains a nice list of free GUI development systems
(http://www-ocean.tamu.edu/~baum/graphics-GUI.html) and graphics/visualization software
(http://www-ocean.tamu.edu/~baum/ocean_graphics.html) at Texas A&M University.

Last edited on April 14, 1997 by Brian Paul.

178

TR - OpenGL Tile Rendering Library
Version 1.0

Copyright (C) 1997 Brian Paul

Introduction

The TR (Tile Rendering) library is an OpenGL utility library for doing tiled rendering. Tiled rendering
is a technique for generating large images in pieces (tiles).

TR is memory efficient; arbitrarily large image files may be generated without allocating a full-sized
image buffer in main memory.

The TR library is copyrighted by Brian Paul. See the LICENSE file for details.

You may download TR 1.0 by SHIFT-clicking on one of the following:

tr-1.0.tar.gz (10Kbytes)
tr-1.0.zip (10Kbytes)

Prerequisites

TR works with any version of OpenGL or Mesa. No extensions are necessary and there are no
dependencies on GLX, WGL or any other window system interface.

TR is written in ANSI C and may be used from C or C++.

The TR demo programs require Mark Kilgard’s GLUT.

Users should have intermediate experience with OpenGL.

Example

The following image is divided into four rows and three columns of tiles. Note that the image does not
have to be divided into equally sized tiles. The TR library handles the situation in which the top row and
right column are a fraction of the full tile size.

Also note that the tiles do not have to be square.

179

This is a small example. In reality, one may use tiles of 512 by 512 pixels and the final image may be
4000 by 3000 pixels (or larger!).

Using the Library

Ordinarily, OpenGL can’t render arbitrarily large images. The maximum viewport size is typically 2K
pixels or less and the window system usually imposes a maximum color buffer size.

To overcome this limitation we can render large images in pieces (tiles).

To render each tile we must carefully set the viewport and projection matrix and render the entire scene.
The TR library hides the details involved in doing this. Also, TR can either automatically assemble the
final image or allow the client to write the image, row by row, to a file.

The basic steps in using TR are as follows:

1. Determine where you’ll render the tiles

Tiles may be rendered either in a window (front or back buffer) or in an off-screen buffer. The choice
depends on your application. It doesn’t matter to the TR library since TR just retrieves image tiles with
glReadPixels . Just be sure glDrawBuffer and glReadBuffer are set to the same buffer.

2. Determine the destination for the final image

The final, large image may either be automatically assembed in main memory by TR or you may elect to
process tiles yourself, perhaps writing them to an image file.

3. Centralize your drawing code

It should be a simple matter to completely re-render your OpenGL scene. Ideally, inside the tile
rendering loop you should be able to make one function call which clears the color (and depth, etc)
buffer(s) and draws your scene. If you’re using a double buffered window you should not call
SwapBuffers since glReadBuffer , by default, specifies the back buffer.

4. Allocate a TR context

Every TR function takes a TRcontext pointer. A TR context encapsulates the state of the library and
allows one to have several TR contexts simultaneously. TR contexts are allocated with trNew .

5. Set the image and tile sizes

180

Call trImageSize to set the final image size, in pixels. Optionally, call trTileSize to set the tile size.
Currently, the default tile size is 256 by 256 pixels. Generally, larger tiles are better since fewer tiles
(and rendering passes) will be needed.

6. Specify an image or tile buffer

If you want TR to automatically assemble the final image you must call trImageBuffer to specify an
image buffer, format, and pixel type. The format and type parameters directly correspond to those used
by glReadPixels .

Otherwise, if you want to process image tiles yourself you must call trTileBuffer to specify a tile
buffer, format, and pixel type. The trEndTile function will copy the tile image into your buffer. You
may then use or write the tile to a file, for example.

7. Optional: set tile rendering order

Since OpenGL specifies that image data are stored in bottom-to-top order TR follows the same model.
However, when incrementally writing tiles to a file we usually want to do it in top-to-bottom order since
that’s the order used by most file formats.

The trRowOrder function allows you to specify that tiles are to be rendering in TR_TOP_TO_BOTTOM

order or TR_BOTTOM_TO_TOP order. The later is the default.

8. Specify the projection

The projection matrix must be carefully controlled by TR in order to produce a final image which has no
cracks or edge artifacts.

OpenGL programs typically call glFrustum , glOrtho or gluPerspective to setup the projection
matrix. There are three corresponding functions in the TR library. One of them must be called to specify
the projection to use. The arguments to the TR projection functions exactly match the arguments to the
corresponding OpenGL functions.

9. Tile rendering loop

After the tile size and image size are specified the TR library computes how many tiles will be needed to
produce the final image.

The tiles are rendered inside a loop similar to this:

int more = 1;
while (more)
{
 trBeginTile(tr);
 DrawScene();
 more = trEndTile(tr);
}

This should be self-explanatory. Simply call trBeginTile , render your entire scene, and call trEndTile

181

inside a loop until trEndTile returns zero.

10. Query functions

The trGet function can be called to query a number of TR state variables such as the number of rows
and columns of tiles, tile size, image size, currently rendered tile, etc. See the detailed description of
trGet below.

11. glRasterPos problem

The glRasterPos function is troublesome. The problem is that the current raster position is invalidated
if glRasterPos results in a coordinate outside of the window. Subsequent glDrawPixels and glBitmap

functions are ignored. This will frequently happen during tiled rendering resulting in flawed images.

TR includes a substitute function: trRasterPos3f which doesn’t have this problem. Basically, replace
calls to glRasterPos with trRasterPos . See the included demo programs for example usage.

12. Compilation

Include the tr.h header file in your client code.

Compile and link with the tr.c library source file. There is no need to compile TR as a separate library
file.

API Functions

Creating and Destroying Contexts

TRcontext *trNew(void)
Return a pointer to a new TR context and initialize it. Returns NULL if out of memory.

void trDelete(TRcontext *tr)
Deallocate a TR context.

Image and Tile Setup Functions

void trTileSize(TRcontext *tr, GLint width, GLint height)
Specifies size of tiles to generate. This is generally the size of your window or off-screen image
buffer.

void trImageSize(TRcontext *tr, GLint width, GLint height)
Specifies size of final image to generate.

void trTileBuffer(TRcontext *tr, GLenum format, GLenum type, GLvoid *image);
This is an optional function. After a tile is rendered (after trEnd) it will be copied into the buffer

182

specified by this function.
image must point to a buffer large enough to hold an image equal to the tile size specified by
trTileSize .
format and type are interpreted in the same way as glReadPixels .

void trImageBuffer(TRcontext *tr, GLenum format, GLenum type, GLvoid *image);
This is an optional function. This specifies a buffer into which the final image is assembled.
As tiles are generated they will automatically be copied into this buffer. The image will be
complete after the last tile has been rendered.
image must point to a buffer large enough to hold an image equal to the size specified by
trImageSize .
format and type are interpreted in the same way as glReadPixels .

Note: trImageBuffer and trTileBuffer are the means by which image data is obtained from the TR
library. You must call one (or both) of these functions in order to get output from TR.

void trRowOrder(TRcontext *tr, TRenum order)
Specifies the order in which tiles are generated.
order may take one of two values:

TR_BOTTOM_TO_TOP - render tiles in bottom to top order (the default)
TR_TOP_TO_BOTTOM - render tiles in top to bottom order

Projection Setup Functions

void trOrtho(TRcontext *tr, GLdouble left, GLdouble right, GLdouble bottom, GLdouble

top, GLdouble near, GLdouble far)
Specify an orthographic projection as with glOrtho .
Must be called before rendering first tile.

void trFrustum(TRcontext *tr, GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far)
Specify a perspective projection as with glFrustum .
Must be called before rendering first tile.

void trPerspective(TRcontext *tr, GLdouble fovy, GLdouble aspect, GLdouble zNear,

GLdouble zFar);
Specify a perspective projection as with gluPerspective .
Must be called before rendering first tile.

Tile Rendering Functions

trBeginTile(TRcontext *tr)
Begin rendering a tile.

int trEndTile(TRcontext *tr)
End rendering a tile.
Return 0 if finished rendering image.
Return 1 if more tiles remain to be rendered.

183

The trBeginTile and trEndTile functions are meant to be used in a loop like this:

int more = 1;
while (more)
{
 trBeginTile(tr);
 DrawScene();
 more = trEndTile(tr);
}

DrawScene is a function which renders your OpenGL scene. It should include glClear but not
SwapBuffers .

Miscellaneous Functions

GLint trGet(TRcontext *tr, TRenum param)
Query TR state. param may be one of the following:

TR_TILE_WIDTH - returns tile buffer width
TR_TILE_HEIGHT - returns tile buffer height
TR_IMAGE_WIDTH - returns image buffer width
TR_IMAGE_HEIGHT - returns image buffer height
TR_ROW_ORDER - returns TR_TOP_TO_BOTTOM or TR_BOTTOM_TO_TOP
TR_ROWS - returns number of rows of tiles in image
TR_COLUMNS - returns number of columns of tiles in image
TR_CURRENT_ROW - returns current tile row. The bottom row is row zero.
TR_CURRENT_COLUMN - returns current tile column The left column is column zero.
TR_CURRENT_TILE_WIDTH - returns width of current tile
TR_CURRENT_TILE_HEIGHT - returns height of current tile

Note the difference between TR_TILE_WIDTH/HEIGHT and TR_CURRENT_TILE_WIDTH/HEIGHT . The
former is the size of the tile buffer. The later is the size of the current tile which can be less than or
equal to the TR_TILE_WIDTH/HEIGHT . Unless the final image size is an exact multiple of the tile
size, the last tile in each row and column will be smaller than TR_TILE_WIDTH/HEIGHT .

void trRasterPos3f(TRcontext *tr, GLfloat x, GLfloat y, GLfloat z)
This function is a replacement for glRasterPos3f . The problem with the OpenGL RasterPos
functions is that if the resulting window coordinate is outside the view frustum then the raster
position is invalidated and glBitmap becomes a no-op.

This function avoids that problem.

You should replace calls to glRasterPos with this function. Otherwise, glRasterPos/glBitmap

sequences won’t work out correctly during tiled rendering.

Unfortunatley, trRasterPos3f can’t be saved in a display list.

Demonstration Programs

184

The TR distribution includes two GLUT-based demo programs:

trdemo1 - renders a window-size image in tiles
trdemo2 - produces a large PPM file incrementally

You’ll probably have to edit the Makefile for your computer. Compiling the demos is very simple
though since they only require OpenGL and GLUT.

Contributors

Robin Syllwasschy - provided much helpful feedback for the initial version of TR.

Version History

Version 1.0 - April 1997

Initial version

Last edited on April 27, 1997 by Brian Paul.

185

186

SIGGRAPH ’97

Course 24: OpenGL and Window System
Integration

Graphics Library Transition Notes

Contents

1. Introduction
2. PEX to OpenGL
3. IRIS GL to OpenGL

1. Introduction

OpenGL is now the predominate 3-D graphics library and there are reasons to port many existing
applications from older libraries:

To take advantage of new graphics hardware
To keep up with evolving operating systems
To broaden the range of system supported

Porting graphics applications can take a lot of effort; there are no silver bullets. This document outlines
several techniques and hints.

2. PEX to OpenGL

PEX is a 3-D graphics extension to the X Window System. The API is similar to Xlib in that there are
many pointers, structures and complicated function calls. OpenGL by comparison is much cleaner and
simpler. Feature-wise, PEX offers much of the functionality of OpenGL 1.0.

Here are the highlights of PEX vs OpenGL and porting:

PEX is more of a protocol specification than API specification. That is, there are several interfaces
to PEX functionality. OpenGL on the other hand, is defined in terms of an API and not a protocol.

187

Since PEX relies on the same Xlib window management and event handling code as OpenGL for
X (GLX), much of the user interface code may be quite portable.

PEX’s data structures for describing geometry are of coarse granularity while OpenGL geometry
is described in in fine granularity. That is, the data structures for PEX can be easily rendered by
OpenGL since OpenGL specifies primitives a vertex at a time rather than as large arrays or
structures.

One may be able to continue using PEX-style data structures in your application and render them
using OpenGL commands.

PEX’s notion of attribute "bundles" can be replaced with OpenGL display lists.

The problem of dealing with PEX subsetting largly disappears with since the OpenGL
specification mandates full implementation.

A PEX application which uses multiple rendering contexts may be especially difficult to port to
OpenGL since most PEX API functions explicitly specify the context while in OpenGL the
context is implicit. Context switching in OpenGL may be considerably more expensive than it is
with PEX.

PEX has a lot of support for fonts and text drawing which may be difficult to translate to OpenGL.

PEX has several primitive such as quadrilateral meshes which aren’t directly offered by OpenGL
but can be implemented without too much trouble.

PEX supports editable display lists while OpenGL doesn’t. Nested OpenGL display lists may be a
suitable work around.

Though PEX and GLX both are built on Xlib, visual selection and window creation code will have
to be reimplemented for OpenGL.

3. IRIS GL to OpenGL

Since OpenGL’s roots are in IRIS GL one may expect porting from IRIS GL to OpenGL to be easy.
Conceptually, IRIS GL and OpenGL are very similar, but in practice porting is not an easy job. Many of
the IRIS GL function calls directly map to OpenGL. On the other hand, many features such as lighting
and texturing are implemented quite differently.

SGI’s OpenGL Porting Guide is a good place to begin a porting project. The toogl utility partially
automates the conversion of programs from IRIS GL to OpenGL. It is included with the IRIX IDO
option.

Below are the highlights of the similarities and differences in OpenGL and IRIS GL.

188

3.1 Similarities

Basic Rendering
OpenGL and IRIS GL are very similar in how they specify geometric primitives; both use the
begin/vertex/color/normal/end paradigm. In many cases, IRIS GL drawing commands directly
map to OpenGL equivalents.

Transformation and viewing
OpenGL and IRIS GL use similar functions for coordinate transformation and viewing. Both have
modelview and projection matrices which can be built up from simple transformation calls (scale,
translate, rotate). Be aware that OpenGL’s projection functions such as glOrtho() and glFrustum()
are multiplied onto the projection matrix rather than replace the projection matrix as IRIS GL’s
ortho() and window() do. You should first load an identity matrix.

Immediate mode rendering and display lists
Immediate mode rendering and display list are supported by both libraries. OpenGL, however,
does not support editing display lists as IRIS GL does. Nested/hierarchal OpenGL display lists
may replace editing.

Picking and feedback
Picking (selection) works similar in OpenGL and IRIS GL; both use a name stack. Feedback in
OpenGL is nicer than IRIS GL because OpenGL feedback is identical on all implementations,
while IRIS GL implemented it differently on some systems.

Depth testing, blending, stenciling, accumulation
Depth (Z) buffering, alpha blending, stencil buffers and accumulation buffers are all implemented
similarly in OpenGL and IRIS GL. In many cases there is a direct mapping of functions between
the libraries.

2.2 Differences

OpenGL contains no window system functions like IRIS GL
If your IRIS GL program is a "mixed model" program, using IRIS GL for rendering but X for
window/event handling, then most of your even processing code should work fine with OpenGL.

If your IRIS GL program makes heavy use of IRIS GL’s input devices, window management,
pop-up menus, etc porting will be more difficult. One possibility is to use GLUT. GLUT provides
much of the IRIS GL functionality which OpenGL lacks.

Lighting
While OpenGL and IRIS GL lighting are functionally similar, the implementations are quite
different. IRIS GL’s lmdef() and lmbind() functions are replaced by separate functions for setting
light, material, and lighting model parameters in OpenGL. The tables of IRIS GL lighting
parameters one might be using can be replaced by display lists in OpenGL.

Texture mapping
IRIS GL supports defining tables of textures, one of which can be bound at a time with texbind().
OpenGL only directly supports one texture map definition at a time. However, the texture object

189

extension or display lists can be used to simulate the IRIS GL texture system.

No subsetting of OpenGL
One especially nice difference between IRIS GL and OpenGL is the fact that OpenGL does not
allow subsetting. That is, the entire functionality of OpenGL will always be implemented. IRIS
GL unfortunately implemented different features on different systems.

These points only describe the high-level differences in the graphics libraries. As mentioned above, the
OpenGL Porting Guide goes into much more detail.

Last edited on April 13, 1997 by Brian Paul.

190

PUBLISHED IN THE

JANUARY/FEBRUARY 1994 ISSUE OF The X Journal.

OPENGLTM AND X, PART 2:
USING OPENGL WITH XLIB

Mark J. Kilgard �

Silicon Graphics Inc.
Revision : 1:22

May 7, 1997

Abstract

This is the second article in a three-part series about using
the OpenGLTM graphics system and the X Window System.
A moderately complex OpenGL program for X is presented.
Depth buffering, back-face culling, lighting, display list mod-
eling, polygon tessellation, double buffering, and shading are
all demonstrated. The program adheres to proper X conven-
tions for colormap sharing, window manager communication,
command line argument processing, and event processing. Af-
ter the example, advanced X and OpenGL issues are discussed
including minimizing colormap flashing, handling overlays, us-
ing fonts, and performing animation. The last article in this se-
ries discusses integrating OpenGL with the Motif toolkit.

1 Introduction

In the first article in this series, the OpenGLTM graphics sys-
tem was introduced. Along with an explanation of the sys-
tem’s functionality, a simple OpenGL X program was presented
and OpenGL was compared to the X Consortium’s PEX ex-
tension. In this article, a more involved example of program-
ming OpenGL with X is presented. The example is intended
to demonstrate both sophisticated OpenGL functionality and
proper integration of OpenGL with the X Window System.

This article is intended to answer questions from two classes
of programmers: first, the X programmer wanting to see
OpenGL used in a program of substance; second, the OpenGL
or IRIS GL programmer likely to be unfamiliar with the more
mundane window system setup necessary when using the X
Window System at the Xlib layer.

The example program called glxdino renders a 3D di-
nosaur model using OpenGL. Hidden surfaces are removed us-
ing depth buffering. Back-face culling improves rendering per-

�Mark graduated with B.A. in Computer Science from Rice University and
is a Member of the Technical Staff at Silicon Graphics. He can be reached by
electronic mail addressed to mjk@sgi.com

formance by not rendering back-facing polygons. Hierarchi-
cal modeling is used to construct the dinosaur and render it
via OpenGL display lists. The OpenGL Utility Library (GLU)
polygon tessellation routines divide complex polygons into sim-
pler polygons renderable by OpenGL. Sophisticated lighting
lends realism to the dinosaur. If available, double buffering
smoothes animation.

The program integrates well with the X Window System. The
program accepts some of the standard X command line options:
-display, -geometry, and -iconic. The user can ro-
tate the model using mouse motion. Top-level window prop-
erties specified by the Inter-Client Communication Convention
Manual (ICCCM) are properly set up to communicate with the
window manager. Colormap sharing is done via ICCCM con-
ventions. And the proper way of communicating to the window
manager a desire for a constant aspect ratio is demonstrated.

A walk through of the glxdino source code is presented in
Section 2. While glxdino tries to demonstrate a good num-
ber of OpenGL features and many of the issues concerning how
X and OpenGL integrate, it is only an example. Section 3 ex-
plores more of the issues encountered when writingan advanced
OpenGL program using Xlib. The third and last article in this
series discusses how to integrate OpenGL with the Motif toolkit.

2 Example Walk Through

The source code for glxdino can be found in Appendix A. I
will refer to the code repeatedly throughout this section. Figure
1 shows a screen snapshot of glxdino.

2.1 Initialization

The program’s initialization proceeds through the following
steps:

1. Process the standard X command line options.

2. Open the connection to the X server.

191

Figure 1: Screen snapshot of glxdino.

3. Determine if OpenGL’s GLX extension is supported.

4. Find the appropriate X visual and colormap.

5. Create an OpenGL rendering context.

6. Create an X window with the selected visual and properly
specify the right ICCCM properties for the window man-
ager to use.

7. Bind the rendering context to the window.

8. Make the display list hierarchy for the dinosaur model.

9. Configure OpenGL rendering state.

10. Map the window.

11. Begin dispatching X events.

Comments in the code correspond to these enumerated steps.
In the program’s main routine, the first task is to process the

supported command line arguments. Users of the X Window
System should be familiar with -displaywhich specifies the
X server to use, -geometrywhich specifies the initial size and
location of the program’s main window, and -iconic which
requests the window be initially iconified. Programmers used
to the IRIS GL (the predecessor to OpenGL) may not be famil-
iar with these options. While nothing requires an X program to
accept standard X options, most do as a matter of consistency
and convenience. Most X toolkits automatically understand the
standard set of X options

The -keepaspect option is not a standard X command
line option. When specified, it requests that the window man-
ager ensure that the ratio between the initial width and height

of the window be maintained. Often for 3D programs, the pro-
grammer would like a constant aspect ratio for their rendering
window. In IRIS GL, a call named keepaspect is available.
Maintaining the aspect ratio of a window is something for the
window system to do so there is no call analogous to IRIS GL’s
keepaspect in OpenGL. Remember that the core OpenGL
ApplicationProgrammer Interface (API) attempts to be window
system independent. IRIS GL programmers used to the IRIS
GL interface will need to become aware of X functionality to
do things that used to be done with IRIS GL calls.

Normally glxdino tries to use a double buffered window
but will use a single buffered window if a double buffered vi-
sual is not available. When the -single option is present, the
program will look only for a single buffered visual. On many
machines with hardware double buffering support, color reso-
lution can be traded for double buffering to achieve smooth an-
imation. For example, a machine with 24 bits of color resolu-
tion could support 12 bits of color resolution for double buffered
mode. Half the image bit-planes would be for the front buffer
and half for the back buffer.

Next, a connection to the X server is established using
XOpenDisplay. Since glxdino requires OpenGL’s GLX
extension, the program checks that the extension exists using
glXQueryExtension. The routine indicates if the GLX ex-
tension is supported or not. As is convention for X routines that
query extensions, the routine can also return the base error code
and base event code for the GLX extension. The current version
of GLX supports no extension events (but does define eight pro-
tocol errors). Most OpenGL programs will need neither of these
numbers. You can pass in NULL as glxdino does to indicate
you do not need the event or error base.

OpenGL is designed for future extensibility. The
glXQueryVersion routine returns the major and mi-
nor version of the OpenGL implementation. Currently, the
major version is 1 and the minor version is 0. glxdino
does not use glXQueryVersion but it may be useful for
programs in the future.

2.1.1 Choosing a Visual and Colormap

The GLX extension overloads X visuals to denote supported
frame buffer configurations. Before you create an OpenGL win-
dow, you should select a visual which supports the frame buffer
features you intend to use. GLX guarantees at least two visual
will be supported. An RGBA mode visual with a depth buffer,
stencil buffer, and accumulation buffer must be supported. Sec-
ond, a color index mode visual with a depth buffer and sten-
cil buffer must be available. More and less capable visuals are
likely to also be supported depending on the implementation.

To make it easy to select a visual, glXChooseVisual
takes a list of the capabilities you are requesting and returns
an XVisualInfo* for a visual meeting your requirements.
NULL is returned if a visual meeting your needs is not avail-
able. To ensure your application will run with any OpenGL
GLX server, your program should be written to support the base

192

line required GLX visuals. Also you should only ask for the
minimum set of frame buffer capabilities you require. For ex-
ample, if your program never uses a stencil buffer, you will pos-
sibly waste resources if you request one anyway.

Since glxdino rotates the dinosaur in response to user in-
put, the program will run better if double buffering is available.
Double buffering allows a scene to be rendered out of view and
then displayed nearly instantly to eliminate the visual artifacts
associated with watching a 3D scene render. Double buffer-
ing helps create the illusion of smooth animation. Since dou-
ble buffering support is not required for OpenGL implementa-
tions, glxdino resorts to single buffering if no double buffer
visuals are available. The program’s configuration inte-
ger array tells what capabilities glXChooseVisual should
look for. Notice how if a double buffer visual is not found, an-
other attempt is made which does not request double buffering
by starting after theGLX DOUBLBUFFER token. And when the
-single option is specified, the code only looks for a singled
buffered visual.
glxdino does require a depth buffer (of at least 16 bits

of accuracy) and uses the RGBA color model. The RGBA
base line visual must support at least a 16 bit depth buffer so
glxdino should always find a usable visual.

You should not assume the visual you need is the default vi-
sual. Using a non-default visual means windows created using
the visual will require a colormap matching the visual. Since
the window we are interested in uses OpenGL’s RGBA color
model, we want a colormap configured for using RGB. The IC-
CCM establishes a means for sharing RGB colormaps between
clients. XmuLookupStandardColormap is used to set up a
colormap for the specified visual. The routine reads the ICCCM
RGB DEFAULT MAP property on the X server’s root window.
If the property does not exist or does not have an entry for the
specified visual, a new RGB colormap is created for the visual
and the property is updated (creating it if necessary). Once the
colormap has been created, XGetRGBColormaps finds the
newly created colormap. The work for finding a colormap is
done by the getColormap routine.

If a standard colormap cannot be allocated, glxdino will
create an unshared colormap. For some servers, it is possible
(though unlikely) a DirectColor visual might be returned
(though the GLX specification requires a TrueColor visual
be returned in precedence to a DirectColor visual if possi-
ble). To shorten the example code by only handling the most
likely case, the code bails if aDirectColor visual is encoun-
tered. A more portable (and longer) program would be capable
of initializing an RGB DirectColor colormap.

2.1.2 Creating a Rendering Context

Once a suitable visual and colormap are found, the pro-
gram can create an OpenGL rendering context using
glXCreateContext. (The same context can be used
for different windows with the same visual.)

The last parameter allows the program to request a direct

rendering context if the program is connected to a local X
server. An OpenGL implementation is not required to support
direct rendering, but if it does, faster rendering is possible since
OpenGL will render directly to the graphics hardware. Direct
rendered OpenGL requests do not have to be sent to the X server.
Even when on the local machine, you may not want direct ren-
dering in some cases. For example, if you want to render to X
pixmaps, you must render through the X server.

GLX rendering contexts support sharing of display lists
among one another. To this end, the third parameter to
glXCreateContext is another already created GLX render-
ing context. NULL can be specified to create an initial rendering
context. If an already existent rendering context is specified, the
display list indexes and definitions are shared by the two render-
ing contexts. The sharing is transitive so a share group can be
formed between a whole set of rendering contexts.

To share, all the rendering contexts must exist in the same ad-
dress space. This means direct renderers cannot share display
lists with renderers rendering through the X server. Likewise
direct renderers in separate programs cannot share display lists.
Sharing display lists between renderers can help to minimize the
memory requirements of applications that need the same display
lists.

2.1.3 Setting Up a Window

Because OpenGL uses visuals to distinguish various frame
buffer capabilities, programmers using OpenGL need to be
aware of the required steps to create a window with a non-
default visual. As mentioned earlier a colormap created for the
visual is necessary. But the most irksome thing to remember
about creating a window with a non-default visual is that the
border pixel value must be specified if the window’s visual is
not the same as its parent’s visual. Otherwise a BadMatch is
generated.

Before actually creating the window, the argument
to the -geometry option should be parsed using
XParseGeometry to obtain the user’s requested size
and location. The size will be needed when we create the
window. Both the size and location are needed to set up the
ICCCM size hints for the window manager. A fixed aspect
ratio is also requested by setting up the right size hints if the
-keepaspect option is specified.

Once the window is created,
XSetStandardProperties sets up the various stan-
dard ICCCM properties including size hints, icon name, and
window name. Then the ICCCM window manager hints are
set up to indicate the window’s initial state. The -iconic
option sets the window manager hints to indicate the window
should be initially iconified. XAllocWMHints allocates a
hints structure. Once filled in, XSetWMHints sets up the hint
property for the window.

The final addition to the window is the WM PROTOCOLS
property which indicates window manager protocols the client
understands. The most commonly used protocol defined by

193

ICCCM is WM DELETE WINDOW. If this atom is listed in the
WM PROTOCOLS property of a top-level window, then when
the user selects the program be quit from the window manager,
the window manager will politely send aWM DELETE WINDOW
message to the client instructing the client to delete the window.
If the window is the application’s main window, the client is ex-
pected to terminate. If this property is not set, the window man-
ager will simply ask the X server to terminate the client’s con-
nection without notice to the client. By default, this results in
Xlib printing an ugly message like:

X connection to :0.0 broken
(explicit kill or server shutdown).

Asking to participate in the WM DELETE WINDOW protocol al-
lows the client to safely handle requests to quit from the window
manager.

The property has another advantage for OpenGL programs.
Many OpenGL programs doing animation will use XPending
to check for pending X events and otherwise draw their ani-
mation. But if all a client’s animation is direct OpenGL ren-
dering and the client does not otherwise do any X requests,
the client never sends requests to the X server. Due to a
problem in XPending’s implementation on many Unix op-
erating systems,1 such an OpenGL program might not no-
tice its X connection was terminated for sometime. Using
the WM DELETE WINDOW protocol eliminates this problem be-
cause the window manager notifies the client via a message
(trippingXPending) and the client is expected to drop the con-
nection.

Using the WM DELETE WINDOW protocol is good practice
even if you do not use XPending and the Xlib message does
not bother you.

All these steps (besides creating a window with a non-default
visual) are standard for creating a top-level X window. A top-
level window is a window created as a child of the root win-
dow (the window manager may choose to reparent the window
when it is mapped to add a border). Note that the properties dis-
cussed are placed on the top-level window, not necessarily the
same window that OpenGL renders into. While glxdino cre-
ates a single window, a more complicated program might nest
windows used for OpenGL rendering inside the top-level win-
dow. The ICCCM window manager properties belong on top-
level windows only.

An IRIS GL programmer not familiar with X will probably
find these details cumbersome. Most of the work will be done
for you if you use a toolkit layered on top of Xlib.

Now a window and an OpenGL rendering context exist. In
OpenGL (unlike Xlib), you do not pass the rendering destina-
tion into every rendering call. Instead a given OpenGL render-
ing context is bound to a window using glXMakeCurrent.

1Operating systems using FIONREAD ioctl calls on file descriptors us-
ing Berkeley non-blocking I/O cannot differentiate no data to read from a bro-
ken connection; both conditions cause the FIONREAD ioctl to return zero.
MIT’s standard implementation ofXPending uses Berkeley non-blocking I/O
and FIONREAD ioctls. Eventually, Xlib will do an explicit check on the
socket to see if it closes but only after a couple hundred calls to XPending.

Once bound, all OpenGL rendering calls operate using the cur-
rent OpenGL rendering context and the current bound window.
A thread can only be bound to one window and one rendering
context at a time. A context can only be bound to a single thread
at a time. If you callglXMakeCurrentagain, it unbinds from
the old context and window and then binds to the newly speci-
fied context and window. You can unbind a thread from a win-
dow and a context by passing NULL for the context and None
for the drawable.

2.2 The Dinosaur Model

The task of figuring out how to describe the 3D object you wish
to render is called modeling. Much as a plastic airplane model is
constructed out of little pieces, a computer generated 3D scene
must also be built out of little pieces. In the case of 3D render-
ing, the pieces are generally polygons.

The dinosaur model to be displayed is constructed out of a hi-
erarchy of display lists. Rendering the dinosaur is accomplished
by executing a single display list.

The strategy for modeling the dinosaur is to construct solid
pieces for the body, arms, legs, and eyes. Figure 2 shows the
2D sides of the solids to construct the dinosaur. Making these
pieces solid is done by extruding the sides (meaning stretching
the 2D sides into a third dimension). By correctly situating the
solid pieces relative to each other, they form the complete di-
nosaur.

The work to build the dinosaur model is done by
the routine named makeDinosaur. A helper routine
extrudeSolidFromPolygon is used to construct each
solid extruded object.

2.2.1 The GLU Tessellator

The polygons in Figure 2 are irregular and complex. For perfor-
mance reasons, OpenGL directly supports drawing only convex
polygons. The complex polygons that make up the sides of the
dinosaur need to be built from smaller convex polygons.

Since rendering complex polygons is a common need,
OpenGL supplies a set of utility routines in the OpenGL GLU
library which make it easy to tessellate complex polygons. In
computer graphics, tessellation is the process of breaking a com-
plex geometric surface into simple convex polygons.

The GLU library routines for tessellation are:

gluNewTess - create a new tessellation object.

gluTessCallback - define a callback for a tessellation ob-
ject.

gluBeginPolygon - begin a polygon description to tessel-
late.

gluTessVertex - specify a vertex for the polygon to tessel-
late.

gluNextContour - mark the beginning of another contour
for the polygon to tessellate.

194

Figure 2: 2D complex polygons used to model the dinosaur’s
arm, leg, eye, and body sides.

gluEndPolygon - finish a polygon being tessellated.

gluDeleteTess - destroy a tessellation object.

These routines are used in the example code to tessellate the
sides of the dinosaur. Notice at the beginning of the program
static arrays of 2D vertices are specified for the dinosaur’s body,
arm, leg, and eye polygons.

To use the tessellation package, you first create a tes-
sellation object with gluNewTess. An object of type
GLUtriangulatorObj* is returned which is passed into the
other polygon tessellation routines. You do not need a tessella-
tion object for every polygon you tessellate. You might need
more than one tessellation object if you were trying to tessel-
late more than one polygon at a time. In the sample program,
a single tessellation object is used for all the polygons needing
tessellation.

Once you have a tessellation object, you should set up call-
back routines using gluTessCallback. The way that the
GLU tessellation package works is that you feed in vertices.
Then the tessellation is performed and your registered callbacks
are called to indicate the beginning, end, and all the vertices for
the convex polygons which correctly tessellate the points you
feed to the tessellator.

Look at theextrudeSolidFromPolygon routine which
uses the GLU tessellation routines. To understand exactly why
the callbacks are specified as they are, consult the OpenGL Ref-
erence Manual [4]. The point to notice is how a single tessel-
lation object is set up once and callbacks are registered for it.
Then gluBeginPolygon is used to start tessellating a new
complex polygon. The vertices of the polygon are specified

using gluTessVertex. The polygon is finished by calling
gluEndPolygon.

Notice the code for tessellating the polygon lies between
a glNewList and glEndList; these routines begin and
end the creation of a display list. The callbacks will generate
glVertex2fv calls specifying the vertices of convex poly-
gons needed to represent the complex polygonbeing tessellated.
Once completed, a display list is available that can render the
desired complex polygon.

Consider the performance benefits of OpenGL’s polygon tes-
sellator compared with a graphics system that supplies a poly-
gon primitive that supports non-convex polygons. A primitive
which supported complex polygons would likely need to tessel-
late each complex polygon on the fly. Calculating a tessellation
is not without cost. If you were drawing the same complex poly-
gon more than once, it is better to do the tessellation only once.
This is exactly what is achieved by creating a display list for
the tessellated polygon. But if you are rendering continuously
changing complex polygons, the GLU tessellator is fast enough
for generating vertices on the fly for immediate-mode rendering.

Having a tessellation object not directly tied to rendering is
also more flexible. Your program might need to tessellate a
polygon but not actually render it. The GLU’s system of call-
backs just generate vertices. You can call OpenGL glVertex
calls to render the vertices or supply your own special callbacks
to save the vertices for your own purposes. The tessellation al-
gorithm is accessible for your own use.

The GLU tessellator also supports multiple contours allowing
disjoint polygons or polygons with holes to be tessellated. The
gluNextContour routine begins a new contour.

The tessellation object is just one example of functionality in
OpenGL’s GLU library which supports 3D rendering without
complicating the basic rendering routines in the core OpenGL
API. Other GLU routines support rendering of curves and sur-
faces using Non-Uniform Rational B-Splines (NURBS) and
tessellating boundaries of solids such as cylinders, cones, and
spheres. All the GLU routines are a standard part of OpenGL.

2.2.2 Hierarchical Display Lists

After generating the complex polygon display list for the sides
of a solid object, the extrudeSolidFromPolygon routine
creates another display list for the “edge” of the extruded solid.
The edge is generated using a QUAD STRIP primitive. Along
with the vertices, normals are calculated for each quad along the
edge. Later these normals will be used for lighting the dinosaur.
The normals are computed to be unit vectors. Having nor-
mals specified as unit vectors is important for correct lighting.
An alternative would be to use glEnable(GL NORMALIZE)
which ensures all normals are properly normalized before use
in lighting calculations. Specifying unit vectors to begin with
and not using glEnable(GL NORMALIZE) saves time dur-
ing rendering. Be careful when using scaling transformations
(often set up using glScale) since scaling transformations
will scale normals too. If you are using scaling transformations,

195

glEnable(GL NORMALIZE) is almost always required for
correct lighting.

Once the edge and side display lists are created, the solid
is formed by calling the edge display list, then filling in the
solid by calling the side display list twice (once translated over
by the width of the edge). The makeDinosaur routine will
use extrudeSolidFromPolygon to create solids for each
body part needed by the dinosaur.

Then makeDinosaur combines these display lists into a
single display list for the entire dinosaur. Translations are used
to properly position the display lists to form the complete di-
nosaur. The body display list is called; then arms and legs for
the right side are added; then arms and legs for the left side are
added; then the eye is added (it is one solid which pokes out ei-
ther side of the dinosaur’s head a little bit on each side).

2.2.3 Back-face Culling

A common optimization in 3D graphics is a technique known
as back-face culling. The idea is to treat polygons as essentially
one-sided entities. A front facing polygon needs to be rendered
but a back-facing polygon can be eliminated.

Consider the dinosaur model. When the model is rendered,
the back side of the dinosaur will not be visible. If the direction
each polygon “faced” was known, OpenGL could simply elim-
inate approximately half of the polygons (the back-facing ones)
without ever rendering them.

Notice the calls to glFrontFace when each solid display
list is created in extrudeSolidFromPolygon. The argu-
ment to the call is either GL CW or GL CCW meaning clock-
wise and counter-clockwise. If the vertices for a polygon are
listed in counter-clockwise order and glFrontFace is set to
GL CCW, then the generated polygon is considered front facing.
The static data specifying the vertices of the complex polygons
is listed in counter-clockwise order. To make the quads in the
quad strip face outwards, glFrontFace(GL CW) is speci-
fied. The same mode ensures the far side faces outward. But
glFrontFace(GL CCW) is needed to make sure the front of
the other side faces outward (logically it needs to be reversed
from the opposite side since the vertices were laid out counter-
clockwise for both sides since they are from the same display
list).

When the static OpenGL state is set up,
glEnable(GL CULL FACE) is used to enable back-
face culling. As with all modes enabled and disabled using
glEnable and glDisable, it is disabled by default.
Actually OpenGL is not limited to back-face culling. The
glCullFace routine can be used to specify either the back
or the front should be culled when face culling is enabled.

When you are developing your 3D program, it is often help-
ful to disable back-face culling. That way both sides of every
polygon will be rendered. Then once you have your scene cor-
rectly rendering, you can go back and optimize your program to
properly use back-face culling.

Do not be left with the misconception that enabling or dis-

abling back-face culling (or any other OpenGL feature) must be
done for the duration of the scene or program. You can enable
and disable back-face culling at will. It is possible to draw part
of your scene with back-face culling enabled, and then disable
it, only to later re-enable culling but this time for front faces.

2.3 Lighting

The realism of a computer generated 3D scene is greatly en-
hanced by adding lighting. In the first article’s sample program,
glColor3fwas used to add color to the faces of the 3D cube.
This adds color to rendered objects but does not use lighting. In
the example, the cube moves but the colors do not vary the way
a real cube might as it is affected by real world lighting. In this
article’s example, lighting will be used to add an extra degree of
realism to the scene.

OpenGL supports a sophisticated 3D lighting model to
achieve higher realism. When you look at a real object, its color
is affected by lights, the material properties of the object, and the
angle at which the light shines on the object. OpenGL’s lighting
model approximates the real world.

Complicated effects such as the reflection of light and shad-
ows are not supported by OpenGL’s lightingmodel though tech-
niques and algorithms are available to simulate such effects.
Environment mapping to simulate reflection is possible using
OpenGL’s texturing capability. OpenGL’s stencil buffers and
blending support can be used to create shadows, but an expla-
nation of these techniques is beyond the scope of this article.
(See the topics in the final chapter of the OpenGL Programming
Guide).

2.3.1 Types of Lighting

The effects of light are complex. In OpenGL, lighting is divided
into four different components: emitted, ambient, diffuse, and
specular. All four components can be computed independently
and then added together.

Emitted light is the simplest. It is light that originates from
an object and is unaffected by any light sources. Self-luminous
objects can be modeled using emitted light.

Ambient light is light from some source that has been scat-
tered so much by the environment that its direction is impossi-
ble to determine. Even a directed light such as a flashlight may
have some ambient light associated with it.

Diffuse light comes from some direction. The brightness of
the light bouncing off an object depends on the light’s angle
of incidence with the surface it is striking. Once it hits a sur-
face, the light is scattered equally in all directions so it appears
equally bright independent of where the eye is located.

Specular light comes from some direction and tends to
bounce off the surface in a certain direction. Shiny metal or
plastic objects have a high specular component. Chalk or car-
pet have almost none. Specularity corresponds to the everyday
notion of how shiny an object is.

A single OpenGL light source has a single color and some
combination of ambient, diffuse, and specular components.

196

+X axis

+Z axis

+Y axis (out of page)

bright,
green−tinted
light (10,4,10)

 green dinosaur
 with red eye
centered at (0,0,0)

dim, red−tinted
light at infinite
distance on
vector (1,−2,1)

eye at (0,0,30)
looking at dinosaur

Figure 3: Arrangement of lights, eye, and dinosaur in modeling
space.

OpenGL supports multiple lights simultaneously. The program-
mer can control the makeup of a light as well as its position, di-
rection, and attenuation. Attenuation refers to how a light’s in-
tensity decreases as distance from the light increases.

2.3.2 Lighting in the Example

The example uses two lights. Both use only the diffuse com-
ponent. A bright, slightly green-tinted positional light is to the
right, front of the dinosaur. A dim, red-tinted directional light
is coming from the left, front of the dinosaur. Figure 3 shows
how the dinosaur, the lights, and the eye-point are arranged.
A positional light is located at some finite position in model-
ing space. A directional light is considered to be located in-
finitely far away. Using a directional light allows the OpenGL
to consider the emitted light rays to be parallel by the time the
light reaches the object. This simplifies the lightingcalculations
needed to be done by OpenGL.

The lightZeroPosition and lightOnePosition
static variables indicate the position of the two lights. You will
notice each has not three but four coordinates. This is because
the light location is specified in homogeneous coordinates. The
fourth value divides the X, Y, and Z coordinates to obtain the
true coordinate. Notice how lightOnePosition (the infi-
nite light)has the fourth value set to zero. This is how an infinite
light is specified.2

2Actually all coordinates are logically manipulated by OpenGL as three-
dimensional homogeneous coordinates. The OpenGL Programming Guide’s

The dinosaur can rotate around the Y axis based on the user’s
mouse input. The idea behind the example’s lighting arrange-
ment is when the dinosaur is oriented so its side faces to the
right, it should appear green due to the bright light. When its
side faces leftward, the dinosaur should appear poorly lighted
but the red infinite light should catch the dinosaur’s red eye.

Section 9 of the program initialization shows how lighting is
initialized. The glEnable(GL LIGHTING) turns on light-
ing support. The lights’ positions and diffuse components are
set using via calls to glLightfv using the GL POSITION
and GL DIFFUSE parameters. The lights are each enabled us-
ing glEnable.

The attenuation of the green light is adjusted. This deter-
mines how the light intensity fades with distance and demon-
strates how individual lighting parameters can be set. It would
not make sense to adjust the attenuation of the red light since it
is an infinite light which shines with uniform intensity.

Neither ambient nor specular lighting are demonstrated in
this example so that the effect of the diffuse lighting would be
clear. Specular lighting might have been used to give the di-
nosaur’s eye a glint.

Recall when the edge of each solid was generated, normals
were calculated for each vertex along the quad strip. And a
single normal was given for each complex polygon side of the
solid. These normals are used in the diffuse lightingcalculations
to determine how much light should be reflected. If you rotate
the dinosaur, you will notice the color intensity changes as the
angle incidence for the light varies.

Also notice the calls to glShadeModel. OpenGL’s shade
model determines whether flat or smooth shading should be
used on polygons. The dinosaur model uses different shading
depending on whether a side or edge is being rendered. There
is a good reason for this. The GL SMOOTH mode is used on the
sides. If flat shading were used instead of smooth, each convex
polygoncomposing the tessellated complex polygon side would
be a single color. The viewer could notice exactly how the sides
has been tessellated. Smooth shading prevents this since the
colors are interpolated across each polygon.

But for the edge of each solid, GL FLAT is used. Because the
edge is generated as a quad strip, quads along the strip share ver-
tices. If we used a smooth shading model, each edge between
two quads would have a single normal. Some of the edges are
very sharp (like the claws in the hand and the tip of the tail).
Interpolating across such varying normals would lead to an un-
desirable visual effect. The fingers would appear rounded if
looked at straight on. Instead, with flat shading, each quad gets
its own normal and there is no interpolation so the sharp angles
are clearly visible.

Appendix G [3] briefly explains homogeneous coordinates. A more involved
discussion of homogeneous coordinates and why they are useful for 3D com-
puter graphics can be found in Foley and van Dam [1].

197

Eye−point
(0,0,30)

Near plane
(1 unit from eye)

Far plane
(40 units from eye)

Origin
(0,0,0)

One to one
aspect ratio

40 degree
field of view

Figure 4: Static view for glxdino.

2.4 View Selection

In 3D graphics, viewing is the process of establishing the per-
spective and orientation with which the scene should be ren-
dered. Like a photographer properly setting up his camera, an
OpenGL programmer should establish a view. Figure 4 shows
how the view is set up for the example program.

In OpenGL, establishing a view means loading the projection
and model-view matrices with the right contents. To modify the
projection matrix, call glMatrixMode(GL PROJECTION).
Calculating the right matrix by hand can be tricky. The GLU
library has two useful routines that make the process easy.

GLU’s gluPerspective routine allows you to specify
a field of view angle, an aspect ratio, and near and far clip-
ping planes. It multiplies the current projection matrix with
one created according to the routine’s parameters. Since ini-
tially the projection matrix is an identity matrix, glxdino’s
gluPerspective call effectively loads the projection ma-
trix.

Another GLU routine, gluLookAt, can be used to ori-
ent the eye-point for the model-view matrix. Notice how
glMatrixMode(GL MODELVIEW) is used to switch to the
model-view matrix. Using gluLookAt requires you to spec-
ify the eye-point’s location, a location to look at, and a nor-
mal to determine which way is up. Like gluPerspective,
gluLookAtmultiplies the matrix it constructs from its param-
eters with the current matrix. The initial model-view matrix is
the identity matrix so glxdino’s call to gluLookAt effec-
tively loads the model-view matrix.

After the gluLookAt call, glPushMatrix is called.
Both the model-view and projection matrices exist on stacks
that can be pushed and popped. Calling glPushMatrix
pushes a copy of the current matrix onto the stack. When
a rotation happens, this matrix is popped off and another
glPushMatrix is done. This newly pushed matrix is com-
posed with a rotation matrix to reflect the current absolute ori-
entation. Every rotation pops off the top matrix and replaces it
with a newly rotated matrix.

Notice that the light positions are not set until after the model-
view matrix has been properly initialized.

Because the location of the viewpoint affects the calculations
for lighting, separate the projection transformation in the pro-
jection matrix and the modeling and viewing transformations in
the model-view matrix.

2.5 Event Dispatching

Now the window has been created, the OpenGL renderer has
been bound to it, the display lists have been constructed, and
OpenGL’s state has been configured. All that remains is to re-
quest the window be mapped using XMapWindow and begin
handling any X events sent to the program.

When the window was created, four types of window events
were requested to be sent to our application: Expose events
reporting regions of the window to be drawn, ButtonPress
events indicating mouse button status, KeyPress events in-
dicating a keyboard key has been presed, MotionNotify
events indicating mouse movement, and ConfigureNotify
events indicating the window’s size or position has changed.

X event dispatching is usually done in an infinite loop. Most
X programs do not stop dispatching events until the program ter-
minates. XNextEvent can be used to block waiting for an X
event. When an event arrives, its type is examined to tell what
event has been received.

2.5.1 Expose Handling

For an Expose event, the example program just sets a flag in-
dicating the window needs to be redrawn. The reason is that
Expose events indicate a single sub-rectangle in the window
that must be redrawn. The X server will send a number of
Expose events if a complex region of the window has been ex-
posed.

For a normal X program using 2D rendering, you might be
able to minimize the amount needed to redraw the window by
carefully examining the rectangles for each Expose event. For
3D programs, this is usually too difficult to be worthwhile since
it is hard to determine what would need to be done to redraw
some sub-region of the window. In practice the window is usu-
ally redrawn in its entirety. For the dinosaur example, redraw-
ing involves calling the dinosaur display list with the right view.
It is not helpful to know only a sub-region of the window actu-
ally needs to be redrawn. For this reason, an OpenGL program
should not begin redrawing until it has received all the expose
events most recently sent to the window. This practice is known
as expose compression and helps to avoid redrawing more than
you should.

Notice that all that is done to immediately handle an expose
is to set the needRedraw flag. Then XPending is used to
determine if there are more events pending. Not until the stream
of events pauses is the redraw routine really called (and the
needRedraw flag reset).

The redraw routine does three things: it clears the image
and depth buffers, executes the dinosaur display list, and either
calls glXSwapBuffers on the window if double buffered or

198

calls glFlush. The current model-view matrix determines in
what orientation the dinosaur is drawn.

2.5.2 Window Resizing

The X server sends a ConfigureNotify event to indicate a
window resize. Handling the event generally requires changing
the viewport of OpenGL windows. The sample program calls
glViewport specifying the window’s new width and height.
A resize also necessitates a screen redraw so the code “falls
through” to the expose code which sets the needRedraw flag.

When you resize the window, the aspect ratio of the window
may change (unless you have negotiated a fixed aspect ratio
with the window manager as the -keepaspect option does).
If you want the aspect ratio of your final image to remain con-
stant, you might need to respecify the projection matrix with an
aspect ratio to compensate for the window’s changed aspect ra-
tio. The example does not do this.

2.5.3 Handling Input

The example program allows the user to rotate the dinosaur
while moving the mouse by holding down the first mouse
button. We record the current angle of rotation whenever a
mouse button state changes. As the mouse moves while the
first mouse button is held down, the angle is recalculated. A
recalcModelView flag is set indicating the scene should be
redrawn with the new angle.

When there is a lull in events, the model-view matrix is re-
calculated and then the needRedraw flag is set, forcing a re-
draw. The recalcModelView flag is cleared. As discussed
earlier, recalculating the model-view is done by popping off the
current top matrix using glPopMatrix and pushing on a new
matrix. This new matrix is composed with a rotation matrix us-
ing glRotatef to reflect the new absolute angle of rotation.
An alternative approach would be to multiply the current matrix
by a rotation matrix reflecting the change in angle of rotation.
But such a relative approach to rotation can lead to inaccurate
rotations due to accumulated floating point round-off errors.

2.5.4 Quitting

Because the WM DELETE WINODW atom was specified on the
top-level window’s list of window manager protocols, the event
loop should also be ready to handle an event sent by the win-
dow manager asking the program to quit. If glxdino receives
a ClientMessage event with the first data item being the
WM DELETE WINDOW atom, the program calls exit.

In many IRIS GL demonstration programs, the Escape key is
used by convention to quit the program. So glxdino shows a
simple means to quit in response to an Escape key press.

3 Advanced Xlib and OpenGL

The glxdino example demonstrates a good deal of OpenGL’s
functionality and how to integrate OpenGL with X but there are
a number of issues that programmers wanting to write advanced
OpenGL programs for X should be aware of.

3.1 Colormaps

Already a method has been presented for sharing colormaps us-
ing the ICCCM conventions. Most OpenGL programs do not
use the default visual and therefore cannot use the default col-
ormap. Sharing colormaps is therefore important for OpenGL
programs to minimize the amount of colormaps X servers will
need to create.

Often OpenGL programs require more than one colormap. A
typical OpenGL program may do OpenGL rendering in a sub-
window but most of the program’s user interface is implemented
using normal X 2D rendering. If the OpenGL window is 24 bits
deep, it would be expensive to require all the user interface win-
dows also to be 24 bits deep. Among other things, pixmaps for
the user interface windows would need to be 32 bits per pixel
instead of the typical 8 bits per pixel. So the program may use
the server’s (probably default) 8 bit PseudoColor visual for
its user interface but use a 24 bit TrueColor visual for its
OpenGL subwindow. Multiple visuals demand multiple col-
ormaps. Many other situations may arise when an OpenGL pro-
gram needs multiple colormaps within a single top-level win-
dow hierarchy.

Normally window managers assume the colormap that a top-
level window and all its subwindows need is the colormap used
by the top-level window. A window manager automatically no-
tices the colormap of the top-level window and tries to ensure
that that colormap is installed when the window is being inter-
acted with.

With multiple colormaps used inside a single top-level
window, the window manager needs to be informed
of the other colormaps being used. The Xlib routine
XSetWMColormapWindows can be used to place a standard
property on your top-level window to indicate all the colormaps
used by the top-level window and its descendants.

Be careful about using multiple colormaps. It is possible
a server will not have enough colormap resources to support
the set of visuals and their associated colormaps that you de-
sire. Unfortunately, there is no standard way to determine
what sets of visuals and colormaps can be simultaneously in-
stalled when multiple visuals are supported. Xlib provides two
calls, XMaxCmapsOfScreen and XMinCmapsOfScreen,
but these do not express hardware conflicts between visuals.

Here are some guidelines:

� If XMaxCmapsOfScreen returns one, you are guaran-
teed a single hardware colormap. Colormap flashing is
quite likely. You should write your entire application to use
a single colormap at a time.

199

� If an 8 bit PseudoColor visual and a 24 bit
TrueColor visual are supported on a single screen,
it is extremely likely a different colormap for each of the
two visuals can be installed simultaneously.

� If XMaxCmapsOfScreen returns a number higher than
one, it is possible that the hardware supports multiple col-
ormaps for the same visual. A rule of thumb is the higher
the number, the more likely. If the number is higher than
the total number of visuals on the screen, it must be true for
at least one visual (but you cannot know which one).

Hopefully multiple hardware colormaps will become more
prevalent and perhaps a standard mechanism to detect colormap
and visual conflicts will become available.

3.2 Double Buffering

If you are writing an animated 3D program, you will probably
want double buffering. It is not always available for OpenGL.
You have two choices: run in single-buffered mode or render
to a pixmap and copy each new frame to the window using
XCopyArea.

Note that when you use glXChooseVisual, booleans
are matched exactly (integers if specified are considered min-
imums). This means if you want to support double buffering
but be able to fall back to single buffering, two calls will be
needed toglXChooseVisual. If an OpenGL application has
sophisticated needs for selecting visuals, glXGetConfig can
be called on each visual to determine the OpenGL attributes of
each visual.

3.3 Overlays

X has a convention for supporting overlay window via special
visuals [2]. OpenGL can support rendering into overlay vi-
suals. Even if an X server supports overlay visuals, you will
need to make sure those visuals are OpenGL capable. The
glXChooseVisual routine does allow you to specify the
frame buffer layer for the visual you are interested in with the
GLX LEVEL attribute. This makes it easier to find OpenGL ca-
pable overlay visuals.

IRIS GL programmers are used to assuming the trans-
parent pixel in an overlay visual is always zero. For X
and OpenGL, this assumption is no longer valid. You
should query the transparent mode and pixel specified by the
SERVER OVERLAY VISUALS property to ensure portability.

IRIS GL programmers are also used to considering overlay
planes as being “built-in” to IRIS GL windows. The X model
for overlay planes considers an overlay window to be a separate
window with its own window ID. To use overlays as one does in
IRIS GL, you need to create a normal plane window, then create
a child window in the overlay planes with the child’s origin lo-
cated at the origin of the parent. The child should be maintained
to have the same size as the parent. Clear the overlay window

to the transparent pixel value to see through to the parent nor-
mal plane window. Switching between the overlay and normal
planes windows requires a glXMakeCurrent call.

It is likely that the overlay visuals will not support the same
frame buffer capabilities as the normal plane visuals. You
should avoid assuming overlay windows will have frame buffer
capabilities such as depth buffers, stencil buffers, or accumula-
tion buffers.

3.4 Mixing Xlib and OpenGL Rendering

In IRIS GL, rendering into an X window using core X rendering
after IRIS GL was bound to the window is undefined. This pre-
cluded mixing core X rendering with GL rendering in the same
window. OpenGL allows its rendering to be mixed with core X
rendering into the same window. You should be careful doing
so since X and OpenGL rendering requests are logically issued
in two distinct streams. If you want to ensure proper rendering,
you must synchronize the streams. Calling glXWaitGL will
make sure all OpenGL rendering has finished before subsequent
X rendering takes place. Calling glXWaitX will make sure
all core X rendering has finished before subsequent OpenGL
rendering takes place. These requests do not require a protocol
round trip to the X server.

The core OpenGL API also includes glFinish and
glFlush commands useful for rendering synchronization.
glFinish ensures all rendering has appeared on the screen
when the routine returns (similar to XSync). glFlush only
ensures the queued commands will eventually be executed
(similar to XFlush).

Realize that mixing OpenGL and X is not normally neces-
sary. Many OpenGL programs will use a toolkit like Motif for
their 2D user interface component and use a distinct X window
for OpenGL rendering. This requires no synchronization since
OpenGL and core X rendering go to distinct X windows. Only
when OpenGL and core X rendering are directed at the same
window is synchronization of rendering necessary.

Also OpenGL can be used for extremely fast 2D as well as
3D. When you feel a need to mix core X and OpenGL rendering
into the same window, consider rendering what you would do in
core X using OpenGL. Not only do you avoid the synchroniza-
tion overhead, but you can potentially achieve faster 2D using
direct rendered OpenGL compared to core X rendering.

3.5 Fonts

Graphics programs often need to display text. You can use X
font rendering routines or you can use the GLXglXUseXFont
routine to create display lists out of X fonts.

Neither of these methods of font rendering may be flexible
enough for a program desiring stroke or scalable fonts or having
sophisticated font needs. In the future, an OpenGL font man-
ager will be available to meet these needs. In the meantime, you
can use glXUseXFont or X font rendering or roll your own
font support. An easy way to do this is to convert each glyph

200

of your font into a display list. Rendering text in the font be-
comes a matter of executing the display list corresponding to
each glyph in the string to display.

3.6 Display Lists

OpenGL supports immediate mode rendering where commands
can be generated on the fly and sent directly to the screen. Pro-
grammers should be aware that their OpenGL programs might
be run indirectly. In this case, immediate mode rendering could
require a great deal of overhead for transport to the X server and
possibly across a network.

For this reason, OpenGL programmers should try to use dis-
play lists when possible to batch rendering commands. Since
the display lists are stored in the server, executing a display list
has minimal overhead compared to executing the same com-
mands in the display list immediately.

Display lists are likely to have other advantages since
OpenGL implementations are allowed to compile them for max-
imum performance. Be aware you can mix display lists and im-
mediate mode rendering to achieve the best mix of performance
and rendering flexibility.

4 Conclusion

The glxdino example demonstrates the basic tasks that must
be done to use OpenGL with X. The program demonstrates so-
phisticated OpenGL features such as double buffering, lighting,
shading, back-face culling, display list modeling, and polygon
tessellation. And the proper X conventions are followed to en-
sure glxdino works well with other X programs.

The glxdino example program and the hints for advanced
OpenGL programming should provide a good foundation for
understanding and programming OpenGL with Xlib. The next
article will explain how to integrate OpenGL with the Motif
toolkit.

201

A glxdino.c

1 /* compile: cc -o glxdino glxdino.c -lGLU -lGL -lXmu -lX11 */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <math.h> /* for cos(), sin(), and sqrt() */
6 #include <GL/glx.h> /* this includes X and gl.h headers */
7 #include <GL/glu.h> /* gluPerspective(), gluLookAt(), GLU polygon
8 * tesselator */
9 #include <X11/Xatom.h> /* for XA_RGB_DEFAULT_MAP atom */

10 #include <X11/Xmu/StdCmap.h> /* for XmuLookupStandardColormap() */
11 #include <X11/keysym.h> /* for XK_Escape keysym */
12
13 typedef enum {
14 RESERVED, BODY_SIDE, BODY_EDGE, BODY_WHOLE, ARM_SIDE, ARM_EDGE, ARM_WHOLE,
15 LEG_SIDE, LEG_EDGE, LEG_WHOLE, EYE_SIDE, EYE_EDGE, EYE_WHOLE, DINOSAUR
16 } displayLists;
17
18 Display *dpy;
19 Window win;
20 GLfloat angle = -150; /* in degrees */
21 GLboolean doubleBuffer = GL_TRUE, iconic = GL_FALSE, keepAspect = GL_FALSE;
22 int W = 300, H = 300;
23 XSizeHints sizeHints = {0};
24 GLdouble bodyWidth = 2.0;
25 int configuration[] = {GLX_DOUBLEBUFFER, GLX_RGBA, GLX_RED_SIZE, 1, GLX_DEPTH_SIZE, 16, None};
26 GLfloat body[][2] = { {0, 3}, {1, 1}, {5, 1}, {8, 4}, {10, 4}, {11, 5},
27 {11, 11.5}, {13, 12}, {13, 13}, {10, 13.5}, {13, 14}, {13, 15}, {11, 16},
28 {8, 16}, {7, 15}, {7, 13}, {8, 12}, {7, 11}, {6, 6}, {4, 3}, {3, 2},
29 {1, 2} };
30 GLfloat arm[][2] = { {8, 10}, {9, 9}, {10, 9}, {13, 8}, {14, 9}, {16, 9},
31 {15, 9.5}, {16, 10}, {15, 10}, {15.5, 11}, {14.5, 10}, {14, 11}, {14, 10},
32 {13, 9}, {11, 11}, {9, 11} };
33 GLfloat leg[][2] = { {8, 6}, {8, 4}, {9, 3}, {9, 2}, {8, 1}, {8, 0.5}, {9, 0},
34 {12, 0}, {10, 1}, {10, 2}, {12, 4}, {11, 6}, {10, 7}, {9, 7} };
35 GLfloat eye[][2] = { {8.75, 15}, {9, 14.7}, {9.6, 14.7}, {10.1, 15},
36 {9.6, 15.25}, {9, 15.25} };
37 GLfloat lightZeroPosition[] = {10.0, 4.0, 10.0, 1.0};
38 GLfloat lightZeroColor[] = {0.8, 1.0, 0.8, 1.0}; /* green-tinted */
39 GLfloat lightOnePosition[] = {-1.0, -2.0, 1.0, 0.0};
40 GLfloat lightOneColor[] = {0.6, 0.3, 0.2, 1.0}; /* red-tinted */
41 GLfloat skinColor[] = {0.1, 1.0, 0.1, 1.0}, eyeColor[] = {1.0, 0.2, 0.2, 1.0};
42 GC gc;
43 XGCValues gcvals;
44
45 void
46 fatalError(char *message)
47 {
48 fprintf(stderr, "glxdino: %s\n", message);
49 exit(1);
50 }
51
52 Colormap
53 getColormap(XVisualInfo * vi)
54 {
55 Status status;
56 XStandardColormap *standardCmaps;
57 Colormap cmap;
58 int i, numCmaps;

202

59
60 /* be lazy; using DirectColor too involved for this example */
61 if (vi->class != TrueColor)
62 fatalError("no support for non-TrueColor visual");
63 /* if no standard colormap but TrueColor, just make an unshared one */
64 status = XmuLookupStandardColormap(dpy, vi->screen, vi->visualid,
65 vi->depth, XA_RGB_DEFAULT_MAP, /* replace */ False, /* retain */ True);
66 if (status == 1) {
67 status = XGetRGBColormaps(dpy, RootWindow(dpy, vi->screen),
68 &standardCmaps, &numCmaps, XA_RGB_DEFAULT_MAP);
69 if (status == 1)
70 for (i = 0; i < numCmaps; i++)
71 if (standardCmaps[i].visualid == vi->visualid) {
72 cmap = standardCmaps[i].colormap;
73 XFree(standardCmaps);
74 return cmap;
75 }
76 }
77 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
78 vi->visual, AllocNone);
79 return cmap;
80 }
81
82 void
83 extrudeSolidFromPolygon(GLfloat data[][2], unsigned int dataSize,
84 GLdouble thickness, GLuint side, GLuint edge, GLuint whole)
85 {
86 static GLUtriangulatorObj *tobj = NULL;
87 GLdouble vertex[3], dx, dy, len;
88 int i;
89 int count = dataSize / (2 * sizeof(GLfloat));
90
91 if (tobj == NULL) {
92 tobj = gluNewTess(); /* create and initialize a GLU polygon
93 * tesselation object */
94 gluTessCallback(tobj, GLU_BEGIN, glBegin);
95 gluTessCallback(tobj, GLU_VERTEX, glVertex2fv); /* semi-tricky */
96 gluTessCallback(tobj, GLU_END, glEnd);
97 }
98 glNewList(side, GL_COMPILE);
99 glShadeModel(GL_SMOOTH); /* smooth minimizes seeing tessellation */
100 gluBeginPolygon(tobj);
101 for (i = 0; i < count; i++) {
102 vertex[0] = data[i][0];
103 vertex[1] = data[i][1];
104 vertex[2] = 0;
105 gluTessVertex(tobj, vertex, &data[i]);
106 }
107 gluEndPolygon(tobj);
108 glEndList();
109 glNewList(edge, GL_COMPILE);
110 glShadeModel(GL_FLAT); /* flat shade keeps angular hands from being
111 * "smoothed" */
112 glBegin(GL_QUAD_STRIP);
113 for (i = 0; i <= count; i++) {
114 /* mod function handles closing the edge */
115 glVertex3f(data[i % count][0], data[i % count][1], 0.0);
116 glVertex3f(data[i % count][0], data[i % count][1], thickness);
117 /* Calculate a unit normal by dividing by Euclidean distance. We
118 * could be lazy and use glEnable(GL_NORMALIZE) so we could pass in

203

119 * arbitrary normals for a very slight performance hit. */
120 dx = data[(i + 1) % count][1] - data[i % count][1];
121 dy = data[i % count][0] - data[(i + 1) % count][0];
122 len = sqrt(dx * dx + dy * dy);
123 glNormal3f(dx / len, dy / len, 0.0);
124 }
125 glEnd();
126 glEndList();
127 glNewList(whole, GL_COMPILE);
128 glFrontFace(GL_CW);
129 glCallList(edge);
130 glNormal3f(0.0, 0.0, -1.0); /* constant normal for side */
131 glCallList(side);
132 glPushMatrix();
133 glTranslatef(0.0, 0.0, thickness);
134 glFrontFace(GL_CCW);
135 glNormal3f(0.0, 0.0, 1.0); /* opposite normal for other side */
136 glCallList(side);
137 glPopMatrix();
138 glEndList();
139 }
140
141 void
142 makeDinosaur(void)
143 {
144 GLfloat bodyWidth = 3.0;
145
146 extrudeSolidFromPolygon(body, sizeof(body), bodyWidth,
147 BODY_SIDE, BODY_EDGE, BODY_WHOLE);
148 extrudeSolidFromPolygon(arm, sizeof(arm), bodyWidth / 4,
149 ARM_SIDE, ARM_EDGE, ARM_WHOLE);
150 extrudeSolidFromPolygon(leg, sizeof(leg), bodyWidth / 2,
151 LEG_SIDE, LEG_EDGE, LEG_WHOLE);
152 extrudeSolidFromPolygon(eye, sizeof(eye), bodyWidth + 0.2,
153 EYE_SIDE, EYE_EDGE, EYE_WHOLE);
154 glNewList(DINOSAUR, GL_COMPILE);
155 glMaterialfv(GL_FRONT, GL_DIFFUSE, skinColor);
156 glCallList(BODY_WHOLE);
157 glPushMatrix();
158 glTranslatef(0.0, 0.0, bodyWidth);
159 glCallList(ARM_WHOLE);
160 glCallList(LEG_WHOLE);
161 glTranslatef(0.0, 0.0, -bodyWidth - bodyWidth / 4);
162 glCallList(ARM_WHOLE);
163 glTranslatef(0.0, 0.0, -bodyWidth / 4);
164 glCallList(LEG_WHOLE);
165 glTranslatef(0.0, 0.0, bodyWidth / 2 - 0.1);
166 glMaterialfv(GL_FRONT, GL_DIFFUSE, eyeColor);
167 glCallList(EYE_WHOLE);
168 glPopMatrix();
169 glEndList();
170 }
171
172 void
173 redraw(void)
174 {
175 static int x = 0;
176 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
177 glCallList(DINOSAUR);
178 if (doubleBuffer)

204

179 glXSwapBuffers(dpy, win); /* buffer swap does implicit glFlush */
180 else glFlush(); /* explicit flush for single buffered case */
181 #if 1
182 XDrawLine(dpy, win, gc, 10+x, 10, 40+x, 40);
183 x+=8;
184 XSync(dpy, 0);
185 #endif
186 }
187
188 void
189 main(int argc, char **argv)
190 {
191 XVisualInfo *vi;
192 Colormap cmap;
193 XSetWindowAttributes swa;
194 XWMHints *wmHints;
195 Atom wmDeleteWindow;
196 GLXContext cx;
197 XEvent event;
198 KeySym ks;
199 GLboolean needRedraw = GL_FALSE, recalcModelView = GL_TRUE;
200 char *display = NULL, *geometry = NULL;
201 int flags, x, y, width, height, lastX, i;
202
203 /*** (1) process normal X command line arguments ***/
204 for (i = 1; i < argc; i++) {
205 if (!strcmp(argv[i], "-geometry")) {
206 if (++i >= argc)
207 fatalError("follow -geometry option with geometry parameter");
208 geometry = argv[i];
209 } else if (!strcmp(argv[i], "-display")) {
210 if (++i >= argc)
211 fatalError("follow -display option with display parameter");
212 display = argv[i];
213 } else if (!strcmp(argv[i], "-iconic")) iconic = GL_TRUE;
214 else if (!strcmp(argv[i], "-keepaspect")) keepAspect = GL_TRUE;
215 else if (!strcmp(argv[i], "-single")) doubleBuffer = GL_FALSE;
216 else fatalError("bad option");
217 }
218
219 /*** (2) open a connection to the X server ***/
220 dpy = XOpenDisplay(display);
221 if (dpy == NULL) fatalError("could not open display");
222
223 /*** (3) make sure OpenGL’s GLX extension supported ***/
224 if (!glXQueryExtension(dpy, NULL, NULL))
225 fatalError("X server has no OpenGL GLX extension");
226
227 /*** (4) find an appropriate visual and a colormap for it ***/
228 /* find an OpenGL-capable RGB visual with depth buffer */
229 if (!doubleBuffer) goto SingleBufferOverride;
230 vi = glXChooseVisual(dpy, DefaultScreen(dpy), configuration);
231 if (vi == NULL) {
232 SingleBufferOverride:
233 vi = glXChooseVisual(dpy, DefaultScreen(dpy), &configuration[1]);
234 if (vi == NULL)
235 fatalError("no appropriate RGB visual with depth buffer");
236 doubleBuffer = GL_FALSE;
237 }
238 cmap = getColormap(vi);

205

239
240 /*** (5) create an OpenGL rendering context ***/
241 /* create an OpenGL rendering context */
242 cx = glXCreateContext(dpy, vi, /* no sharing of display lists */ NULL,
243 /* direct rendering if possible */ GL_TRUE);
244 if (cx == NULL) fatalError("could not create rendering context");
245
246 /*** (6) create an X window with selected visual and right properties ***/
247 flags = XParseGeometry(geometry, &x, &y,
248 (unsigned int *) &width, (unsigned int *) &height);
249 if (WidthValue & flags) {
250 sizeHints.flags |= USSize;
251 sizeHints.width = width;
252 W = width;
253 }
254 if (HeightValue & flags) {
255 sizeHints.flags |= USSize;
256 sizeHints.height = height;
257 H = height;
258 }
259 if (XValue & flags) {
260 if (XNegative & flags)
261 x = DisplayWidth(dpy, DefaultScreen(dpy)) + x - sizeHints.width;
262 sizeHints.flags |= USPosition;
263 sizeHints.x = x;
264 }
265 if (YValue & flags) {
266 if (YNegative & flags)
267 y = DisplayHeight(dpy, DefaultScreen(dpy)) + y - sizeHints.height;
268 sizeHints.flags |= USPosition;
269 sizeHints.y = y;
270 }
271 if (keepAspect) {
272 sizeHints.flags |= PAspect;
273 sizeHints.min_aspect.x = sizeHints.max_aspect.x = W;
274 sizeHints.min_aspect.y = sizeHints.max_aspect.y = H;
275 }
276 swa.colormap = cmap;
277 swa.border_pixel = 0;
278 swa.event_mask = ExposureMask | StructureNotifyMask |
279 ButtonPressMask | Button1MotionMask | KeyPressMask;
280 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen),
281 sizeHints.x, sizeHints.y, W, H,
282 0, vi->depth, InputOutput, vi->visual,
283 CWBorderPixel | CWColormap | CWEventMask, &swa);
284 gcvals.line_width = 5;
285 gcvals.foreground = 45;
286 gc = XCreateGC(dpy, win, GCForeground|GCLineWidth, &gcvals);
287 XSetStandardProperties(dpy, win, "OpenGLosaurus", "glxdino",
288 None, argv, argc, &sizeHints);
289 wmHints = XAllocWMHints();
290 wmHints->initial_state = iconic ? IconicState : NormalState;
291 wmHints->flags = StateHint;
292 XSetWMHints(dpy, win, wmHints);
293 wmDeleteWindow = XInternAtom(dpy, "WM_DELETE_WINDOW", False);
294 XSetWMProtocols(dpy, win, &wmDeleteWindow, 1);
295
296 /*** (10) request the X window to be displayed on the screen ***/
297 XMapWindow(dpy, win);
298 sleep(1);

206

299
300 /*** (7) bind the rendering context to the window ***/
301 glXMakeCurrent(dpy, win, cx);
302
303 /*** (8) make the desired display lists ***/
304 makeDinosaur();
305
306 /*** (9) configure the OpenGL context for rendering ***/
307 glEnable(GL_CULL_FACE); /* ˜50% better perfomance than no back-face
308 * culling on Entry Indigo */
309 glEnable(GL_DEPTH_TEST); /* enable depth buffering */
310 glEnable(GL_LIGHTING); /* enable lighting */
311 glMatrixMode(GL_PROJECTION);/* set up projection transform */
312 gluPerspective(/* field of view in degree */ 40.0, /* aspect ratio */ 1.0,
313 /* Z near */ 1.0, /* Z far */ 40.0);
314 glMatrixMode(GL_MODELVIEW); /* now change to modelview */
315 gluLookAt(0.0, 0.0, 30.0, /* eye is at (0,0,30) */
316 0.0, 0.0, 0.0, /* center is at (0,0,0) */
317 0.0, 1.0, 0.); /* up is in postivie Y direction */
318 glPushMatrix(); /* dummy push so we can pop on model recalc */
319 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
320 glLightfv(GL_LIGHT0, GL_POSITION, lightZeroPosition);
321 glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor);
322 glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.1);
323 glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.05);
324 glLightfv(GL_LIGHT1, GL_POSITION, lightOnePosition);
325 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightOneColor);
326 glEnable(GL_LIGHT0);
327 glEnable(GL_LIGHT1); /* enable both lights */
328
329 /*** (11) dispatch X events ***/
330 while (1) {
331 do {
332 XNextEvent(dpy, &event);
333 switch (event.type) {
334 case ConfigureNotify:
335 glViewport(0, 0,
336 event.xconfigure.width, event.xconfigure.height);
337 /* fall through... */
338 case Expose:
339 needRedraw = GL_TRUE;
340 break;
341 case MotionNotify:
342 recalcModelView = GL_TRUE;
343 angle -= (lastX - event.xmotion.x);
344 case ButtonPress:
345 lastX = event.xbutton.x;
346 break;
347 case KeyPress:
348 ks = XLookupKeysym((XKeyEvent *) & event, 0);
349 if (ks == XK_Escape) exit(0);
350 break;
351 case ClientMessage:
352 if (event.xclient.data.l[0] == wmDeleteWindow) exit(0);
353 break;
354 }
355 } while (XPending(dpy));/* loop to compress events */
356 if (recalcModelView) {
357 glPopMatrix(); /* pop old rotated matrix (or dummy matrix if
358 * first time) */

207

359 glPushMatrix();
360 glRotatef(angle, 0.0, 1.0, 0.0);
361 glTranslatef(-8, -8, -bodyWidth / 2);
362 recalcModelView = GL_FALSE;
363 needRedraw = GL_TRUE;
364 }
365 if (needRedraw) {
366 redraw();
367 needRedraw = GL_FALSE;
368 }
369 }
370 }

208

References

[1] James Foley, Andries van Dam, Steven Feiner, and John
Hughes, Computer Graphics: Principles and Practice,
2nd edition, Addison-Wesley Publishing, 1990.

[2] Mark Kilgard, “Programming X Overlay Windows,” The
X Journal, SIGS Publications, July 1993.

[3] Jackie Neider, Tom Davis, Mason Woo, OpenGL Pro-
gramming Guide: The official guide to learning OpenGL,
Release 1, Addison Wesley, 1993.

[4] OpenGL Architecture Review Board, OpenGL Reference
Manual: The official reference document for OpenGL, Re-
lease 1, Addison Wesley, 1992.

209

PUBLISHED IN THE

JULY/AUGUST ISSUE OF The X Journal.

OPENGLTM AND X, PART 3:
INTEGRATING OPENGL WITH MOTIF

Mark J. Kilgard �

Silicon Graphics Inc.
Revision : 1:19

May 7, 1997

Abstract

The OpenGLTM graphics system can be integrated with the
industry-standard OSF/Motif user interface. This article dis-
cusses how to use OpenGL within a Motif application program.
There are two approaches to using OpenGL with Motif. One is
to render into a standard Motif drawing area widget, but this re-
quires each application window to use a single visual for its win-
dow hierarchy. A better approach is to use the special OpenGL
drawing area widget allowing windows used for OpenGL ren-
dering to pick freely an appropriate visual without affecting the
visual choice for other widgets. An example program demon-
strates both approaches. The X Toolkit’s work procedure mech-
anism animates the example’s 3D paper airplanes. Handling
OpenGL errors is also explained.

1 Introduction

OSF/Motif is the X Window System’s industry-standard pro-
gramming interface for user interface construction. Motif pro-
grammers writing 3D applications will want to understand how
to integrate Motif with the OpenGLTM graphics system. This
article, the last in a three-part series about OpenGL, describes
how to write an OpenGL program within the user interface
framework provided by Motif and the X Toolkit.

Most 3D applications end up using 3D graphics primarily in
one or more “viewing” windows. For the most part, the graph-
ical user interface aspects of such programs use standard 2D
user interface objects like pulldown menus, sliders, and dialog
boxes. Creating and managing such common user interface ob-
jects is what Motif does well. The “viewing” windows used
for 3D are where OpenGL rendering happens. These windows
for OpenGL rendering can be constructed with standard Mo-
tif drawing area widgets or OpenGL-specific drawing area wid-

�Mark graduated with B.A. in Computer Science from Rice University and
is a Member of the Technical Staff at Silicon Graphics. He can be reached by
electronic mail addressed to mjk@sgi.com

gets. Bind an OpenGL rendering context to the window of a
drawing area widget and you are ready for 3D rendering.

Programming OpenGL with Motif has numerous advantages
over using “Xlib only” as described in the first two articles in
this series [2, 3]. First and most important, Motif provides a
well-documented, standard widget set that gives your applica-
tion a consistent look and feel. Second, Motif and the X Toolkit
take care of routine but complicated issues such as cut and paste
and window manager conventions. Third, the X Toolkit’s work
procedure and timeout mechanisms make it easy to animate a
3D window without blocking out user interaction with your ap-
plication.

This article assumes you have some experience programming
with Motif and you have a basic understanding of how OpenGL
integrates with X.

Section 2 describes how to use OpenGL rendering with either
a standard Motif drawing area widget or an OpenGL-specific
drawing area widget. Section 3 discusses using X Toolkit mech-
anisms for seamless animation. Section 4 provides advice on
how to debug OpenGL programs by catching OpenGL errors.
Throughout the discussion, a Motif-based OpenGL program
named paperplane is used as an example. The complete
source code for paperplane is found in the appendix. The
program animates the 3D flight paths of virtual paper airplanes.
The user can interact with the program via Motif controls. The
program can be compiled to use either a standard Motif drawing
area widget or an OpenGL-specific drawing area widget. Figure
1 shows paperplane running.

2 OpenGL with Widgets

Your application’s 3D viewing area can be encapsulated by an X
Toolkit widget. There are two approaches to rendering OpenGL
into a widget. You can render OpenGL into a standard Motif
drawing area widget, or you can use a special OpenGL drawing
area widget.

210

Figure 1: Screen snapshot of paperplane with another
OpenGL Motif program for molecular modeling.

The Motif drawing area widget would seem a natural wid-
get for OpenGL rendering. Unfortunately, the X Toolkit’s de-
sign (upon which Motif relies) allows programmers to specify
a widget’s visual only if its class is derived from the shell wid-
get class. Shell widgets are often called “top level” widgets be-
cause they are designed to communicate with the window man-
ager and act as containers for other widgets. Non-shell widgets
inherit the depth and visual of their parent widget. The Mo-
tif drawing area widget class (like most widget classes) is not
derived from the shell widget class. It is impossible (without
resorting to programming widget internals) to set the visual of
a standard non-shell Motif widget differently than its ancestor
shell widget.

But in OpenGL, the X notion of a visual has expanded im-
portance for determining the OpenGL frame buffer capabilities
of an X window. In many cases, an application’s 3D viewing
area is likely to demand a deeper, more capable visual than the
default visual which Motif normally uses.

There are two options:

1. Use the standard Motif drawing area widget for your
OpenGL rendering area and make sure that the top
level shell widget is created with the desired visual for
OpenGL’s use.

2. Use an OpenGL drawing area widget that is specially pro-
grammed to overcome the limitation on setting the visual
and depth of a non-shell widget.

Either approach works.
Thepaperplane example in the appendix is written to sup-

port either scheme depending on how the code is compiled. By

default, the code compiles to use the OpenGL-specific widget.
If thenoGLwidgetC preprocessor symbol is defined, the stan-
dard Motif drawing area widget will be used, forcing the use of
a single visual throughout the example’s widget hierarchy. The
code differences between the two schemes in thepaperplane
example constitute seven changed lines of code.

The preferable approach is to use the OpenGL-specific wid-
get, since you can run most of the application’s user interface in
the default visual and use a deeper, more capable visual only for
3D viewing areas. Limiting the use of deeper visuals can save
memory and increase rendering speed for the user interface win-
dows. If you use a 24-bit visual for your 3D viewing area and
use the same visual for your entire application, that means that
the image memory for pixmaps used by non-OpenGL windows
is four times what it would be for an 8-bit visual.1 Some X ren-
dering operations might also be slower for 24-bit windows com-
pared with 8-bit windows.

There can be advantages to running your entire application
in a single visual. Some workstations with limited colormap re-
sources might not be capable of showing multiple visuals with-
out colormap flashing. Such machines which support OpenGL
should be rare. Even if running in a single visual is appropriate,
nothing precludes doing so using an OpenGL-specific widget.

2.1 The OpenGL-specific Widget

There are two OpenGL-specific drawing area widget classes.
One is derived from the Motif primitive widget class (not the
Motif drawing area widget class). The other is derived from the
X Toolkit core widget class. Both have the same basic function-
ality; the main difference is that the Motif-based widget class
gains capabilities of the Motif primitive widget class. If you use
Motif, you should use the Motif OpenGL widget. If you use a
non-Motif widget set, you can use the second widget for identi-
cal functionality.

The Motif OpenGL widget class is named
glwMDrawingAreaWidgetClass; the
non-Motif OpenGL widget class is named
glwDrawingAreaWidgetClass (the difference is the
lack of an M in the non-Motif case). Since the Motif OpenGL
widget is subclassed from the Motif primitive widget class, the
Motif OpenGL widget inherits the capabilities of the primitive
class like a help callback and keyboard traversal support (key-
board traversal is disabled by default for the Motif OpenGL
widget). The paperplane example uses the Motif widget by
default but the non-Motif widget can be used by defining the
noMotifGLwidgetC preprocessor symbol when compiling
paperplane.c. The difference is two changed lines of code
with no functional difference in the program.

When you create either type of widget, you need to specify
the visual to use by supplying the widget’sGLwNvisualInfo
resource. The attribute is of type XVisualInfo* making it
easy to find an appropriate visual using glXChooseVisual

1Even though a 24-bit pixel requires only three bytes of storage, efficient
manipulation of the pixels demands each pixel is stored in an even 4 bytes.

211

which returns a XVisualInfo* for a visual with the capabil-
ities you request.

Although this practice is not recommended, the widgets also
allow you to specify the OpenGL capabilities you desire for
the widget directly using widget resources. Because the X
Toolkit widget creation process is not expected to fail, there
is no way for a widget creation routine to indicate failure. If
a visual that matches the desired OpenGL capabilities cannot
be found, the widget code prints an error and exits without
giving the program a chance to handle the failure. If you re-
quest a specific XVisualInfo* that has already been deter-
mined to be acceptable using glXChooseVisual or calls to
glXGetConfig, you will not have this problem. As a rule, al-
ways specify the visual using theGLwNvisualInfo resource.

The OpenGL widgets also do extra work that might go un-
noticed. Because the OpenGL widget uses a different visual,
the widget’s creation code creates a colormap matching the vi-
sual. It also posts an ICCCM WM COLORMAP WINDOWS top
level window property to let the window manager know that the
program uses multiple colormaps.

More information about the OpenGL widgets can be found
in the Silicon Graphics OpenGL Porting Guide [4] and the wid-
gets’ man pages.2

2.2 The Motif Drawing Area Widget

Using the standard Motif drawing area widget with OpenGL has
some extra caveats. The main caveat is that you must create
the top level widget with the correct visual for the program’s
OpenGL rendering.

When you start a widget program, there is generally a call
to XtAppInitialize to establish the connection to the X
server and create the top level widget. Both steps are done in
the same routine. So how can we call glXChooseVisual to
know what visual the top level widget should use until we have
established a connection to the X server?

It would appear that it is impossible to create the top
level widget with an appropriate visual for OpenGL.
XtAppInitialize connects to the X server and creates the
top level widget, but it does not realize the top level widget.
The X window for the top level widget is not created until
XtRealizeWidget is called. This allows XtSetValues
to be used after the top level widget’s creation (and before its
realization) to specify the widget’s visual. The paperplane
sample code in the non-OpenGL widget case demonstrates this.

A second caveat is due to the X Toolkit’s inconsistent inheri-
tance of the visual, depth, and colormap widget resources. The
default visual of a widget’s window is copied from its parent
window’s visual. But the default colormap and depth of a wid-
get are copied from the widget’s parent widget.3

2The official standard location for the OpenGL widget headers is
<X11/GLw/GLwDrawA.h> and <X11/GLw/GLwMDrawA.h>. In
IRIX 5.2, these headers are mistakenly located at <GL/GLwDrawA.h>
and <GL/GLwMDrawA.h>.

3If the widget has no parent, the depth and colormap are determined by the
default depth and colormap of the screen.

paperplane (Paperplane)

mainw (XmMainWindow)

menubar (XmRowColumn) frame
(XmFrame)

Separator1
(XmSeparatorGadget)

Separator2
(XmSeparatorGadget)

Separator3
(XmSeparatorGadget)

 File
(XmCascadeButton)

 Planes
(XmCascadeButton)

popup_menupane
 (XmMenuShell)

menupane
(XmRowColumn)

menupane
(XmRowColumn)

 Quit
(XmPushButton)

 Motion
(XmToggleButton)

 Add plane
(XmPushButton)

Remove plane
 (XmPushButton)

 glxarea
(XmDrawingArea or
 glwMDrawingArea or
 glwDrawingArea)

Figure 2: Diagram of the widget hierarchy for paperplane.
The glxarea XmDrawingArea widget is the only widget
rendered using OpenGL.

This means that if you create a widget derived from the shell
widget and the widget’s parent uses a non-default depth or col-
ormap for a non-default visual, you will need to specify the
same visual as the new widget’s parent widget. If you do not,
a BadMatch X protocol error will result. For this reason the
paperplane example’s XmCreatePulldownMenu calls
specify the visual of the created widget’s parent widget in the
Motif drawing area version of paperplane.

Realize that it is not possible to bind an OpenGL rendering
context to a widget’s window until the widget has been realized.
Until the widget is realized, the widget’s window does not yet
exist. Noticepaperplane does not call glXMakeCurrent
until after XtRealizeWidget has been called.

To see how the 3D viewing area widget fits into the
paperplane widget hierarchy example, Figure 2 shows the
complete hierarchy including widget class names.

These caveats are not unique to OpenGL. The problem comes
from using non-default visuals with the X Toolkit. PEXlib 5.1
programs have a similar need for non-default visuals and require
the same jumping through hoops[1]. Fortunately, if you use the
OpenGL drawing area widgets, you can avoid the caveats of us-
ing the standard Motif drawing area.

2.3 Drawing Area Callbacks

Applications using the Motif drawing area widget or the
OpenGL drawing area widgets for their 3D rendering will want
to register routines to handle expose, resize, and input callbacks
using XtAddCallback. In paperplane.c, the draw,
resize, and input routines handle these callbacks.
paperplane’s drawing area adjusts OpenGL’s viewport by

calling glViewport. Note how the made current vari-
able is used to protect against calling glViewport before
we have done the glXMakeCurrent to bind to the draw-

212

ing area window. In the X Toolkit, the resize callback can be
called before the XtRealizeWidget routine returns. Since
the program does not call glXMakeCurrent until after the
program returns from XtRealizeWidget, the OpenGL ren-
dering context would not be bound. Calling an OpenGL rou-
tine before a context is bound has no effect but generates an
ugly warning message.4 An example of when the resize call-
back can be called beforeXtRealizeWidget returns is when
a -geometry command line option is specified.

Note that glXMakeCurrent is defined to set a con-
text’s viewport to the size of the first window it is bound
to. (This happens only on the context’s first bind.) This is
why paperplane.c makes no initial call to glViewport;
glXMakeCurrent sets the viewport implicitly.

The paperplane example uses a single window for
OpenGL rendering. For this reason, glXMakeCurrent is
called only once to bind the OpenGL context to the window. In
a program with multiple OpenGL windows, each expose and
resize callback should make sure that glXMakeCurrent is
called so that OpenGL rendering goes to the correct window.

The draw callback routine issues the OpenGL com-
mands to draw the scene. If the window is double buffered,
glXSwapBuffers swaps the window’s buffers. If the
context is not direct, glFinish is called to avoid the latency
from queuing more than one frame at a time; interactivity
would suffer if we allowed more than one frame to be queued.
Direct rendering involves direct manipulation of the hardware
so it generally has less latency than a potentially networked
indirect OpenGL context.

Note that you can render OpenGL into any widget (as long as
it is created with an OpenGL capable visual). There is nothing
special about the Motif or OpenGL-specific drawing area wid-
gets, though drawing area widgets tend to be the most appropri-
ate widget type for a 3D viewing area.

2.4 Handling Input

The input routine handles X events for the drawing area. In-
put events require no special handling for OpenGL. But remem-
ber that the coordinate systems for X and OpenGL are distinct,
so pointer locations need to be mapped into OpenGL’s coordi-
nate space. OpenGL generally assumes that the origin is in the
lower left-hand corner, while X always assumes an origin at the
upper left-hand corner.

3 Animation Via Work Procedures

The X Toolkit’s work procedure facility makes it easy to in-
tegrate continuous OpenGL animation with Motif user inter-
face operation. Work procedures are application supplied rou-
tines that execute while the application is idle waiting for events.
Work procedures should be used to do small amounts of work;

4The exact behavior is undefined by the OpenGL specification.

if too much time is spent in a work procedure, X events will not
be processed and program interactivity will suffer.

Rendering a single frame of OpenGL animation is a
good use for work procedures. XtAppAddWorkProc and
XtRemoveWorkProc are used to add and remove work pro-
cedures. XtAppAddWorkProc is passed a function pointer
for the routine to be called as a work procedure. The function to
be called returns a Boolean. If the function returns True, the
work procedure should be removed automatically; returning
False indicates the work procedure should remain active.
XtAppAddWorkProc returns an ID of type WorkProcId
which can later be given to XtRemoveWorkProc to remove
the work procedure.

The paperplane example uses a work procedure to man-
age the update of its 3D scene. In response to changing the
state of the “Motion” toggle button on the “Planes” pulldown
menu, the toggle callback routine will add and remove the
animate work procedure.

The animate routine calls tick which advances the posi-
tion of each active plane; animate then calls draw to redraw
the scene with the new plane locations. Finally, animate re-
turns False to leave the work procedure installed so that the
animation will continue.

Because paperplane uses a work procedure, animation of
the scene does not interfere with window resizing and user in-
put. The X Toolkit manages both the animation and events from
the X server.

3.1 Handling Iconification

When the paperplane window is open, we want the
animate work procedure to update the 3D scene continu-
ously. If the user iconifies the window, it would be wasteful to
continue animating a no longer visible scene. To avoid wasting
resources rendering to an unmapped window, paperplane
installs an event handler called map state changed for the
top-level widget to notice UnmapNotify and MapNotify
events. The handler makes sure the work procedure is removed
or added to reflect the map state of the window.

3.2 Timeouts

X Toolkit timeouts are similar to work procedures, but in-
stead of being activated whenever event dispatching is idle,
they are called when a given period of time has expired. The
XtAppAddTimeout and XtRemoveTimeOut routines can
be used to add and remove X Toolkit timeouts.

OpenGL programmers may find timeouts useful to maintain
animation at rates slower than “as fast as OpenGL will render.”
Timeouts can be used to give animation a sustained frame rate.
Timeouts can also be used to redraw a scene with higher de-
tail when the user has stopped interacting with the program.
For example, a 3D modeling program might redraw its model
with lightingenabled and finer tessellation after the program has

213

been idle for two seconds. Timeouts can also be used to trigger
simple real-time state changes useful for visual simulation.

4 Debugging Tips

As well as demonstrating the use of widgets with OpenGL,
paperplane also demonstrates detection of OpenGL errors
for debugging purposes. Some debugging code has been added
to the bottom of paperplane’s draw function to test for any
OpenGL errors. A correct OpenGL program should not gen-
erate any OpenGL errors, but while debugging it is helpful to
check explicitly for errors. A good time to check for errors is
at the end of each frame. Errors in OpenGL are not reported
unless you explicitly check for them, unlike X protocol errors
which are always reported to the client.

OpenGL errors are recorded by setting “sticky” flags. Once
an error flag is set, it will not be cleared until glGetError
is used to query the error. An OpenGL implementation may
have several error flags internally that can be set (since OpenGL
errors might occur in different stages of the OpenGL render-
ing pipeline). When you look for errors, you should call
glGetError repeatedly until it returns GL NO ERROR indi-
cating that all of the error flags have been cleared.

The OpenGL error model is suited for high performance ren-
dering, since error reporting does not slow down the error-free
case. Because OpenGL errors should not be generated by bug-
free code, you probably want to remove error querying from
your final program since querying errors will slow down your
rendering speed.

When an OpenGL error is generated, the command which
generated the error is not recorded, so you may need to add more
error queries into your code to isolate the source of the error.

The gluErrorString routine in the OpenGL Utility li-
brary (GLU) converts an OpenGL error number into a human
readable string and helps you output a reasonable error message.

5 Conclusion

OpenGL and Motif are a powerful combination. Using both
APIs allow X applications programmers to get the most out of
both Motif and OpenGL.

Still another way to integrate OpenGL rendering with wid-
gets is the Open Inventor object-oriented 3D graphics toolkit
which renders using OpenGL and integrates with X Toolkit wid-
gets. Open Inventor allows you to specify 3D scenes in an
object-oriented fashion instead of low-level OpenGL rendering
primitives. If you are interested in object-oriented3D, check out
the recently published Inventor Mentor [5].

The source code presented in this series is avail-
able by anonymous ftp to sgigate.sgi.com in the
pub/opengl/xjournal directory.

Acknowledgments

Writing these three articles on OpenGL required the assistance
from numerous engineers and managers at Silicon Graphics. In
particular I would like to thank Kurt Akeley, David Blythe, Si-
mon Hui, Phil Karlton, Mark Segal, Kevin Smith, Joel Tesler,
Tom Weinstein, Mason Woo, and David Yu.

214

A paperplane.c

1 /*
2 * paperplane can be compiled to use a "single visual" for the entire window
3 * hierarchy and render OpenGL into a standard Motif drawing area widget:
4 *
5 * cc -o sv_paperplane paperplane.c -DnoGLwidget -lGL -lXm -lXt -lX11 -lm
6 *
7 * Or paperplane can be compiled to use the default visual for most of
8 * the window hierarchy but render OpenGL into a special "OpenGL widget":
9 *

10 * cc -o glw_paperplane paperplane.c -lGLw -lGL -lXm -lXt -lX11 -lm
11 */
12 #include <stdlib.h>
13 #include <stdio.h>
14 #include <unistd.h>
15 #include <math.h>
16 #include <Xm/MainW.h>
17 #include <Xm/RowColumn.h>
18 #include <Xm/PushB.h>
19 #include <Xm/ToggleB.h>
20 #include <Xm/CascadeB.h>
21 #include <Xm/Frame.h>
22 #ifdef noGLwidget
23 #include <Xm/DrawingA.h> /* Motif drawing area widget */
24 #else
25 /** NOTE: in IRIX 5.2, the OpenGL widget headers are mistakenly in **/
26 /** <GL/GLwDrawA.h> and <GL/GlwMDraw.h> respectively. Below are the **/
27 /** _official_ standard locations. **/
28 #ifdef noMotifGLwidget
29 #include <X11/GLw/GLwDrawA.h> /* pure Xt OpenGL drawing area widget */
30 #else
31 #include <X11/GLw/GLwMDrawA.h> /* Motif OpenGL drawing area widget */
32 #endif
33 #endif
34 #include <X11/keysym.h>
35 #include <GL/gl.h>
36 #include <GL/glu.h>
37 #include <GL/glx.h>
38
39 static int dblBuf[] = {
40 GLX_DOUBLEBUFFER, GLX_RGBA, GLX_DEPTH_SIZE, 16,
41 GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1,
42 None
43 };
44 static int *snglBuf = &dblBuf[1];
45 static String fallbackResources[] = {
46 #ifdef IRIX_5_2_or_higher
47 "*sgiMode: true", /* try to enable IRIX 5.2+ look & feel */
48 "*useSchemes: all", /* and SGI schemes */
49 #endif
50 "*title: OpenGL paper plane demo",
51 "*glxarea*width: 300", "*glxarea*height: 300", NULL
52 };
53 Display *dpy;
54 GLboolean doubleBuffer = GL_TRUE, moving = GL_FALSE, made_current = GL_FALSE;
55 XtAppContext app;
56 XtWorkProcId workId = 0;
57 Widget toplevel, mainw, menubar, menupane, btn, cascade, frame, glxarea;
58 GLXContext cx;

215

59 XVisualInfo *vi;
60 #ifdef noGLwidget
61 Colormap cmap;
62 #endif
63 Arg menuPaneArgs[1], args[1];
64
65 #define MAX_PLANES 15
66
67 struct {
68 float speed; /* zero speed means not flying */
69 GLfloat red, green, blue;
70 float theta;
71 float x, y, z, angle;
72 } planes[MAX_PLANES];
73
74 #define v3f glVertex3f /* v3f was the short IRIS GL name for glVertex3f */
75
76 void draw(Widget w)
77 {
78 GLfloat red, green, blue;
79 int i;
80
81 glClear(GL_DEPTH_BUFFER_BIT);
82 /* paint black to blue smooth shaded polygon for background */
83 glDisable(GL_DEPTH_TEST);
84 glShadeModel(GL_SMOOTH);
85 glBegin(GL_POLYGON);
86 glColor3f(0.0, 0.0, 0.0);
87 v3f(-20, 20, -19); v3f(20, 20, -19);
88 glColor3f(0.0, 0.0, 1.0);
89 v3f(20, -20, -19); v3f(-20, -20, -19);
90 glEnd();
91 /* paint planes */
92 glEnable(GL_DEPTH_TEST);
93 glShadeModel(GL_FLAT);
94 for (i = 0; i < MAX_PLANES; i++)
95 if (planes[i].speed != 0.0) {
96 glPushMatrix();
97 glTranslatef(planes[i].x, planes[i].y, planes[i].z);
98 glRotatef(290.0, 1.0, 0.0, 0.0);
99 glRotatef(planes[i].angle, 0.0, 0.0, 1.0);
100 glScalef(1.0 / 3.0, 1.0 / 4.0, 1.0 / 4.0);
101 glTranslatef(0.0, -4.0, -1.5);
102 glBegin(GL_TRIANGLE_STRIP);
103 /* left wing */
104 v3f(-7.0, 0.0, 2.0); v3f(-1.0, 0.0, 3.0);
105 glColor3f(red = planes[i].red, green = planes[i].green,
106 blue = planes[i].blue);
107 v3f(-1.0, 7.0, 3.0);
108 /* left side */
109 glColor3f(0.6 * red, 0.6 * green, 0.6 * blue);
110 v3f(0.0, 0.0, 0.0); v3f(0.0, 8.0, 0.0);
111 /* right side */
112 v3f(1.0, 0.0, 3.0); v3f(1.0, 7.0, 3.0);
113 /* final tip of right wing */
114 glColor3f(red, green, blue);
115 v3f(7.0, 0.0, 2.0);
116 glEnd();
117 glPopMatrix();
118 }

216

119 if (doubleBuffer) glXSwapBuffers(dpy, XtWindow(w));
120 if(!glXIsDirect(dpy, cx))
121 glFinish(); /* avoid indirect rendering latency from queuing */
122 #ifdef DEBUG
123 { /* for help debugging, report any OpenGL errors that occur per frame */
124 GLenum error;
125 while((error = glGetError()) != GL_NO_ERROR)
126 fprintf(stderr, "GL error: %s\n", gluErrorString(error));
127 }
128 #endif
129 }
130
131 void tick_per_plane(int i)
132 {
133 float theta = planes[i].theta += planes[i].speed;
134 planes[i].z = -9 + 4 * cos(theta);
135 planes[i].x = 4 * sin(2 * theta);
136 planes[i].y = sin(theta / 3.4) * 3;
137 planes[i].angle = ((atan(2.0) + M_PI_2) * sin(theta) - M_PI_2) * 180 / M_PI;
138 if (planes[i].speed < 0.0) planes[i].angle += 180;
139 }
140
141 void add_plane(void)
142 {
143 int i;
144
145 for (i = 0; i < MAX_PLANES; i++)
146 if (planes[i].speed == 0) {
147
148 #define SET_COLOR(r,g,b) \
149 planes[i].red=r; planes[i].green=g; planes[i].blue=b; break;
150
151 switch (random() % 6) {
152 case 0: SET_COLOR(1.0, 0.0, 0.0); /* red */
153 case 1: SET_COLOR(1.0, 1.0, 1.0); /* white */
154 case 2: SET_COLOR(0.0, 1.0, 0.0); /* green */
155 case 3: SET_COLOR(1.0, 0.0, 1.0); /* magenta */
156 case 4: SET_COLOR(1.0, 1.0, 0.0); /* yellow */
157 case 5: SET_COLOR(0.0, 1.0, 1.0); /* cyan */
158 }
159 planes[i].speed = (random() % 20) * 0.001 + 0.02;
160 if (random() & 0x1) planes[i].speed *= -1;
161 planes[i].theta = ((float) (random() % 257)) * 0.1111;
162 tick_per_plane(i);
163 if (!moving) draw(glxarea);
164 return;
165 }
166 XBell(dpy, 100); /* can’t add any more planes */
167 }
168
169 void remove_plane(void)
170 {
171 int i;
172
173 for (i = MAX_PLANES - 1; i >= 0; i--)
174 if (planes[i].speed != 0) {
175 planes[i].speed = 0;
176 if (!moving) draw(glxarea);
177 return;
178 }

217

179 XBell(dpy, 100); /* no more planes to remove */
180 }
181
182 void resize(Widget w, XtPointer data, XtPointer callData)
183 {
184 if(made_current) {
185 #ifdef noGLwidget
186 Dimension width, height;
187
188 /*
189 * Silly drawing area resize callback doesn’t give
190 * height and width via its parameters!
191 */
192 XtVaGetValues(w, XmNwidth, &width, XmNheight, &height, NULL);
193 glViewport(0, 0, (GLint) width, (GLint) height);
194 #else
195 GLwDrawingAreaCallbackStruct *resize =
196 (GLwDrawingAreaCallbackStruct*) callData;
197
198 glViewport(0, 0, (GLint) resize->width, (GLint) resize->height);
199 #endif
200 }
201 }
202
203 void tick(void)
204 {
205 int i;
206
207 for (i = 0; i < MAX_PLANES; i++)
208 if (planes[i].speed != 0.0) tick_per_plane(i);
209 }
210
211 Boolean animate(XtPointer data)
212 {
213 tick();
214 draw(glxarea);
215 return False; /* leave work proc active */
216 }
217
218 void toggle(void)
219 {
220 moving = !moving; /* toggle */
221 if (moving)
222 workId = XtAppAddWorkProc(app, animate, NULL);
223 else
224 XtRemoveWorkProc(workId);
225 }
226
227 void quit(Widget w, XtPointer data, XtPointer callData)
228 {
229 exit(0);
230 }
231
232 void input(Widget w, XtPointer data, XtPointer callData)
233 {
234 XmDrawingAreaCallbackStruct *cd = (XmDrawingAreaCallbackStruct *) callData;
235 char buf[1];
236 KeySym keysym;
237 int rc;
238

218

239 if(cd->event->type == KeyPress)
240 if(XLookupString((XKeyEvent *) cd->event, buf, 1, &keysym, NULL) == 1)
241 switch (keysym) {
242 case XK_space:
243 if (!moving) { /* advance one frame if not in motion */
244 tick();
245 draw(w);
246 }
247 break;
248 case XK_Escape:
249 exit(0);
250 }
251 }
252
253 void map_state_changed(Widget w, XtPointer data, XEvent * event, Boolean * cont)
254 {
255 switch (event->type) {
256 case MapNotify:
257 if (moving && workId != 0) workId = XtAppAddWorkProc(app, animate, NULL);
258 break;
259 case UnmapNotify:
260 if (moving) XtRemoveWorkProc(workId);
261 break;
262 }
263 }
264
265 main(int argc, char *argv[])
266 {
267 toplevel = XtAppInitialize(&app, "Paperplane", NULL, 0, &argc, argv,
268 fallbackResources, NULL, 0);
269 dpy = XtDisplay(toplevel);
270 /* find an OpenGL-capable RGB visual with depth buffer */
271 vi = glXChooseVisual(dpy, DefaultScreen(dpy), dblBuf);
272 if (vi == NULL) {
273 vi = glXChooseVisual(dpy, DefaultScreen(dpy), snglBuf);
274 if (vi == NULL)
275 XtAppError(app, "no RGB visual with depth buffer");
276 doubleBuffer = GL_FALSE;
277 }
278 /* create an OpenGL rendering context */
279 cx = glXCreateContext(dpy, vi, /* no display list sharing */ None,
280 /* favor direct */ GL_TRUE);
281 if (cx == NULL)
282 XtAppError(app, "could not create rendering context");
283 /* create an X colormap since probably not using default visual */
284 #ifdef noGLwidget
285 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
286 vi->visual, AllocNone);
287 /*
288 * Establish the visual, depth, and colormap of the toplevel
289 * widget _before_ the widget is realized.
290 */
291 XtVaSetValues(toplevel, XtNvisual, vi->visual, XtNdepth, vi->depth,
292 XtNcolormap, cmap, NULL);
293 #endif
294 XtAddEventHandler(toplevel, StructureNotifyMask, False,
295 map_state_changed, NULL);
296 mainw = XmCreateMainWindow(toplevel, "mainw", NULL, 0);
297 XtManageChild(mainw);
298 /* create menu bar */

219

299 menubar = XmCreateMenuBar(mainw, "menubar", NULL, 0);
300 XtManageChild(menubar);
301 #ifdef noGLwidget
302 /* Hack around Xt’s unfortunate default visual inheritance. */
303 XtSetArg(menuPaneArgs[0], XmNvisual, vi->visual);
304 menupane = XmCreatePulldownMenu(menubar, "menupane", menuPaneArgs, 1);
305 #else
306 menupane = XmCreatePulldownMenu(menubar, "menupane", NULL, 0);
307 #endif
308 btn = XmCreatePushButton(menupane, "Quit", NULL, 0);
309 XtAddCallback(btn, XmNactivateCallback, quit, NULL);
310 XtManageChild(btn);
311 XtSetArg(args[0], XmNsubMenuId, menupane);
312 cascade = XmCreateCascadeButton(menubar, "File", args, 1);
313 XtManageChild(cascade);
314 #ifdef noGLwidget
315 menupane = XmCreatePulldownMenu(menubar, "menupane", menuPaneArgs, 1);
316 #else
317 menupane = XmCreatePulldownMenu(menubar, "menupane", NULL, 0);
318 #endif
319 btn = XmCreateToggleButton(menupane, "Motion", NULL, 0);
320 XtAddCallback(btn, XmNvalueChangedCallback, (XtCallbackProc)toggle, NULL);
321 XtManageChild(btn);
322 btn = XmCreatePushButton(menupane, "Add plane", NULL, 0);
323 XtAddCallback(btn, XmNactivateCallback, (XtCallbackProc)add_plane, NULL);
324 XtManageChild(btn);
325 btn = XmCreatePushButton(menupane, "Remove plane", NULL, 0);
326 XtAddCallback(btn, XmNactivateCallback, (XtCallbackProc)remove_plane, NULL);
327 XtManageChild(btn);
328 XtSetArg(args[0], XmNsubMenuId, menupane);
329 cascade = XmCreateCascadeButton(menubar, "Planes", args, 1);
330 XtManageChild(cascade);
331 /* create framed drawing area for OpenGL rendering */
332 frame = XmCreateFrame(mainw, "frame", NULL, 0);
333 XtManageChild(frame);
334 #ifdef noGLwidget
335 glxarea = XtVaCreateManagedWidget("glxarea", xmDrawingAreaWidgetClass,
336 frame, NULL);
337 #else
338 #ifdef noMotifGLwidget
339 /* notice glwDrawingAreaWidgetClass lacks an ’M’ */
340 glxarea = XtVaCreateManagedWidget("glxarea", glwDrawingAreaWidgetClass,
341 #else
342 glxarea = XtVaCreateManagedWidget("glxarea", glwMDrawingAreaWidgetClass,
343 #endif
344 frame, GLwNvisualInfo, vi, NULL);
345 #endif
346 XtAddCallback(glxarea, XmNexposeCallback, (XtCallbackProc)draw, NULL);
347 XtAddCallback(glxarea, XmNresizeCallback, resize, NULL);
348 XtAddCallback(glxarea, XmNinputCallback, input, NULL);
349 /* set up application’s window layout */
350 XmMainWindowSetAreas(mainw, menubar, NULL, NULL, NULL, frame);
351 XtRealizeWidget(toplevel);
352 /*
353 * Once widget is realized (ie, associated with a created X window), we
354 * can bind the OpenGL rendering context to the window.
355 */
356 glXMakeCurrent(dpy, XtWindow(glxarea), cx);
357 made_current = GL_TRUE;
358 /* setup OpenGL state */

220

359 glClearDepth(1.0);
360 glClearColor(0.0, 0.0, 0.0, 0.0);
361 glMatrixMode(GL_PROJECTION);
362 glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 20);
363 glMatrixMode(GL_MODELVIEW);
364 /* add three initial random planes */
365 srandom(getpid());
366 add_plane(); add_plane(); add_plane();
367 /* start event processing */
368 XtAppMainLoop(app);
369 }

221

References

[1] Tom Gaskins, “Using PEXlib with X Toolkits,” PEXlib
Programming Manual, O’Reilly & Associates, Inc., 1992.

[2] Mark Kilgard, “OpenGL and X, Part 1: An Introduction,”
The X Journal, SIGS Publications, Nov/Dec 1993.

[3] Mark Kilgard, “OpenGL and X, Part 2: Using OpenGL
with Xlib,” The X Journal, SIGS Publications, Jan/Feb
1994.

[4] Silicon Graphics, The OpenGL Porting Guide, supplied
with the IRIX 5.2 development option, 1994.

[5] Josie Wernecke, The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1994.

222

OpenGL Graphics with the X Window System

Phil Karlton
Revised by: Paula Womack

Copyright c
 1992, 1993, 1994, 1995, 1996 Silicon Graphics, Inc.

This document contains unpublished information of Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to Sili-
con Graphics, Inc. Any copying, adaptation, distribution, public performance, or pub-
lic display of this document without the express written consent of Silicon Graphics,
Inc. is strictly prohibited. The receipt or possession of this document does not convey
any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or
sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 and/or in similar or successor
clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights re-
served under the copyright laws of the United States. Contractor/manufacturer is Sili-
con Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
X is a registered trademark of the Massachussetts Institute of Technology

Unix is a registered trademark of A T & T Bell Laboratories.

223

1 Overview

This document describes GLX, the OpenGL extension to the X Window System. It refers to concepts
discussed in the OpenGL specification, and may be viewed as an X specific appendix to that document.
Parts of the document assume some acquaintance with both the OpenGL and X.

In the X Window System, OpenGL rendering is made available as an extension to X in the formal X
sense: connection and authentication are accomplished with the normal X mechanisms. As with other
X extensions, there is a defined network protocol for the OpenGL rendering commands encapsulated
within the X byte stream.

Since performance is critical in 3D rendering, there is a way for OpenGL rendering to bypass the
data encoding step, the data copying, and interpretation of that data by the X server. This direct ren-
dering is possible only when a process has direct access to the graphics pipeline. Allowing for parallel
rendering has affected the design of the GLX interface. This has resulted in an added burden on the
client to explicitly prevent parallel execution when that is inappropriate.

X and the OpenGL have different conventions for naming entry points and macros. The GLX
extension adopts those of the OpenGL.

2 GLX Operation

2.1 Rendering Contexts and Drawing Surfaces

The OpenGL specification is intentionally vague on how a rendering context (an abstract OpenGL
state machine) is created. One of the purposes of GLX is to provide a means to create an OpenGL
context and associate it with a drawing surface.

In X, a rendering surface is called a Drawable. Windows, one type of Drawable, are associ-
ated with a Visual.� The X protocol allows for a single VisualID to be instantiated at multiple
depths. The GLX bindingsallow only one depth for an OpenGL renderer for any givenVisualID. In
GLX the definition of Visual has been extended to include the types, quantities and sizes of the an-
cillary buffers (depth, accumulation, auxiliary, and stencil). Double buffering capability is also fixed
by the Visual.y The ancillary buffers have no meaning within the core X environment. The set
of extended Visuals is fixed at server startup time. One result is that a server can export multiple
Visuals that differ only in the extended attributes.

The other type of XDrawable is a Pixmap, a drawing surface that is maintained off screen. The
GLX equivalent to an X Pixmap is a GLXPixmap. A GLXPixmap is created using the Visual
along with its extended attributes. The Visual is used to define the type and size of the Ancillary
buffers associated with thePixmap. ThePixmap is used as the front-left color buffer. AGLXDrawable
is the union fWindow, GLXPixmapg.

Ancillary buffers are associated with a GLXDrawable, not with a rendering context. If several
OpenGL renderers are all writing to the same window, they will share those buffers. Rendering oper-
ations to one window never affect the unobscured pixels of another window, or of the corresponding
pixels of ancillary buffers of that window. If an Expose event is received by the client, the values in
the ancillary buffers and in the back buffers for regions corresponding to the exposed region become
undefined.

�The association is with a fVisual, screen, depthg triple. An XVisualInfo is used by GLX functions since it
can be interpreted unambiguosly.

yAny rendering system is free to use the ancillary buffers as long as it uses them in a manner consistent with the use by
the OpenGL.

224

GLX Client
Xlib

Application
and Toolkit

GLX

X Server
X Renderer

GL Renderer

Dispatch

Framebuffer

Direct GL
Renderer

Figure 1: Direct Rendering Block Diagram.

A rendering context can be used with multipleGLXDrawables as long as those Drawables are
similar. Similar means that the rendering contexts and GLXDrawables are created with the same
XVisualInfo.

An application can use any rendering context (subject to the restrictions discussed in the section
on address spaces) to render into any similar GLXDrawable. An implication is that multiple appli-
cations can render into the same window, each using a different rendering context.

2.2 Using Rendering Contexts

OpenGL defines both client state and server state. Thus a rendering context consists of two parts: one
to hold the client state and one to hold the server state. The client is responsible for creating a rendering
context and a drawable; defaults are not supplied.

Each thread can have at most one current rendering context. In addition, a rendering context can
be current for only one thread at one time.

Issuing OpenGL commands may cause the X buffer to be flushed. In particular, calling glFlush()
will flush both the X and OpenGL rendering streams.

Some state is shared between the OpenGL and X. The pixel values in the X frame buffer are shared.
The X double buffer extension (DBE) has a definition for which buffer is currently the displayed buffer.
This information is shared with GLX. The state of which buffer is displayed tracks in both extensions,
independent of which extension initiates a buffer swap.

2.3 Direct Rendering and Address Spaces

One of the basic assumptions of the X protocol is that if a client can name an object, then it can ma-
nipulate that object. GLX introduces the notion of an Address Space. A GLX object cannot be used
outside of the address space in which it exists.

In a classic UNIX environment, each process is in its own address space. In a multi-threaded envi-
ronment, each of the threads will share a virtual address space which references a common data region.

225

An OpenGL client that is rendering to a graphics engine directly connected to the executing CPU
may avoid passing the tokens through the X server. This generalization is made for performance rea-
sons. The model described here specifically allows for such optimizations, but does not mandate that
any implementation support it.

When direct rendering is occurring, the address space of the renderer is that of the direct process;
when direct rendering is not being used, the address space of the renderer is that of the X server. The
client has the ability to reject the use of direct rendering, but there may be a performance penalty in
doing so.

In order to use direct rendering, a client must create a direct rendering context. Both the client
context state and the server context state of a direct rendering context exist in the client’s address space;
this state cannot be shared by a client in another process. With indirect rendering contexts, the client
context state is kept in the client’s address space and the server context state is kept in the address space
of the X server. In this case the server context state is stored in an X resource; it has an associated XID
and may potentially be used by another client process.

2.4 OpenGL Display Lists

Most OpenGL state is small and easily retrieved using the glGet* commands. This is not true of
OpenGL display lists, which are used, for example, to encapsulate a model of some physical object.
First, there is no mechanism to obtain the contents of a display list from the rendering context. Second,
display lists may be large and numerous. It may be desirable for multiple rendering contexts to share
display lists rather than replicating that information in each context.

GLX provides for limited sharing of display lists; the lists can be shared only if the server state for
the contexts share a single address space. Using this mechanism, a single set of lists can be used, for
instance, by a context that supports color index rendering and a context that supports RGBA rendering.

A group of shared display lists exists until the last referencing rendering context is destroyed. All
rendering contexts have equal access to using lists or defining new lists. Implementations sharing con-
texts must handle the case where one rendering context is using a display list when another rendering
context destroys that list.

When display lists are shared between OpenGL contexts, the sharing extends only to the display
lists themselves and the information about which display list numbers have been allocated. In partic-
ular, the value of the base set with glListBase is not shared.

In general, OpenGL commands are not atomic. glEndList and glDeleteLists are exceptions. The
list named in a glNewList call is not created or superseded until glEndList is called. If one rendering
context is sharing a display list with another, it will continue to use the existing definition while the
second context is in the process of re-defining it.

2.5 Texture Objects

OpenGL texture state can be encapsulated in a named texture object. A texture object is created by
binding an unused name to one of the texture targets (TEXTURE 1D or TEXTURE 2D) of a rendering
context. When a texture object is bound, OpenGL operations on the target to which it is bound affect
the bound texture object, and queries of the target to which it is bound return state from the bound
texture object.

Texture objects may be shared by rendering contexts, as long as the server portion of the contexts
share the same address space. OpenGL makes no attempt to synchronize access to texture objects.
If a texture object is bound to more than one context, then it is up to the programmer to ensure that
the contents of the object are not being changed via one context while another context is using the

226

texture object for rendering. The results of changing a texture object while another context is using it
are undefined.

A texture object will not be deleted until it is no longer bound to any rendering context.

2.6 Aligning Multiple Drawables

A client can create one window with an overlayVisual and a second with a main planeVisual and
then move them independently or in concert to keep them aligned. This is a major change between the
OpenGL and the previous SGI proprietary GL: allocation of overlay planes and main planes for every
window is no longer done automatically. To accomplish what was done by a drawmode/gconfig pair
in previous versions of the SGI proprietary GL, the OpenGL client can use the following paradigm:

� Make the windows which are to share the same screen area children of a single window (that
will never be written). Size and position the children to completely occlude their parent. When
the window combination must be moved or resized, perform the operation on the parent.

� Make the subwindows have a background of None so that the X server will not paint into the
shared area when you restack the children.

� Select for device-related events on the parent window, not on the children. Since device-related
events with the focus in one of the child windows will be inherited by the parent, input dispatch-
ing can be done directly without reference to the child on top.

2.7 Multiple Threads

It is possible to create a version of the client side library that is protected against multiple threads
attempting to access the same connection. This is accomplished by having appropriate definitions for
LockDisplay and UnlockDisplay. Since there is some performance penalty for doing the locking, it
is implementation-dependent whether a thread safe version, a non-safe version, or both versions of the
library are provided. Interrupt routines may not share a connection (and hence a rendering context)
with the main thread. An application may be written as a set of co-operating processes.

X has atomicity (between clients) and sequentiality (within a single client) requirements that limit
the amount of parallelism achievable when interpreting the command streams. GLX relaxes these
requirements. Sequentiality is still guaranteed within a command stream, but not between the X and
the OpenGL command streams. It is possible, for example, that an X command issued by a single
threaded client after an OpenGL command might be executed before that OpenGL command.

The X specification requires that commands are atomic:

If a server is implemented with internal concurrency, the overall effect must be as if in-
dividual requests are executed to completion in some serial order, and requests from a
given connection must be executed in delivery order (that is, the total execution order is
a shuffle of the individual streams).

OpenGL commands are not guaranteed to be atomic. Some OpenGL rendering commands might oth-
erwise impair interactive use of the windowing system by the user. For instance calling a deeply nested
display list or rendering a large texture mapped polygon on a system with no graphics hardware could
prevent a user from popping up a menu soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained with moderate cost with the
judicious use of the glFinish, glXWaitGL, glXWaitX, and XSync commands. OpenGL and X ren-
dering can be done in parallel as long as the client does not preclude it with explicit synchronization

227

calls. This is true even when the rendering is being done by the X server. Thus, a multi-threaded X
server implementation may execute OpenGL rendering commands in parallel with other X requests.

Some performance degradation may be experienced if needless switching between OpenGL and
X rendering is done. This may involve a round trip to the server, which can be costly.

3 Functions and Errors

3.1 Errors

Where possible, as in X, when a request terminates with an error, the request has no side effects.
The error codes that may be generated by a request are described with that request. The following

table summarizes the GLX-specific error codes that are visible to applications:

GLXBadContext A value for a Context argument does not name a Context.

GLXBadContextState An attempt was made to switch to another rendering context while the
current context was in RenderMode GL FEEDBACK or GL SELECT, or a call to glXMake-
Current was made between a glBegin and the corresponding call to glEnd.

GLXBadCurrentWindow The current Drawable of the calling thread is a window that is no
longer valid.

GLXBadDrawable TheDrawable argument does not name aDrawable configured for OpenGL
rendering.

GLXBadPixmap The Pixmap argument does not name a Pixmap that is appropriate for OpenGL
rendering.

GLXUnsupportedPrivateRequest May be returned in response to either a glXVendorPrivate
request or a glXVendorPrivateWithReply request.

The following error codes may be generated by a faulty GLX implementation, but would not nor-
mally be visible to clients:

GLXBadContextTag A rendering request contains an invalid context tag. (Context tags are used
to identify contexts in the protocol.)

GLXBadRenderRequest A glXRender request is ill-formed.

GLXBadLargeRequest A glXRenderLarge request is ill-formed.

3.2 Functions

GLX functions should not be called between glBegin and glEnd operations. If a GLX function is
called within a glBegin/glEnd pair, then the result is undefined; however, no error is reported.

228

3.2.1 Initialization

To ascertain if the GLX extension is defined for an X server, use

Bool glXQueryExtension(Display *dpy, int *error base, int *event base)
;

dpy specifies the connection to the X server. False is returned if the extension is not present. er-
ror base is used to return the value of the first error code. The constant error codes should be added
to this base to get the actual value.

event base is included for future extension. GLX does not currently define any events.
The GLX definition exists in multiple versions. Use

Bool glXQueryVersion(Display *dpy, int *major, int *minor) ;

to discover which version of GLX is available. Upon success, major and minor are filled in with the
major and minor versions of the extension implementation. If the client and server both have the same
major version number then they are compatible and the minor version that is returned is the minimum
of the two minor version numbers.

major and minor do not return values if they are specified as NULL.
glXQueryVersion returns True if it succeeds and False if it fails. If it fails, major and minor are

not updated.

3.2.2 Configuration Management

The constants shown in Table 1 are passed to glXGetConfig and glXChooseVisual to specify which
attributes are being queried.

GLX BUFFER SIZE gives the total depth of the color buffer in bits. For PseudoColor and Stat-
icColor visuals, this is equal to the depth value reported in the core X11 Visual. For TrueColor
and DirectColor visuals, GLX BUFFER SIZE is the sum of GLX RED SIZE, GLX GREEN SIZE,
GLX BLUE SIZE, andGLX ALPHA SIZE. Note that this value may be larger than the depth value re-
ported in the core X11 visual since it may include alpha planes that may not be reported by X11. Also,
for TrueColor visuals, the sum of GLX RED SIZE, GLX GREEN SIZE, and GLX BLUE SIZE
may be larger than the maximum depth that core X11 can support.

To obtain a description of an OpenGL attribute exported by a Visual use

int glXGetConfig(Display *dpy,XVisualInfo* *visual,int attribute,int
*value) ;

glXGetConfig returns through value the value of the attribute of visual.
glXGetConfig returns one of the following error codes if it fails, and Success otherwise:

GLX NO EXTENSION dpy does not support the GLX extension.

GLX BAD SCREEN screen of visual does not correspond to a screen.

GLX BAD ATTRIBUTE attribute is not a valid GLX attribute.

GLX BAD VISUAL visual does not support GLX and an attribute other than GLX USE GLwas spec-
ified.

GLX BAD VALUE parameter invalid

229

Attribute Type Notes

GLX USE GL boolean True if OpenGL rendering supported
GLX BUFFER SIZE integer depth of the color buffer

GLX LEVEL integer frame buffer level
GLX RGBA boolean True if RGBA rendering supported

GLX DOUBLEBUFFER boolean True if color buffers have front/back pairs
GLX STEREO boolean True if color buffers have left/right pairs

GLX AUX BUFFERS integer number of auxiliary color buffers
GLX RED SIZE integer number of bits of Red in the framebuffer

GLX GREEN SIZE integer number of bits of Green in the framebuffer
GLX BLUE SIZE integer number of bits of Blue in the framebuffer
GLX ALPHA SIZE integer number of bits in the destination alpha buffer
GLX DEPTH SIZE integer number of bits in the depth buffer
GLX STENCIL SIZE integer number of bits in the stencil buffer
GLX ACCUM RED SIZE integer number Red bits in the accumulation buffer
GLX ACCUM GREEN SIZE integer number Green bits in the accumulation buffer
GLX ACCUM BLUE SIZE integer number Blue bits in the accumulation buffer
GLX ACCUM ALPHA SIZE integer number Alpha bits in the accumulation buffer

Table 1: Configuration attributes.

A GLX implementation may export many visuals that support OpenGL. These visuals support
either color index or RGBA rendering. Currently RGBA rendering can be supported only by Visuals
of type TrueColor or DirectColor and color index rendering can be supported only by Visuals of type
PseudoColor or StaticColor.

Servers are required to export at least one visual that supports RGBA rendering. At least one of
the visuals that supports RGBA rendering must have at least one color buffer, a stencil buffer of at
least 1 bit, a depth buffer of at least 12 bits, and an accumulation buffer; alpha bitplanes are optional.
The color buffer size for this visual must be as large as that of the deepest TrueColor, DirectColor,
PseudoColor, or StaticColor visual supported on framebuffer level zero (the main image planes), and
it must be available on framebuffer level zero.

If the X server exports a PseudoColor or StaticColor visual on framebuffer level 0, a visual that
supports color index rendering is also required. If color index rendering is supported then one of the
visuals that supports color index rendering must have at least one color buffer, a stencil buffer of at
least 1 bit, and a depth buffer of at least 12 bits. It also must have as many color bitplanes as the deepest
PseudoColor or StaticColor visual supported on framebuffer level zero, and it must itself be made
available on level zero.

glXChooseVisual is used to find a visual that matches the client’s specified attributes.

XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attrib list
) ;

glXChooseVisual returns a pointer to an XVisualInfo structure describing the visual that best
matches the specified attributes. If no matching visual exists, NULL is returned.

The attributes are matched in an attribute-specific manner, as shown in Table 2. Some of the at-
tributes, such asGLX LEVEL, must match the specified value exactly; others, such as, GLX BUFFER SIZE
andGLX RED SIZEmust meet or exceed the specified minimum values. In the case ofGLX BUFFER SIZE,

230

Attribute Default Selection Criteria

GLX USE GL True exact
GLX BUFFER SIZE 0 minimum, smallest

GLX LEVEL 0 exact
GLX RGBA False exact

GLX DOUBLEBUFFER False exact
GLX STEREO False exact

GLX AUX BUFFERS 0 minimum, smallest
GLX RED SIZE 0 minimum, largest
GLX GREEN SIZE 0 minimum, largest
GLX BLUE SIZE 0 minimum, largest
GLX ALPHA SIZE 0 minimum, largest
GLX DEPTH SIZE 0 minimum, largest

GLX STENCIL SIZE 0 minimum, smallest
GLX ACCUM RED SIZE 0 minimum, largest

GLX ACCUM GREEN SIZE 0 minimum, largest
GLX ACCUM BLUE SIZE 0 minimum, largest
GLX ACCUM ALPHA SIZE 0 minimum, largest

Table 2: Defaults and selection criteria used by glXChooseVisual.

preference is given based on how close the visual’s attribute value is to the specified value. (Attributes
that are matched in this manner have minimum, smallest listed as their selection criteria in Ta-
ble 2.) In the case of GLX RED SIZE, if the specified value is non-zero, then preference is given to
visuals with the largest value for this attribute; otherwise preference is given to visuals with the small-
est value. (Attributes that are matched in this manner have minimum, largest listed as their se-
lection criteria in Table 2.)

If GLX RGBA is in attrib list then the resulting visual will be TrueColor or DirectColor. If
all other attributes are equivalent, then aTrueColor visual will be chosen in preference to aDirectColor
visual.

IfGLX RGBA is not in attrib list then the returned visual will bePseudoColor orStaticColor.
If all other attributes are equivalent then a PseudoColor visual will be chosen in preference to a
StaticColor visual.

If an attribute is not specified in attrib list, then the default value is used. See Table 2 for a list of
defaults.

Default specifications are superseded by the attributes included in attrib list. Integer attributes are
immediately followed by the corresponding desired value. Boolean attributes appearing in attrib list
have an implicit True value; such attributes are never followed by an explicit True or False value.
The list is terminated with None.

To free the data returned, use XFree.
NULL is returned if an undefined GLX attribute is encountered.

3.2.3 Off Screen Rendering

To create an off screen rendering area, first create an X Pixmap of the depth specified by the desired
Visual, then call

231

GLXPixmap glXCreateGLXPixmap(Display *dpy,XVisualInfo* visual,Pixmap
pixmap) ;

glXCreateGLXPixmap creates an off screen rendering area and returns its XID. Any GLX ren-
dering context created with respect to visual can be used to render into this off screen area.

pixmap is used for the RGB planes of the front-left buffer of the resulting GLX off screen rendering
area. The alpha buffer and ancillary buffers specified by visual are created without externally visible
names. GLX pixmaps may be created with a visual that includes back buffers and stereoscopic buffers.
However, glXSwapBuffers is ignored for these pixmaps.

A direct rendering context might not be able to be made current with a GLXPixmap.
If the depth of pixmap does not match the depth value reported by core X11 for visual, or if pixmap

was not created with respect to the same screen as visual, then a BadMatch error is generated. If
visual is not valid (e.g., if GLX does not support it), then a BadValue error is generated. If pixmap
is not a valid pixmap id, then a BadPixmap error is generated. Finally, if the server cannot allocate
the new GLX pixmap, a BadAlloc error is generated.

A GLXPixmap is destroyed by calling

void glXDestroyGLXPixmap(Display *dpy, GLXPixmap pixmap) ;

This request deletes the association between the resource ID pixmap and the GLX pixmap. The
storage will be freed when it is not current to any client.

If pixmap is not a valid GLX pixmap then a GLXBadPixmap error is generated.

3.2.4 Rendering Contexts

To create an OpenGL rendering context call

GLXContext glXCreateContext(Display *dpy,XVisualInfo* visual,GLXContext
share list, Bool direct) ;

glXCreateContext returns NULL if it fails. If glXCreateContext succeeds, it initializes the render-
ing context to the default OpenGL state and returns a handle to it. This handle can be used to render
to both windows and GLX pixmaps.

If share list is not NULL, then all display lists and texture objects except texture objects named
0 will be shared by share list and the newly created rendering context. An arbitrary number of GLX-
Contexts can share a single display list and texture object space. All sharing contexts must also share
a single address space or a BadMatch error is generated.

If direct is true, then a direct rendering context will be created if the implementation supports direct
rendering and the connection is to an X server that is local. If direct is False, then a rendering context
that renders through the X server is created.

Direct rendering contexts may be a scarce resource in some implementations. If direct is true,
and if a direct rendering context cannot be created, then glXCreateContext will attempt to create an
indirect context instead.

glXCreateContext can generate the followingGLX extension errors: GLXBadContext if share list
is neither zero nor a valid GLX rendering context; BadValue if visual is not a valid X Visual or if
GLX does not support it; BadMatch if share list defines an address space that cannot be shared with
the newly created context or if share list was created on a different screen than the one referenced by
visual; BadAlloc if the server does not have enough resources to allocate the new context.

To determine if an OpenGL rendering context is direct call

232

Bool glXIsDirect(Display *dpy, GLXContext ctx) ;

glXIsDirect returns True if ctx is a direct rendering context, False otherwise. If ctx is not a valid
GLX rendering context, a GLXBadContext error is generated.

An OpenGL rendering context is destroyed by calling

void glXDestroyContext(Display *dpy, GLXContext ctx) ;

If ctx is still current to any thread, ctx is not destroyed until it is no longer current. In any event, the
associated XID will be destroyed and ctx cannot subsequently be made current to any thread.

glXDestroyContextwill generate aGLXBadContext error if ctx is not a valid rendering context.
To copy OpenGL rendering state from one context to another, use

void glXCopyContext(Display *dpy,GLXContext source,GLXContext dest,
unsigned long mask) ;

glXCopyContext copies selected groups of state variables from source to dest. mask indicates which
groups of state variables are to be copied; it contains the bitwise OR of the symbolic names for the
attribute groups. The symbolic names are the same as those used by glPushAttrib, described in the
OpenGL Specification. Also, the order in which the attributes are copied to dest as a result of the
glXCopyContext operation is the same as the order in which they are popped off of the stack when
glPopAttrib is called. The single symbolic constant GL ALL ATTRIB BITS can be used to copy
the maximum possible portion of the rendering state. It is not an error to specify mask bits that are
undefined.

If source and dest do not share an address space or were not created on the same screen, aBadMatch
error is generated. (source and dest may be based on different X visuals and still share an address
space; glXCopyContext will work correctly in such cases.) If the destination context is current for
some thread then a BadAccess error is generated. If the source context is the same as the current
context of the calling thread, and the current drawable of the calling thread is a window that is no
longer valid, a GLXBadCurrentWindow is generated. Finally, if either source or dest is not a valid
GLX rendering context, a GLXBadContext error is generated.

glXCopyContext performs an implicit glFlush() if source is the current context for the calling
thread.

Only one rendering context may be in use, or current, for a particular thread at a given time. The
minimum number of current rendering contexts that must be supported by a GLX implementation is
one. (Supporting a larger number of current rendering contexts is essential for general-purpose sys-
tems, but may not be necessary for turnkey applications.)

To make a context current, call

Bool glXMakeCurrent(Display *dpy,GLXDrawable drawable,GLXContext
ctx) ;

If the calling thread already has a current rendering context, then that context is flushed and marked
as no longer current. ctx is made the current context for the calling thread.

If the drawable and ctx are not similar, a BadMatch error is generated. If ctx is current to some
other thread, then glXMakeCurrent will generate a BadAccess error. GLXBadContextState
is generated if there is a current rendering context and its render mode is either GL FEEDBACK or
GL SELECT. GLXBadContextState will also be generated if glXMakeCurrent is called be-
tween a glBegin and its correspondingglEnd. If ctx is not a valid GLX rendering context,GLXBadContext
is generated. If drawable is not a valid GLX drawable, a GLXBadDrawable error is generated. If

233

the previous context of the calling thread has unflushed commands, and the previous drawable is a
window that is no longer valid, GLXBadCurrentWindow is generated. Finally, note that the an-
cillary buffers for drawable need not be allocated until they are needed. A BadAlloc error will be
generated if the server does not have enough resources to allocate the buffers.

If drawable is destroyed after glXMakeCurrent is called then subsequent rendering commands
will behave as if drawable is bound to the NULL clip. The commands will be processed and the con-
text state will be updated, but no output will appear on the display.

To release the current context without assigning a new one, use NULL for ctx and None for draw-
able. If ctx is NULL and drawable is not None, or if drawable is None and ctx is not NULL, then a
BadMatch error will be generated.

The first time ctx is made current to a GLXDrawable, its initial viewport is set. That viewport
must be reset by the client when ctx is subsequently made current.

Note that when multiple threads are using their current contexts to render to the same drawable,
OpenGL does not guarantee atomicity of fragment update operations. In particular, programmers may
not assume that depth-buffering will automatically work correctly; there is a race condition between
threads that read and update the depth buffer. Clients are responsible for avoiding this condition. They
may use vendor-specific extensions or they may arrange for separate threads to draw in disjoint regions
of the framebuffer, for example.

glXGetCurrentContext returns the current context.

GLXContext glXGetCurrentContext(void) ;

If there is no current context, NULL is returned.
glXGetCurrentDrawable returns the XID of the current drawable.

GLXDrawable glXGetCurrentDrawable(void) ;

If there is no current drawable, None is returned.
To get the display associated with the current context and drawable, call

Display* glXGetCurrentDisplay(void) ;

If there is no current context, NULL is returned. This routine is available only if the GLX version
is 1.2 or later.

glXGet* calls retrieve client-side state and do not force a round trip to the X server. Unlike most X
calls (including the glXQuery* calls) that return a value, these calls do not flush any pending requests.

3.2.5 Synchronization Primitives

To prevent X requests from executing until any outstanding OpenGL rendering is done, call

void glXWaitGL(void) ;

OpenGL calls made prior to glXWaitGL are guaranteed to be executed before X rendering calls made
after glXWaitGL. While the same result can be achieved using glFinish, glXWaitGL does not require
a round trip to the server, and is therefore more efficient in cases where the client and server are on
separate machines.

glXWaitGL is ignored if there is no current rendering context. If the drawable associated with
the calling thread’s current context is a window that is no longer valid, a GLXBadCurrentWindow
error is generated.

To prevent the OpenGL command sequence from executing until any outstanding X requests are
completed, call

234

void glXWaitX(void) ;

X rendering calls made prior to glXWaitX are guaranteed to be executed before OpenGL rendering
calls made after glXWaitX. While the same result can be achieved using XSync, glXWaitX does not
require a round trip to the server, and may therefore be more efficient.

glXWaitX is ignored if there is no current rendering context. If the drawable associated with the
calling thread’s current context is a window that is no longer valid, a GLXBadCurrentWindow error
is generated.

3.2.6 Double Buffering

For drawables that are double buffered, the contents of the back buffer can be made potentially visible
(i.e., become the contents of the front buffer) by calling

void glXSwapBuffers (Display *dpy, GLXDrawable drawable) ;

The contents of the back buffer then become undefined. This operation is a no-op if drawable was
created with a non-double-buffered visual, or if drawable is a GLXPixmap.

All GLX rendering contexts share the same notion of which are front buffers and which are back
buffers for a given drawable. This notion is also shared with the X double buffer extension (DBE).

When multiple threads are rendering to the same drawable, only one of them need callglXSwapBuffers
and all of them will see the effect of the swap. The client must synchronize the threads that perform the
swap and the rendering, using some means outside the scope of GLX, to insure that each new frame
is completely rendered before it is made visible.

If dpy and drawableare the display and drawable for the calling thread’s current context,glXSwapBuffers
performs an implicit glFlush(). Subsequent OpenGL commands can be issued immediately, but
will not be executed until the buffer swapping has completed, typically during vertical retrace of the
display monitor.

If drawable is not a valid GLX drawable, glXSwapBuffers generates aGLXBadDrawable error.
If dpy and drawable are the display and drawable associated with the calling thread’s current context,
and if drawable is a window that is no longer valid, a GLXBadCurrentWindow error is generated.

3.2.7 Access to X Fonts

A shortcut for using X fonts is provided by the command

void glXUseXFont(Font font, int first, int count, int list base) ;

count display lists are defined starting at list base, each list consistingof a single call on glBitmap. The
definition of bitmap list base + i is taken from the glyph first + i of font. If a glyph is not defined, then an
empty display list is constructed for it. The width, height, xorig, and yorig of the constructed
bitmap are computed from the font metrics as rbearing-lbearing, ascent+descent, -lbearing,
and descent-1 respectively. xmove is taken from the width metric and ymove is set to zero.

Note that in the direct rendering case, this requires that the bitmaps be copied to the client’s address
space.

glXUseXFont performs an implicit glFlush().
glXUseXFont is ignored if there is no current GLX rendering context. BadFont is generated

if font is not a valid X font id. GLXBadContextState is generated if the current GLX rendering
context is in display list construction mode. GLXBadCurrentWindow is generated if the drawable
associated with the calling thread’s current context is a window and is no longer valid.

235

3.2.8 GLX Versioning

The following functions are available only if the GLX version is 1.1 or later.

const char* glXQueryExtensionsString(Display *dpy, int screen) ;

glXQueryExtensionsString returns a pointer to a string describing which GLX extensions are
supported on the connection. The string is zero-terminated and contains a space-seperated list of ex-
tension names. The extension names themselves do not contain spaces. If there are no extensions to
GLX, then the empty string is returned.

const char* glXGetClientString(Display *dpy, int name);

glXGetClientString returns a pointer to a static, zero-terminated string describing some aspect of
the client library. The possible values for name are GLX VENDOR, GLX VERSION, and GLX EXTENSIONS.
If name is not set to one of these values then NULL is returned. The format and contents of the ven-
dor string is implementation dependent, and the format of the extension string is the same as for glX-
QueryExtensionsString. The version string is laid out as follows:

<major version.minor version><space><vendor-specific info>

Both the major and minor portions of the version number are of arbitrary length. The vendor-specific
information is optional. However, if it is present, the format and contents are implementation specific.

const char* glXQueryServerString(Display *dpy, int screen, int name)
;

glXQueryServerString returns a pointer to a static, zero-terminated string describing some aspect
of the server’s GLX extension. The possible values for name and the format of the strings is the same
as for glXGetClientString. If name is not set to a recognized value then NULL is returned.

4 Encoding on the X Byte Stream

In the remote rendering case, the overhead associated with interpreting the GLX extension requests
must be minimized. For this reason, all commands have been broken up into two categories: OpenGL
and GLX commands that are each implemented as a single X extension request and OpenGL rendering
requests that are batched within a GLXRender request.

4.1 Requests that hold a single extension request

Each of the commands from glx.h (that is, the glX* commands) is encoded by a separate X extension
request. In addition, there is a separate X extension request for each of the OpenGL commands that
cannot be put into a display list. That list consists of all the glGet* commands plus

glAreTexturesResident
glDeleteLists
glDeleteTextures
glEndList
glFeedbackBuffer
glFinish

236

GLX

Render

GLXCore
X

data
single

data cmd data cmd data

Figure 2: GLX byte stream.

glFlush
glGenLists
glGenTextures
glIsEnabled
glIsList
glIsTexture
glNewList
glPixelStoref
glPixelStorei
glReadPixels
glRenderMode
glSelectBuffer

The two PixelStore commands (glPixelStorei and glPixelStoref) are exceptions. These commands
are issued to the server only to allow it to set its error state appropriately. Pixel storage state is main-
tained entirely on the client side. When pixel data is transmitted to the server (by glDrawPixels, for
example), the pixel storage information that describes it is transmitted as part of the same protocol
request. Implementations may not change this behavior, because such changes would cause shared
contexts to behave incorrectly.

4.2 Request that holds multiple OpenGL commands

The remaining OpenGL commands are those that may be put into display lists. Multiple occurrences
of these commands are grouped together into a single X extension request (GLXRender). This is
diagrammed in Figure 4.2.

The grouping minimizes dispatchingwithin the X server. The library packs as many OpenGL com-
mands as possible into a single X request (without exceeding the maximum size limit). No OpenGL
command may be split across multiple GLXRender requests.

For long OpenGL commands (those longer than a maximum X request size), a series of GLXRen-
derLarge commands is issued. The structure of the OpenGL command within GLXRenderLarge is
the same as for GLXRender.

Note that it is legal to have a glBegin in one request, followed by glVertex commands, and eventu-
ally the matching glEnd in a subsequent request. A command is not the same as an OpenGL primitive.

4.3 Wire representations and byte swapping

Unsigned and signed integers are represented as they are represented in the core X protocol. Single and
double precision floating point numbers are sent and received in IEEE floating point format. The X
byte stream and network specifications make it impossible for the client to assure that double precision
floating point numbers will be naturally aligned within the transport buffers of the server. For those
architectures that require it, the server or client must copy those floating point numbers to a properly
aligned buffer before using them.

237

Byte swapping on the encapsulated OpenGL byte stream is performed by the server using the same
rule as the core X protocol. Single precision floating point values are swapped in the same way that
32-bit integers are swapped. Double precision floating point values are swapped across all 8 bytes.

4.4 Sequentiality

There are two sequences of commands: the X stream, and the OpenGL stream. In general these two
streams are independent: Although the commands in each stream will be processed in sequence, there
is no guarantee that commands in the separate streams will be processed in the order in which they
were issued by the calling thread.

An exception to this rule arises when a single command appears in both streams. This forces the
two streams to rendezvous.

Because the processing of the two streams may take place at different rates, and some operations
may depend on the results of commands in a different stream, we distinguish between commands as-
signed to each of the X and OpenGL streams.

The following commands are processed on the client side and therefore do not exist in either the
X or the OpenGL stream:

glXGetClientString
glXGetCurrentContext
glXGetCurrentDisplay
glXGetCurrentDrawable
glXGetConfig

The following commands are in the X stream and obey the sequentiality guarantees for X requests:

glXCreateContext
glXDestroyContext
glXMakeCurrent
glXIsDirect
glXQueryExtensionsString
glXQueryServerString
glXQueryVersion
glXWaitGL
glXCreateGLXPixmap
glXDestroyGLXPixmap
glXChooseVisual
glXSwapBuffers (but see below)
glXCopyContext (see below)

glXSwapBuffers is in the X stream if and only if the display and drawable are not those belonging
to the calling thread’s current context; otherwise it is in the OpenGL stream. glXCopyContext is in
the X stream alone if and only if its source context differs from the calling thread’s current context;
otherwise it is in both streams.

Commands in the OpenGL stream, which obey the sequentiality guarantees for OpenGL requests
are:

238

glXWaitX
glXSwapBuffers (see below)
All OpenGL Commands

glXSwapBuffers is in the OpenGL stream if and only if the display and drawable are those be-
longing to the calling thread’s current context; otherwise it is in the X stream.

Commands in both streams, which force a rendezvous are:

glXCopyContext (see below)
glXUseXFont

glXCopyContext is in both streams if and only if the source context is the same as the current
context of the calling thread; otherwise it is in the X stream only.

5 Extending OpenGL

OpenGL is extended by adding new GLX requests, OpenGL requests or additional enumerated values
to the OpenGL requests. The OpenGL Architectural Review Board maintains a registry of indexes for
each vendor to use as they wish.

New names must clearly indicate to clients whether some particular feature is in the core OpenGL
or is vendor specific. To make a vendor-specific name, append a company identifier (in upper case)
and any additional vendor-specific tags (e.g. machine names). For instance, SGI might add new com-
mands and manifest constants of the form glNewCommandSGI and GL NEW DEFINITION SGI.
If SGI wanted to provide extensions that were specific to its Reality Engine, then the names might be of
the form glNewCommandSGIre and GL NEW DEFINITION SGI RE. If two or more licensees
agree in good faith to implement the same extension, and to make the specification of that extension
publicly available, the procedures and tokens that are defined by the extension can be suffixed by EXT.

6 Glossary

Address Space the set of objects or memory locations accessible through a single name space. In
other words, it is a data region that one or more processes may share through pointers.

Client an X client. An application communicates to a server by some path. The application program
is referred to as a client of the window system server. To the server, the client is the communica-
tion path itself. A program with multiple connections is viewed as multiple clients to the server.
The resource lifetimes are controlled by the connection lifetimes, not the application program
lifetimes.

Connection a bidirectional byte stream that carries the X (and GLX) protocol between the client and
the server. A client typically has only one connection to a server.

(Rendering) Context a OpenGL rendering context. This is a virtual OpenGL machine. All OpenGL
rendering is done with respect to a context. The state maintained by one rendering context is
not affected by another except in case of shared display lists.

239

GLXContext a handle to a rendering context. Rendering contexts consist of client side state and
server side state.

Similar a potential correspondence among GLXDrawables and rendering contexts. Windows and
GLXPixmaps are similar to a rendering context are similar if, and only if, they have been cre-
ated with respect to the same VisualID and root window.

Thread one of a group of processes all sharing the same address space. Typically, each thread will
have its own program counter and stack pointer, but the text and data spaces are visible to each
of the threads. A thread that is the only member of its group is equivalent to a process.

240

SIGGRAPH ’97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

A Simple Example

In order to use OpenGL with Win32 to render images, there are some initialization steps that must be
taken. These steps are outlined below.

Creating a Window
Setting the Pixel Format

Creating a Rendering Context

Example source code:
simple.c

Create a Window

Before creating a window, a window class must be registered. A window class is a basic template that is
used to create a window in an application. Every window is associated with a window class. To register
a window class, a WNDCLASS structure is filled out with the desired settings and then the Win32 function
RegisterWindowClass() is called with a pointer to this structure as an argument. Multiple windows
can be associated with a single class. When the application that registered a window class exits, the
window class is destroyed. A window class can be identified by its class name (a character string).

The window class contains the window procedure. A window procedure is a callback function that is
used by Win32 to notify the application of messages that should be processed by the window. A window
procedure must have the form: LONG WINAPI WindowProc(HWND, UINT, WPARAM, LPARAM) . See the
next section on messages for more information about window procedures.

The following code fragment shows how to register a new window class.

code fragment from oglCreateWindow() function in simple.c

241

/* oglCreateWindow
 * Create a window suitable for OpenGL rendering
 */
HWND oglCreateWindow(char* title, int x, int y, int width, int height)
{
 WNDCLASS wc;
 HWND hWnd;
 HINSTANCE hInstance;

 /* get this modules instance */
 hInstance = GetModuleHandle(NULL);

 /* fill in the window class structure */
 wc.style = 0; /* no special styles */
 wc.lpfnWndProc = (WNDPROC)WindowProc; /* event handler */
 wc.cbClsExtra = 0; /* no extra class data */
 wc.cbWndExtra = 0; /* no extra window data */
 wc.hInstance = hInstance; /* instance */
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); /* load a default icon */
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); /* load a default cursor */
 wc.hbrBackground = NULL; /* redraw our own bg */
 wc.lpszMenuName = NULL; /* no menu */
 wc.lpszClassName = title; /* use a special class */

 /* register the window class */
 if (!RegisterClass(&wc)) {
 MessageBox(NULL,
 "RegisterClass() failed: Cannot register window class,",
 "Error", MB_OK);
 return NULL;
 }

 . . .

}

Although the settings above should be sufficient for many applications, there are many values each field
of the WNDCLASS structure can assume. For more information on the WNDCLASS structure and its options,
see the Microsoft Developer Studio InfoViewer topic WNDCLASS.

Once a window class has been successfully registered, a new window can be created. When creating a
window suitable for OpenGL rendering, the window style must have the WS_CLIPSIBLINGS and
WS_CLIPCHILDREN attribute bits set.

The following code shows how to create a window.

code fragment from oglCreateWindow() function in simple.c

/* oglCreateWindow
 * Create a window suitable for OpenGL rendering
 */
HWND oglCreateWindow(char* title, int x, int y, int width, int height)
{
 WNDCLASS wc;
 HWND hWnd;
 HINSTANCE hInstance;

 . . .

242

 /* create a window */
 hWnd = CreateWindow(title, /* class */
 title, /* title (caption) */
 WS_CLIPSIBLINGS | WS_CLIPCHILDREN, /* style */
 x, y, width, height, /* dimensions */
 NULL, /* no parent */
 NULL, /* no menu */
 hInstance, /* instance */
 NULL); /* don’t pass anything to WM_CREATE */

 /* make sure we got a window */
 if (hWnd == NULL) {
 MessageBox(NULL,
 "CreateWindow() failed: Cannot create a window.",
 "Error", MB_OK);
 return NULL;
 }

 /* show the window (map it) */
 ShowWindow(hWnd, SW_SHOW);

 /* send an initial WM_PAINT message (expose) */
 UpdateWindow(hWnd);

 return hWnd;
}

A common style attribute which is used quite often (and bears mentioning here) is the
WS_OVERLAPPEDWINDOW style. This creates a window that has resize handles and a system menu as well
as the three icons (minimize, maximize and close) common to most Win32 windows in the upper right
hand corner of the title (caption) bar. In the next section on messages, there are some example programs
that use this style. Another style that can be used allows for the window to take up the whole screen. See
the fullscrn.c program for an example of this style.

While in the example we only use the minimum style options necessary for OpenGL (WS_CLIPCHILDREN

and WS_CLIPSIBLINGS), there are many options that can be used when creating a window. See the
Microsoft Developer Studio InfoViewer topic CreateWindow for a list of all the available options.

After creating a new window it must be shown if the rendering is to be seen. It is also a good idea
(though not strictly necessary) to force an initial paint by making a call to the window procedure in order
to "prime the message pump". This is accomplished by calling the ShowWindow() and UpdateWindow()

functions as shown in the example above.

Set the Pixel Format

After a window class has been registered and a new window has been successfully created, the pixel
format must be set. The simplest way to set the pixel format is to use the ChoosePixelFormat()

function. More sophisticated methods for choosing the pixel format will be discussed in a later section.

The pixel format specifies several properties of an OpenGL context. Common properties are depth of the
Z buffer, whether a stencil buffer exists or not, whether the framebuffer is double buffered and many

243

others.

In order to specify the many properties available, a PIXELFORMATDESCRIPTOR structure is employed.
The members of this structure correspond to different properties. In order to set these properties, the
corresponding field is set in the PIXELFORMATDESCRIPTOR structure and a format that best fits the
criteria defined by the PIXELFORMATDESCRIPTOR structure is selected by the ChoosePixelFormat()

function. The "best fit" is somewhat ambiguous and methods for finding exactly the pixel format desired
are covered, as mentioned above, in a later section.

The following code fragment illustrates how to set the pixel format.

code defining the oglSetPixelFormat() function in simple.c

/* oglPixelFormat()
 * Sets the pixel format for the context
 */
int oglSetPixelFormat(HDC hDC, BYTE type, DWORD flags)
{
 int pf;
 PIXELFORMATDESCRIPTOR pfd;

 /* fill in the pixel format descriptor */
 pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
 pfd.nVersion = 1; /* version (should be 1) */
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | /* draw to window (not bitmap) */
 PFD_SUPPORT_OPENGL | /* draw using opengl */
 flags; /* user supplied flags */
 pfd.iPixelType = type; /* PFD_TYPE_RGBA or COLORINDEX */
 pfd.cColorBits = 24;
 /* other criteria here */

 /* get the appropriate pixel format */
 pf = ChoosePixelFormat(hDC, &pfd);
 if (pf == 0) {
 MessageBox(NULL,
 "ChoosePixelFormat() failed: Cannot find format specified.",
 "Error", MB_OK);
 return 0;
 }

 /* set the pixel format */
 if (SetPixelFormat(hDC, pf, &pfd) == FALSE) {
 MessageBox(NULL,
 "SetPixelFormat() failed: Cannot set format specified.",
 "Error", MB_OK);
 return 0;
 }

 return pf;
}

Note that type is one of PFD_TYPE_RGBA for non-paletted or PFD_COLORINDEX for paletted (indexed)
display mode. flags is a bitwise OR (|) of several options. We’ll use only PFD_DOUBLEBUFFER which
selects a doublebuffered framebuffer for these simple examples. For more information on what other
values it can assume, see the next section on pixel formats or the Microsoft Developer Studio
InfoViewer topic PIXELFORMATDESCRIPTOR.

244

Create a Rendering Context

The final step in setting up for OpenGL rendering is to create the OpenGL context. An OpenGL
rendering context in Win32 has the type HGLRC. All OpenGL rendering must go through an HGLRC. A
context must be current for OpenGL calls to affect to it.

The procedure for creating and making a context current is shown below.

code from main() function in simple.c

/* main()
 * Entry point
 */
int main(int argc, char** argv)
{
 HDC hDC; /* device context */
 HGLRC hRC; /* opengl context */
 HWND hWnd; /* window */

 . . .

 /* create an OpenGL context */
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 /* now we can start changing state & rendering */
 while (1) {
 /* rotate a triangle around */
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(1.0, 0.0, 0.0, 1.0);
 glBegin(GL_TRIANGLES);
 glColor3f(1.0, 0.0, 0.0);
 glVertex2i(0, 1);
 glColor3f(0.0, 1.0, 0.0);
 glVertex2i(-1, -1);
 glColor3f(0.0, 0.0, 1.0);
 glVertex2i(1, -1);
 glEnd();
 glFlush();
 SwapBuffers(hDC); /* nop if singlebuffered */
 }

 /* clean up */
 wglMakeCurrent(NULL, NULL); /* make our context ’un-’current */
 ReleaseDC(hDC, hWnd); /* release handle to DC */
 wglDeleteContext(hRC); /* delete the rendering context */
 DestroyWindow(hWnd); /* destroy the window */

 return 0;
}

After this is done, OpenGL calls can be made to change state and render to the context as shown in the
example above. In order to clean up the resources allocated for OpenGL rendering, first make the
HGLRC ’un’-current, release the HDC and delete the context. Lastly, destroy the window.

245

246

SIGGRAPH ’97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Processing Messages & Using Menus

Win32 Messages and Menus allow for processing of user input. Methods for intercepting and
responding to messages as well as methods for using menus is presented below.

Peeking at Messages
Using Message Procedures

Using Menus

Example source code:
peek.c

msgproc.c
menu.c

Peeking at Messages

While the simple example presented in the last section got us started with OpenGL, it was very limited
in that it didn’t provide for any user input. Messages are the standard method to receive and process user
input in Win32. An easy way to check for messages is presented below. This approach is very simple
and limited. There are more sophisticated methods for processing messages which will be covered later
in this document.

code defining the main() function in msgproc.c

/* main()
 * Entry point
 */
int main(int argc, char** argv)
{
 HDC hDC; /* device context */
 HGLRC hRC; /* opengl context */

247

 HWND hWnd; /* window */
 MSG msg; /* message */

 /* create a window */
 hWnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
 if (hWnd == NULL)
 exit(1);

 /* get the device context */
 hDC = GetDC(hWnd);

 /* set the pixel format */
 if (oglSetPixelFormat(hDC, PFD_TYPE_RGBA, 0) == 0)
 exit(1);

 /* create an OpenGL context */
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 /* now we can start changing state & rendering */
 while (1) {
 /* first, check for (and process) messages in the queue */
 while(PeekMessage(&msg, hWnd, 0, 0, PM_REMOVE)) {
 switch(msg.message) {
 case WM_LBUTTONDOWN:
 printf("WM_LBUTTONDOWN: %d %d %s %s %s %s %s\n",
 LOWORD(msg.lParam), HIWORD(msg.lParam),
 msg.wParam & MK_CONTROL ? "MK_CONTROL" : "",
 msg.wParam & MK_LBUTTON ? "MK_LBUTTON" : "",
 msg.wParam & MK_RBUTTON ? "MK_RBUTTON" : "",
 msg.wParam & MK_MBUTTON ? "MK_MBUTTON" : "",
 msg.wParam & MK_SHIFT ? "MK_SHIFT" : "");
 break;
 case WM_MOUSEMOVE:
 printf("WM_MOUSEMOVE: %d %d\n",
 LOWORD(msg.lParam), HIWORD(msg.lParam));
 break;
 case WM_KEYDOWN:
 printf("WM_KEYDOWN: %c\n", msg.wParam);
 if(msg.wParam == 27) /* ESC */
 goto quit;
 break;
 default:
 DefWindowProc(hWnd, msg.message, msg.wParam, msg.lParam);
 break;
 }
 }

 /* rotate a triangle around */
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(1.0, 0.0, 0.0, 1.0);
 glBegin(GL_TRIANGLES);
 glColor3f(1.0, 0.0, 0.0);
 glVertex2i(0, 1);
 glColor3f(0.0, 1.0, 0.0);
 glVertex2i(-1, -1);
 glColor3f(0.0, 0.0, 1.0);
 glVertex2i(1, -1);
 glEnd();
 glFlush();
 SwapBuffers(hDC); /* nop if singlebuffered */

248

 }

quit:

 /* clean up */
 wglMakeCurrent(NULL, NULL); /* make our context ’un-’current */
 ReleaseDC(hDC, hWnd); /* release handle to DC */
 wglDeleteContext(hRC); /* delete the rendering context */
 DestroyWindow(hWnd); /* destroy the window */

 return 0;
}

There are many other messages that can be checked for and processed. See the macros defined in the
winuser.h include file for a full listing, or look at Microsoft Developer Studio InfoViewer topics
beginning with WM_. The method presented above is limited in that some messages must be "translated"
before they can be processed. The method presented next takes care of these messages as well.

Message Procedure

A much more effective way of processing messages is to use a window procedure. Every window must
have a window procedure associated with it (actually, the window procedure is associated with the
window class, but since every window has a class, every window also has a window procedure). The
window procedure is called whenever there are messages for the window in the message queue.

The code for a typical window procedure follows.

code defining the WindowProc() function in msgproc.c

/* WindowProc()
 * Minimum Window Procedure
 */
LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 LONG lRet = 1;
 PAINTSTRUCT ps;

 switch(uMsg) {
 case WM_CREATE:
 break;

 case WM_DESTROY:
 break;

 case WM_PAINT:
 BeginPaint(hWnd, &ps);
 EndPaint(hWnd, &ps);
 break;

 case WM_LBUTTONDOWN:
 printf("WM_LBUTTONDOWN: %d %d %s %s %s %s %s\n",
 LOWORD(lParam), HIWORD(lParam),
 wParam & MK_CONTROL ? "MK_CONTROL" : "",
 wParam & MK_LBUTTON ? "MK_LBUTTON" : "",

249

 wParam & MK_RBUTTON ? "MK_RBUTTON" : "",
 wParam & MK_MBUTTON ? "MK_MBUTTON" : "",
 wParam & MK_SHIFT ? "MK_SHIFT" : "");
 break;

 case WM_MOUSEMOVE:
 printf("WM_MOUSEMOVE: %d %d\n", LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_CHAR:
 printf("WM_CHAR: %c\n", wParam);
 if(wParam == 27) /* ESC */
 PostQuitMessage(0);
 break;

 case WM_SIZE:
 printf("WM_SIZE: %d %d\n", LOWORD(lParam), HIWORD(lParam));
 glViewport(0, 0, LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_CLOSE:
 printf("WM_CLOSE\n");
 PostQuitMessage(0);
 break;

 default:
 lRet = DefWindowProc(hWnd, uMsg, wParam, lParam);
 break;
 }

 return lRet;
}

Each case in the switch statement processes one type of message. As mentioned above, there are many
types of messages. The ones presented in this code fragment are some of the more common ones. Notice
that the default action is to call a DefWindowProc() function. This passes on any messages that the
user doesn’t intercept to the system message processing function.

The translation and dispatch of messages must be done explicitly. The following code illustrates a
method of doing this.

code defining the main() function in msgproc.c

/* main()
 * Entry point
 */
int main(int argc, char** argv)
{
 HDC hDC; /* device context */
 HGLRC hRC; /* opengl context */
 HWND hWnd; /* window */
 MSG msg; /* message */

 /* create a window */
 hWnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
 if (hWnd == NULL)
 exit(1);

 /* get the device context */

250

 hDC = GetDC(hWnd);

 /* set the pixel format */
 if (oglSetPixelFormat(hDC, PFD_TYPE_RGBA, 0) == 0)
 exit(1);

 /* get the device context */
 hDC = GetDC(hWnd);

 /* create an OpenGL context */
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 /* now we can start changing state & rendering */
 while (1) {
 /* first, check for (and process) messages in the queue */
 while(PeekMessage(&msg, hWnd, 0, 0, PM_NOREMOVE)) {
 if(GetMessage(&msg, hWnd, 0, 0)) {
 TranslateMessage(&msg); /* translate virtual-key messages */
 DispatchMessage(&msg); /* call the window proc */
 } else {
 goto quit;
 }
 }

 /* rotate a triangle around */
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(1.0, 0.0, 0.0, 1.0);
 glBegin(GL_TRIANGLES);
 glColor3f(1.0, 0.0, 0.0);
 glVertex2i(0, 1);
 glColor3f(0.0, 1.0, 0.0);
 glVertex2i(-1, -1);
 glColor3f(0.0, 0.0, 1.0);
 glVertex2i(1, -1);
 glEnd();
 glFlush();
 SwapBuffers(hDC); /* nop if singlebuffered */
 }

quit:

 /* clean up */
 wglMakeCurrent(NULL, NULL); /* make our context ’un-’current */
 ReleaseDC(hDC, hWnd); /* release handle to DC */
 wglDeleteContext(hRC); /* delete the rendering context */
 DestroyWindow(hWnd); /* destroy the window */

 return 0;
}

The TranslateMessage() function breaks down virtual-key messages into character messages. The
DispatchMessage() function dispatches a message to the window procedure, which means it calls the
window procedure with the correct arguments for the given message.

Menus

251

Another common method for obtaining user input in Win32 is through menus. Setting up and managing
a menu is very simple. The following example shows how to create a menu bar.

code defining the menubar() function in menu.c

/* globals */
HMENU hPopup = NULL; /* popup menu */

 . . .

/* menubar()
 * create a menubar for the window
 */
void menubar(HWND hWnd)
{
 HMENU hFileMenu; /* file menu handle */
 HMENU hDrawMenu; /* draw menu handle */
 HMENU hMenu; /* menu bar handle */
 MENUITEMINFO item; /* item info */

 /* create the menus */
 hMenu = CreateMenu();
 hFileMenu = CreateMenu();
 hDrawMenu = CreateMenu();

 /* fill up the file menu */
 item.cbSize = sizeof(MENUITEMINFO);
 item.fMask = MIIM_ID | MIIM_TYPE | MIIM_SUBMENU;
 item.fType = MFT_STRING;
 item.hSubMenu = NULL;

 item.wID = ’x’;
 item.dwTypeData = "E&xit";
 item.cch = strlen("E&xit");
 InsertMenuItem(hFileMenu, 0, FALSE, &item);

 /* now do the draw menu */
 item.wID = ’r’;
 item.dwTypeData = "&Rotate";
 item.cch = strlen("&Rotate");
 InsertMenuItem(hDrawMenu, 0, FALSE, &item);
 item.wID = ’s’;
 item.dwTypeData = "&Don’t Rotate";
 item.cch = strlen("&Don’t Rotate");
 InsertMenuItem(hDrawMenu, 1, FALSE, &item);

 /* now do the main menu */
 item.wID = 0;
 item.dwTypeData = "&File";
 item.cch = strlen("&File");
 item.hSubMenu = hFileMenu;
 InsertMenuItem(hMenu, 0, FALSE, &item);
 item.wID = 0;
 item.dwTypeData = "&Draw";
 item.cch = strlen("&Draw");
 item.hSubMenu = hDrawMenu;
 InsertMenuItem(hMenu, 1, FALSE, &item);

 /* attach the menu to the window */
 SetMenu(hWnd, hMenu);

252

 /* use the draw menu as a popup menu */
 hPopup = hDrawMenu;
}

The above code creates all the menus needed in the program. It also attaches the menus to the menubar
at the top of the window just under the title (caption) bar. An ampersand in a string used as a
dwTypeData causes an underscore beneath the following letter to be printed, and uses that letter as the
accelerator key.

All menus send a WM_COMMAND message to the window that they are attached to. The low word of the
wParam sent to the message procedure indicates what item was selected from the menu. The following
code handles the actions attached to each menu. It should be inserted into the window procedure of an
application.

code defining the menubar() function in menu.c

/* globals */
BOOL Rotate = TRUE; /* rotating? */

 . . .

/* WindowProc()
 * Minimum Window Procedure
 */
LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 . . .

 case WM_COMMAND:
 printf("WM_COMMAND: %c\n", LOWORD(wParam));
 switch(LOWORD(wParam)) {
 case ’s’:
 Rotate = FALSE;
 break;
 case ’r’:
 Rotate = TRUE;
 break;
 case ’x’:
 PostQuitMessage(0);
 break;
 }
 break;

 . . .
}

A popup menu is one that is attached to a certain mouse button. When the button is pressed inside the
window, the menu should "pop-up" right below where the mouse was pressed. These type of menus take
an additional step to set up. Since they are triggered when a mouse button is pressed, the corresponding
message must be reacted to.

The following code explains how to react to mouse messages for popup menus. It should be inserted in
the window procedure of the application.

/* globals */
HMENU hPopup = NULL; /* popup menu */

253

 . . .

/* WindowProc()
 * Minimum Window Procedure
 */
LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 POINT point;

 . . .

 case WM_RBUTTONDOWN:
 point.x = LOWORD(lParam);
 point.y = HIWORD(lParam);
 ClientToScreen(hWnd, &point);
 TrackPopupMenu(hPopup, TPM_LEFTALIGN, point.x, point.y,
 0, hWnd, NULL);
 break;

 . . .
}

Note that the x and y location of the menu must be in screen coordinates, not window coordinates. The
conversion is facilitated by the ClientToScreen() function.

254

SIGGRAPH ’97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Pixel Formats & Palettes

Pixel formats specify the properties of OpenGL contexts. Pixel formats in conjunction with palettes are
the gateway through which an appropriate context for an application is created. Their use is described

below.

Pixel Format Descriptor
Using Palettes

Example source code:
wglinfo.c
index.c

Pixel Format Descriptor

Setting the pixel format seems to be one of the more tricky parts of programming with OpenGL in
Win32. This section should dispel most of the mystery surrounding the pixel format descriptor and the
setting of pixel formats. A pixel format descriptor is the key to getting and setting pixel formats.

There are several functions that are used to manipulate pixel formats. They are as follows:

Function Description

ChoosePixelFormat Obtains the device context’s pixel format that is
the closest match to a specified pixel format.

SetPixelFormat Sets a device context’s current pixel format to
the pixel format specified by a pixel format
index.

GetPixelFormat Obtains the pixel format index of a device
context’s current pixel format.

DescribePixelFormat Given a device context and a pixel format index,

255

fills in a PIXELFORMATDESCRIPTOR data structure
with the pixel format’s properties.

A lot of the time, the ChoosePixelFormat() function will be adequate to choose a pixel format, but
when more precision in pixel format choice is needed, other methods must be employed. An excellent
method of selecting a pixel format with specific properties is to enumerate them all and compare them
against your own criteria. When one fits all the criteria, stop examining the rest of the formats (if any)
and use the one that fit. Weights can even be added to certain criteria if need be. For example, if it was
absolutely necessary that a color depth of 24 bits be used, but not so necessary that the depth buffer be
24 bits, the weights could be set accordingly. The following code illustrates this method. It only prints
out information for those pixel formats that are OpenGL capable. Of course, when choosing a visual to
render with, more criteria should probably be used (such as color depth, z-buffer depth and
single/doublebuffering -- all the possible criteria are outlined below).

code defining the VisualInfo() function in wglinfo.c

/* VisualInfo()
 * Shows a graph of all the visuals that support OpenGL and their
 * capabilities. Just like (well, almost) glxinfo on SGI’s.
 */
void VisualInfo(HDC hDC)
{
 int i, maxpf;
 PIXELFORMATDESCRIPTOR pfd;

 /* calling DescribePixelFormat() with NULL args return maximum
 number of pixel formats */
 maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

 /* print the table header */
 printf(" visual x bf lv rg d st r g b a ax dp st accum buffs ms \n");
 printf(" id dep cl sp sz l ci b ro sz sz sz sz bf th cl r g b a ns b\n");
 printf("---\n");

 /* loop through all the pixel formats */
 for(i = 1; i <= maxpf; i++) {

 DescribePixelFormat(hDC, i, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 /* only describe this format if it supports OpenGL */
 if(!(pfd.dwFlags & PFD_SUPPORT_OPENGL))
 continue;

 /* other criteria could be tested here for actual pixel format
 choosing in an application:

 for (...each pixel format...) {

 if (pfd.dwFlags & PFD_SUPPORT_OPENGL &&
 pfd.dwFlags & PFD_DOUBLEBUFFER &&
 pfd.cDepthBits >= 24 &&
 pfd.cColorBits >= 24)
 {
 goto found;
 }
 }
 ... not found so exit ...

256

 found:
 ... found so use it ...
 */

 /* print out the information for this pixel format */
 printf("0x%02x ", i);

 printf("%2d ", pfd.cColorBits);
 if(pfd.dwFlags & PFD_DRAW_TO_WINDOW) printf("wn ");
 else if(pfd.dwFlags & PFD_DRAW_TO_BITMAP) printf("bm ");
 else printf(". ");

 /* should find transparent pixel from LAYERPLANEDESCRIPTOR */
 printf(" . ");

 printf("%2d ", pfd.cColorBits);

 /* bReserved field indicates number of over/underlays */
 if(pfd.bReserved) printf(" %d ", pfd.bReserved);
 else printf(" . ");

 printf(" %c ", pfd.iPixelType == PFD_TYPE_RGBA ? ’r’ : ’c’);

 printf("%c ", pfd.dwFlags & PFD_DOUBLEBUFFER ? ’y’ : ’.’);

 printf(" %c ", pfd.dwFlags & PFD_STEREO ? ’y’ : ’.’);

 if(pfd.cRedBits) printf("%2d ", pfd.cRedBits);
 else printf(" . ");

 if(pfd.cGreenBits) printf("%2d ", pfd.cGreenBits);
 else printf(" . ");

 if(pfd.cBlueBits) printf("%2d ", pfd.cBlueBits);
 else printf(" . ");

 if(pfd.cAlphaBits) printf("%2d ", pfd.cAlphaBits);
 else printf(" . ");

 if(pfd.cAuxBuffers) printf("%2d ", pfd.cAuxBuffers);
 else printf(" . ");

 if(pfd.cDepthBits) printf("%2d ", pfd.cDepthBits);
 else printf(" . ");

 if(pfd.cStencilBits) printf("%2d ", pfd.cStencilBits);
 else printf(" . ");

 if(pfd.cAccumRedBits) printf("%2d ", pfd.cAccumRedBits);
 else printf(" . ");

 if(pfd.cAccumGreenBits) printf("%2d ", pfd.cAccumGreenBits);
 else printf(" . ");

 if(pfd.cAccumBlueBits) printf("%2d ", pfd.cAccumBlueBits);
 else printf(" . ");

 if(pfd.cAccumAlphaBits) printf("%2d ", pfd.cAccumAlphaBits);
 else printf(" . ");

 /* no multisample in Win32 */

257

 printf(" . .\n");
 }

 /* print table footer */
 printf("---\n");
 printf(" visual x bf lv rg d st r g b a ax dp st accum buffs ms \n");
 printf(" id dep cl sp sz l ci b ro sz sz sz sz bf th cl r g b a ns b\n");
 printf("---\n");

}

Following is a detailed description of the PIXELFORMATDESCRIPTOR structures fields as shown in the
Microsoft Developer Studio InfoViewer topic PIXELFORMATDESCRIPTOR.

typedef struct tagPIXELFORMATDESCRIPTOR { // pfd
 WORD nSize;
 WORD nVersion;
 DWORD dwFlags;
 BYTE iPixelType;
 BYTE cColorBits;
 BYTE cRedBits;
 BYTE cRedShift;
 BYTE cGreenBits;
 BYTE cGreenShift;
 BYTE cBlueBits;
 BYTE cBlueShift;
 BYTE cAlphaBits;
 BYTE cAlphaShift;
 BYTE cAccumBits;
 BYTE cAccumRedBits;
 BYTE cAccumGreenBits;
 BYTE cAccumBlueBits;
 BYTE cAccumAlphaBits;
 BYTE cDepthBits;
 BYTE cStencilBits;
 BYTE cAuxBuffers;
 BYTE iLayerType;
 BYTE bReserved;
 DWORD dwLayerMask;
 DWORD dwVisibleMask;
 DWORD dwDamageMask;
} PIXELFORMATDESCRIPTOR;

Members

nSize
Specifies the size of this data structure. This value should be set to
sizeof(PIXELFORMATDESCRIPTOR).
nVersion
Specifies the version of this data structure. This value should be set to 1.
dwFlags
A set of bit flags that specify properties of the pixel buffer. The properties are generally not mutually
exclusive; you can set any combination of bit flags, with the exceptions noted. The following bit flag
constants are defined.

Value Meaning

PFD_DRAW_TO_WINDOW The buffer can draw to a window or

258

device surface.

PFD_DRAW_TO_BITMAP The buffer can draw to a memory
bitmap.

PFD_SUPPORT_GDI The buffer supports GDI drawing.
This flag and
PFD_DOUBLEBUFFER are
mutually exclusive in the current
generic implementation.

PFD_SUPPORT_OPENGL The buffer supports OpenGL
drawing.

PFD_GENERIC_ACCELERATED The pixel format is supported by a
device driver that accelerates the
generic implementation. If this flag
is clear and the
PFD_GENERIC_FORMAT flag is
set, the pixel format is supported by
the generic implementation only.

PFD_GENERIC_FORMAT The pixel format is supported by the
GDI software implementation,
which is also known as the generic
implementation. If this bit is clear,
the pixel format is supported by a
device driver or hardware.

PFD_NEED_PALETTE The buffer uses RGBA pixels on a
palette-managed device. A logical
palette is required to achieve the
best results for this pixel type.
Colors in the palette should be
specified according to the values of
the cRedBits, cRedShift,
cGreenBits, cGreenShift, cBluebits,
and cBlueShift members. The
palette should be created and
realized in the device context before
calling wglMakeCurrent.

PFD_NEED_SYSTEM_PALETTE Used with systems with OpenGL
hardware that supports one hardware
palette only. For such systems to use
hardware acceleration, the hardware
palette must be in a fixed order (for
example, 3-3-2) when in RGBA
mode or must match the logical
palette when in color-index mode.
When you set this flag, call
SetSystemPaletteUse in your
program to force a one-to-one

259

mapping of the logical palette and
the system palette. If your OpenGL
hardware supports multiple
hardware palettes and the device
driver can allocate spare hardware
palettes for OpenGL, you don’t need
to set
PFD_NEED_SYSTEM_PALETTE.
This flag is not set in the generic
pixel formats.

PFD_DOUBLEBUFFER The buffer is double-buffered. This
flag and PFD_SUPPORT_GDI are
mutually exclusive in the current
generic implementation.

PFD_STEREO The buffer is stereoscopic. This flag
is not supported in the current
generic implementation.

PFD_SWAP_LAYER_BUFFERS Indicates whether a device can swap
individual layer planes with pixel
formats that include double-buffered
overlay or underlay planes.
Otherwise all layer planes are
swapped together as a group. When
this flag is set,
wglSwapLayerBuffers is supported.

You can specify the following bit flags when calling ChoosePixelFormat() .

Value Meaning

PFD_DEPTH_DONTCARE The requested pixel format
can either have or not have a
depth buffer. To select a
pixel format without a depth
buffer, you must specify this
flag. The requested pixel
format can be with or
without a depth buffer.
Otherwise, only pixel
formats with a depth buffer
are considered.

PFD_DOUBLEBUFFER_DONTCARE The requested pixel format
can be either single- or
double-buffered.

PFD_STEREO_DONTCARE The requested pixel format
can be either monoscopic or
stereoscopic.

With the glAddSwapHintRectWIN extension function, two new flags are included for the
PIXELFORMATDESCRIPTOR pixel format structure.

260

Value Meaning

PFD_SWAP_COPY Specifies the content of the back buffer in
the double-buffered main color plane
following a buffer swap. Swapping the
color buffers causes the content of the
back buffer to be copied to the front
buffer. The content of the back buffer is
not affected by the swap.
PFD_SWAP_COPY is a hint only and
might not be provided by a driver.

PFD_SWAP_EXCHANGE Specifies the content of the back buffer in
the double-buffered main color plane
following a buffer swap. Swapping the
color buffers causes the exchange of back
buffer’s content with the front buffer’s
content. Following the swap, the back
buffer’s content contains the front
buffer’s content before the swap.
PFD_SWAP_EXCHANGE is a hint only
and might not be provided by a driver.

iPixelType
Specifies the type of pixel data. The following types are defined.

Value Meaning

PFD_TYPE_RGBA RGBA pixels. Each pixel has four
components in this order: red, green,
blue, and alpha.

PFD_TYPE_COLORINDEX Color index pixels. Each pixel uses a
color-index value.

cColorBits
Specifies the number of color bitplanes in each color buffer. For RGBA pixel types, it is the size of the
color buffer, excluding the alpha bitplanes. For color index pixels, it is the size of the color-index buffer.

cRedBits
Specifies the number of red bitplanes in each RGBA color buffer.
cRedShift
Specifies the shift count for red bitplanes in each RGBA color buffer.
cGreenBits
Specifies the number of green bitplanes in each RGBA color buffer.
cGreenShift
Specifies the shift count for green bitplanes in each RGBA color buffer.
cBlueBits
Specifies the number of blue bitplanes in each RGBA color buffer.
cBlueShift

261

Specifies the shift count for blue bitplanes in each RGBA color buffer.
cAlphaBits
Specifies the number of alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not supported.
cAccumBits
Specifies the total number of bitplanes in the accumulation buffer.
cAccumRedBits
Specifies the number of red bitplanes in the accumulation buffer.
cAccumGreenBits
Specifies the number of green bitplanes in the accumulation buffer.
cAccumBlueBits
Specifies the number of blue bitplanes in the accumulation buffer.
cAccumAlphaBits
Specifies the number of alpha bitplanes in the accumulation buffer.
cDepthBits
Specifies the depth of the depth (z-axis) buffer.
cStencilBits
Specifies the depth of the stencil buffer.
cAuxBuffers
Specifies the number of auxiliary buffers. Auxiliary buffers are not supported.
iLayerType
Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.
bReserved
Not used. Must be zero.
dwLayerMask
Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.
dwVisibleMask
Specifies the transparent color or index of an underlay plane. When the pixel type is RGBA,
dwLayerMask is a transparent RGB color value. When the pixel type is color index, it is a transparent
index value.
dwDamageMask
Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.

Note that in the documentation above, when it says "not supported" it means not supported in the
generic implementation of OpenGL supplied by Microsoft. Different hardware types may well support
some of these options (such as alpha bitplanes, or auxiliary buffers).

Here’s a short code fragment which finds a pixel format that is OpenGL capable, draws to a window,
has a depth buffer greater than or equal to 24 bits and is double buffered:

code fragment defining oglPixelFormatExact() in exact.c

/* oglPixelFormatExact()
 * Sets the pixel format for the context
 */
int oglSetPixelFormatExact(HDC hDC)
{
 int pf, maxpf;
 PIXELFORMATDESCRIPTOR pfd;

 /* get the maximum number of pixel formats */

262

 maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

 /* loop through all the pixel formats */
 for (pf = 1; pf <= maxpf; pf++) {
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
 if (pfd.dwFlags & PFD_DRAW_TO_WINDOW &&
 pfd.dwFlags & PFD_SUPPORT_OPENGL &&
 pfd.dwFlags & PFD_DOUBLEBUFFER &&
 pfd.cDepthBits >= 24)
 {
 /* found a matching pixel format */

 /* set the pixel format */
 if (SetPixelFormat(hDC, pf, &pfd) == FALSE) {
 MessageBox(NULL,
 "SetPixelFormat() failed: Cannot set format specified.",
 "Error", MB_OK);
 return 0;
 }

 return pf;
 }
 }

 /* couldn’t find one, bail out! */
 MessageBox(NULL,
 "Fatal Error: Failed to find a suitable pixel format.",
 "Error", MB_OK);
 return 0;
}

Using Palettes

Up to this point, we’ve neglected a very important part of the integration of OpenGL with Win32 --
palettes. A palette is a table of colors used when a Truecolor display can’t be used or when the
application wants exact control over what colors are available (for example, in a height field), or when
palette animation functionality is desired.

There are two situations that arise regarding palettes when using OpenGL and Win32. The first is trying
to use a color-index context. A discussion of this follows. The second is a bit harder -- using an RGBA
context in a paletted mode.

When using a color-index context, a logical palette must be created. A logical palette is a table of colors
that is selected and realized into a device context. This just means that the user defines a table of colors,
then forces windows to use those colors. On a Truecolor display, this isn’t a problem, but on a paletted
display, Windows must try to match up the system and logical palettes the best it can. Sometimes there
is a "flashing" that occurs because of this palette switching.

The following code shows how to initialize a logical palette.

code defining the oglSetPalette() function in index.c

263

/* globals */
HPALETTE hPalette; /* handle to custom palette */

. . .

/* oglSetPalette()
 * Sets the palette
 */
BOOL oglSetPalette(HDC hDC)
{
 LOGPALETTE lgpal; /* custom logical palette */
 int nEntries = 5; /* number of entries in palette */
 PALETTEENTRY peEntries[5] = { /* entries in custom palette */
 0, 0, 0, NULL, /* black */
 255, 0, 0, NULL, /* red */
 0, 255, 0, NULL, /* green */
 0, 0, 255, NULL, /* blue */
 255, 255, 255, NULL /* white */
 };

 /* create a logical palette (for color index mode) */
 lgpal.palVersion = 0x300; /* version should be 0x300 */
 lgpal.palNumEntries = nEntries; /* number of entries in palette */
 if((hPalette = CreatePalette(&lgpal)) == NULL) {
 MessageBox(NULL,
 "CreatePalette() failed: Cannot create palette.",
 "Error", MB_OK);
 return FALSE;
 }

 /* set the palette entries */
 SetPaletteEntries(hPalette, 0, nEntries, peEntries);

 /* select the palette */
 SelectPalette(hDC, hPalette, TRUE); /* map logical into physical palette */

 /* realize the palette */
 RealizePalette(hDC);

 return TRUE;
}

In addition to the initialization code, there are some messages that must be dealt with when using
palettes. The following shows these messages and the reaction to them.

code fragment from WindowProc() function in index.c

/* globals */
HPALETTE hPalette; /* handle to custom palette */

. . .

/* WindowProc()
 * Minimum Window Procedure
 */
LONG WINAPI WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 LONG lRet = 1;
 PAINTSTRUCT ps;

264

 switch(uMsg) {
 . . .

 case WM_QUERYNEWPALETTE:
 SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
 lRet = RealizePalette(GetDC(hWnd));
 break;

 case WM_PALETTECHANGED:
 if(hWnd == (HWND)wParam) /* make sure we don’t loop forever */
 break;
 SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
 RealizePalette(GetDC(hWnd)); /* remap the custom palette */
 UpdateColors(GetDC(hWnd));
 lRet = 0;
 break;

 . . .

 }

 return lRet;
}

This next section is very tricky. Palette management in general is tricky, but even more so when trying
to simulate Truecolor with a palette. The basic idea is to create a palette that has an adequate range of
colors so that a Truecolor display can be simulated with the aid of dithering. There are many ways to
generate such a palette. For a full example, see the Microsoft Developer Studio InfoViewer topic RGBA
Mode and Windows Palette Management. We’ll use a simple palette derived from the example cited
above.

Note that this operation need only be done if the dwFlags member of the PIXELFORMATDESCRIPTOR

structure has the PFD_NEED_PALETTE bit set.

Following is the code required to setup a new palette for RGBA rendering in a paletted display mode.

code from the GLUT for Win32 sources

static HPALETTE ghpalOld, ghPalette = (HPALETTE) 0;

static unsigned char threeto8[8] = {
 0, 0111>>1, 0222>>1, 0333>>1, 0444>>1, 0555>>1, 0666>>1, 0377
};

static unsigned char twoto8[4] = {
 0, 0x55, 0xaa, 0xff
};

static unsigned char oneto8[2] = {
 0, 255
};

static int defaultOverride[13] = {
 0, 3, 24, 27, 64, 67, 88, 173, 181, 236, 247, 164, 91
};

static PALETTEENTRY defaultPalEntry[20] = {
 { 0, 0, 0, 0 },

265

 { 0x80,0, 0, 0 },
 { 0, 0x80,0, 0 },
 { 0x80,0x80,0, 0 },
 { 0, 0, 0x80, 0 },
 { 0x80,0, 0x80, 0 },
 { 0, 0x80,0x80, 0 },
 { 0xC0,0xC0,0xC0, 0 },

 { 192, 220, 192, 0 },
 { 166, 202, 240, 0 },
 { 255, 251, 240, 0 },
 { 160, 160, 164, 0 },

 { 0x80,0x80,0x80, 0 },
 { 0xFF,0, 0, 0 },
 { 0, 0xFF,0, 0 },
 { 0xFF,0xFF,0, 0 },
 { 0, 0, 0xFF, 0 },
 { 0xFF,0, 0xFF, 0 },
 { 0, 0xFF,0xFF, 0 },
 { 0xFF,0xFF,0xFF, 0 }
};

static unsigned char ComponentFromIndex(int i, UINT nbits, UINT shift) {
 unsigned char val;

 val = (unsigned char) (i >> shift);
 switch (nbits) {
 case 1:
 val &= 0x1;
 return oneto8[val];

 case 2:
 val &= 0x3;
 return twoto8[val];

 case 3:
 val &= 0x7;
 return threeto8[val];

 default:
 return 0;
 }
}

HPALETTE CreateRGBPalette(HDC hDC) {
 PIXELFORMATDESCRIPTOR pfd;
 LOGPALETTE *pPal;
 int n, i;

 n = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, n, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (pfd.dwFlags & PFD_NEED_PALETTE) {
 n = 1 << pfd.cColorBits;
 pPal = (PLOGPALETTE)LocalAlloc(LMEM_FIXED, sizeof(LOGPALETTE) +
 n * sizeof(PALETTEENTRY));
 pPal->palVersion = 0x300;
 pPal->palNumEntries = n;
 for (i=0; ipalPalEntry[i].peRed =

266

 ComponentFromIndex(i, pfd.cRedBits, pfd.cRedShift);
 pPal->palPalEntry[i].peGreen =
 ComponentFromIndex(i, pfd.cGreenBits, pfd.cGreenShift);
 pPal->palPalEntry[i].peBlue =
 ComponentFromIndex(i, pfd.cBlueBits, pfd.cBlueShift);
 pPal->palPalEntry[i].peFlags = 0;
 }

 /* fix up the palette to include the default GDI palette */
 if ((pfd.cColorBits == 8) &&
 (pfd.cRedBits == 3) && (pfd.cRedShift == 0) &&
 (pfd.cGreenBits == 3) && (pfd.cGreenShift == 3) &&
 (pfd.cBlueBits == 2) && (pfd.cBlueShift == 6)
) {
 for (i = 1 ; i <= 12 ; i++)
 pPal->palPalEntry[defaultOverride[i]] = defaultPalEntry[i];
 }

 ghPalette = CreatePalette(pPal);
 if(!ghPalette)
 __glutFatalError("CreatePalette() failed: Cannot create palette.");
 LocalFree(pPal);

 ghpalOld = SelectPalette(hDC, ghPalette, FALSE);
 n = RealizePalette(hDC);
 }

 return ghPalette;
}

As you can see, it is very messy and very tricky. However, for the most part, this code can simply be
"cut and pasted" into an application. When it is determined that the application needs an RGB palette (if
the PFD_NEED_PALETTE bit is set as described above), call the CreateRGBPalette() function.

In addition to the initialization code, there are some windows messages that must now be intercepted.

code from the GLUT for Win32 sources

 case WM_QUERYNEWPALETTE:
 if (ghPalette) {
 SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
 lRet = RealizePalette(GetDC(hWnd));
 }
 break;

 case WM_PALETTECHANGED:
 if (ghPalette) {
 if(hWnd == (HWND)wParam) /* make sure we don’t loop forever */
 break;
 SelectPalette(GetDC(hWnd), hPalette, FALSE);/* select custom palette */
 RealizePalette(GetDC(hWnd)); /* remap the custom palette */
 UpdateColors(GetDC(hWnd));
 lRet = 0;
 }
 break;

267

SIGGRAPH ’97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

Overlays & Underlays

Overlays and underlays are often used in applications for rendering above (or below) the main OpenGL
context. Setup and use of overlays and underlays is discussed below.

Overlays & Underlays

Example source code:
overlay.c

Overlays

Some pixel formats include an overlay or underlay plane. If overlay or underlay planes are desired, a
pixel format with these must be selected. You cannot have free-floating overlay windows that can move
over other windows. Overlay planes have a transparent color to allow things drawn ’beneath’ them to
show through. Every layer has a palette associated with it.

Unlike main plane pixel formats, overlay and underlay plane formats don’t have an equivalent
ChoosePixelFormat() , so a method similar to that described in the pixel format section must be
employed to find an appropriate format.

The following code will setup the pixel format to use an overlay plane if available. Note that it looks
very similar to the pixel format choosing code developed in the last section. Notable differences are the
wglDescribeLayerPlane() function call in place of the DescribePixelFormat() call in the previous
example.

code defining oglPixelFormat() function in overlay.c

/* oglPixelFormat()
 * Sets the pixel format for the context
 */

268

int oglSetPixelFormatOverlay(HDC hDC, BYTE type, DWORD flags)
{
 int pf, maxpf;
 PIXELFORMATDESCRIPTOR pfd;
 LAYERPLANEDESCRIPTOR lpd; /* layer plane descriptor */
 int nEntries = 2; /* number of entries in palette */
 COLORREF crEntries[2] = { /* entries in custom palette */
 0x00000000, /* black (ref #0 = transparent) */
 0x00ff0000, /* blue */
 };

 /* get the maximum number of pixel formats */
 maxpf = DescribePixelFormat(hDC, 0, 0, NULL);

 /* find an overlay layer descriptor */
 for(pf = 0; pf < maxpf; pf++) {
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 /* the bReserved field of the PIXELFORMATDESCRIPTOR contains the
 number of overlay/underlay planes */
 if (pfd.bReserved > 0) {
 /* aha! This format has overlays/underlays */
 wglDescribeLayerPlane(hDC, pf, 1,
 sizeof(LAYERPLANEDESCRIPTOR), &lpd);
 if (lpd.dwFlags & LPD_SUPPORT_OPENGL &&
 lpd.dwFlags & flags)
 {
 goto found;
 }
 }
 }
 /* couldn’t find any overlay/underlay planes */
 MessageBox(NULL,
 "Fatal Error: Hardware does not support overlay planes.",
 "Error", MB_OK);
 return 0;

found:
 /* now get the "normal" pixel format descriptor for the layer */
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 /* set the pixel format */
 if(SetPixelFormat(hDC, pf, &pfd) == FALSE) {
 MessageBox(NULL,
 "SetPixelFormat() failed: Cannot set format specified.",
 "Error", MB_OK);
 return 0;
 }

 /* set up the layer palette */
 wglSetLayerPaletteEntries(hDC, 1, 0, nEntries, crEntries);

 /* realize the palette */
 wglRealizeLayerPalette(hDC, 1, TRUE);

 /* announce what we’ve got */
 printf("Number of overlays = %d\n", pfd.bReserved);
 printf("Color bits in the overlay = %d\n", lpd.cColorBits);

 return pf;
}

269

Now simply create an overlay context in much the same way that you create a main plane context. The
number passed in to the wglCreateLayerContext() function is the layer number.

code fragment from the main() function in overlay.c

/* main()
 * Entry point
 */
int main(int argc, char** argv)
{
 HWND hWnd; /* window */
 MSG msg; /* message */

 /* create a window */
 hWnd = oglCreateWindow("OpenGL", 0, 0, 200, 200);
 if (hWnd == NULL)
 exit(1);

 /* get the device context */
 hDC = GetDC(hWnd);

 /* set the pixel format */
 if (oglSetPixelFormatOverlay(hDC, PFD_TYPE_RGBA, LPD_DOUBLEBUFFER) == 0)
 exit(1);

 /* get the device context */
 hDC = GetDC(hWnd);

 /* create an OpenGL overlay context */
 hOverlayRC = wglCreateLayerContext(hDC, 1);

 . . .
}

When rendering to the overlay, be sure to set it current. Also be sure to swap the correct plane if using
double buffering. Note that you must also swap the main plane with wglSwapLayerBuffers() , NOT
SwapBuffers() when using overlay or underlay planes. Pass in WGL_SWAP_MAIN_PLANE as the second
argument to wglSwapLayerBuffers() to swap the main plane, and WGL_SWAP_OVERLAYi where i is the
overlay number to swap an overlay buffer.

code fragment from the main() function in overlay.c

/* main()
 * Entry point
 */
int main(int argc, char** argv)
{
 HWND hWnd; /* window */
 MSG msg; /* message */

 . . .

 /* create an OpenGL overlay context */
 hOverlayRC = wglCreateLayerContext(hDC, 1);

 /* create an OpenGL context */
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

270

 /* now we can start changing state & rendering */
 while(1) {
 /* first, check for (and process) messages in the queue */
 while(PeekMessage(&msg, hWnd, 0, 0, PM_NOREMOVE)) {
 if(GetMessage(&msg, hWnd, 0, 0)) {
 TranslateMessage(&msg); /* translate virtual-key messages */
 DispatchMessage(&msg); /* call the window proc */
 } else {
 goto quit;
 }
 }

 /* make current and draw a triangle */
 wglMakeCurrent(hDC, hRC);
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(1.0, 0.0, 0.0, 1.0);
 glBegin(GL_TRIANGLES);
 glColor3f(1.0, 0.0, 0.0);
 glVertex2i(0, 1);
 glColor3f(0.0, 1.0, 0.0);
 glVertex2i(-1, -1);
 glColor3f(0.0, 0.0, 1.0);
 glVertex2i(1, -1);
 glEnd();
 glFlush();
 wglSwapLayerBuffers(hDC, WGL_SWAP_MAIN_PLANE);

 /* make current and draw a triangle */
 wglMakeCurrent(hDC, hOverlayRC);
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(-1.0, 0.0, 0.0, 1.0);
 glBegin(GL_TRIANGLES);
 glIndexi(1);
 glVertex2i(0, 1);
 glVertex2i(-1, -1);
 glVertex2i(1, -1);
 glEnd();
 glFlush();
 wglSwapLayerBuffers(hDC, WGL_SWAP_OVERLAY1);
 }

quit:

 /* clean up */
 wglMakeCurrent(NULL, NULL); /* make our context ’un-’current */
 ReleaseDC(hDC, hWnd); /* release handle to DC */
 wglDeleteContext(hRC); /* delete the rendering context */
 wglDeleteContext(hOverlayRC); /* delete the overlay context */
 DestroyWindow(hWnd); /* destroy the window */

 return TRUE;
}

271

SIGGRAPH ’97

Course 24: OpenGL and Window System Integration

OpenGL and Win32

WGL Reference

WGL (pronounced "wiggle") is the glue that binds OpenGL and the Win32 API together.

Rendering Context functions
Font and Text functions

Overlay, Underlay and Main Plane functions
Miscellaneous functions

Rendering Context Functions

Function Description
wglCreateContext Creates a new rendering context.
wglMakeCurrent Sets a thread’s current rendering context.
wglGetCurrentContext Obtains a handle to a thread’s current rendering

context.
wglGetCurrentDC Obtains a handle to the device context

associated with a thread’s current rendering
context.

wglDeleteContext Deletes a rendering context.

See the source code referenced in previous sections for examples of the use of each of these functions.

Font and Text functions

Function Description

272

wglUseFontBitmaps Creates a set of character bitmap display lists.
Characters come from a specified device
context’s current font. Characters are specified as
a consecutive run within the font’s glyph set.

wglUseFontOutlines Creates a set of display lists, based on the glyphs
of the currently selected outline font of a device
context, for use with the current rendering
context. The display lists are used to draw 3-D
characters of TrueType fonts.

example from Microsoft Developer Studio topic wglUseFontBitmaps

HDC hdc;
HGLRC hglrc;

// create a rendering context
hglrc = wglCreateContext (hdc);

// make it the calling thread’s current rendering context
wglMakeCurrent (hdc, hglrc);

// now we can call OpenGL API

// make the system font the device context’s selected font
SelectObject (hdc, GetStockObject (SYSTEM_FONT));

// create the bitmap display lists
// we’re making images of glyphs 0 thru 255
// the display list numbering starts at 1000, an arbitrary choice
wglUseFontBitmaps (hdc, 0, 255, 1000);

// display a string:
// indicate start of glyph display lists
glListBase (1000);
// now draw the characters in a string
glCallLists (24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World");

example from Microsoft Developer Studio topic wglUseFontOutlines

HDC hdc; // A TrueType font has already been selected
HGLRC hglrc;
GLYPHMETRICSFLOAT agmf[256];

// Make hglrc the calling thread’s current rendering context
wglMakeCurrent(hdc, hglrc);

// create display lists for glyphs 0 through 255 with 0.1 extrusion
// and default deviation. The display list numbering starts at 1000
// (it could be any number)
wglUseFontOutlines(hdc, 0, 255, 1000, 0.0f, 0.1f,
 WGL_FONT_POLYGONS, &agmf);

// Set up transformation to draw the string
glLoadIdentity();
glTranslate(0.0f, 0.0f, -5.0f)
glScalef(2.0f, 2.0f, 2.0f);

273

// Display a string
glListBase(1000); // Indicates the start of display lists for the glyphs
// Draw the characters in a string
glCallLists(24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World.");

Overlay, Underlay and Main Plane functions

Function Description
wglCopyContext Copies selected groups of rendering states

from one OpenGL rendering context to
another.

wglCreateLayerContext Creates a new OpenGL rendering context
for drawing to a specified layer plane on a
device context.

wglDescribeLayerPlane Obtains information about the layer planes
of a given pixel format.

wglGetLayerPaletteEntries Retrieves the palette entries from a given
color-index layer plane for a specified
device context.

wglRealizeLayerPalette Maps palette entries from a given
color-index layer plane into the physical
palette or initializes the palette of an
RGBA layer plane.

wglSetLayerPaletteEntries Sets the palette entries in a given
color-index layer plane for a specified
device context.

wglSwapLayerBuffers Swaps the front and back buffers in the
overlay, underlay, and main planes of the
window referenced by a specified device
context.

See the overlay.c program for examples of how to use the functions above.

Miscellaneous Functions

Function Description
wglShareLists Enables a rendering context to share the

display-list space of another rendering context.
wglGetProcAddress Returns the address of an OpenGL extension

function for use with the current OpenGL
rendering context.

274

275

