12/12/2005 8:10 PM

Common Database
Recovery
Techniques

Dr. Rafal A. Angryk

Outline

Database Recovery Techniques

© The system log, commit points and
checkpoints

©® Caching and writing to disk
© Two techniques for recovery
s Deferred updates
s Immediate updates

Why do we need Database
Recovery?

1. To bring the database into the last
consistent state, which existed prior to the
failure.

2. To preserve transaction properties
(Atomicity, Consistency, Isolation and
Durability).

Example: If the system crashes before a fund
transfer transaction completes its execution, then
either one or both accounts may have incorrect
value. Thus, the database must be restored to the
consistent state before the transaction modified any
of the accounts.

Types of Failure

aTransaction failure: caused by:

sincorrect input, deadlock,
incorrect synchronization.

aSystem failure: caused by:

= addressing error, application
error, operating system fault, RAM
failure, etc.

aMedia failure: power disruption, etc.

Common types of Data Update
techniques

o Immediate Update: As soon as a data item is
modified in cache, the disk copy is updated.

o Deferred Update: All modified data items in
the cache is written either after a transaction
ends its execution or after a fixed number of
transactions have completed their execution.

Transaction Log

© For recovery from failure the logs contain the following
data values.

= BFIM (BeFore Image) - the value prior to modification
and
= AFIM (AFter Image) - the new value after modification
© A sample log is given below. Back P and Next P point to
the previous and next log records of the same
transaction.

o Shadow update: The modified version of a

data item does not overwrite its disk copy but LD Ba%k P NedP Opgeg}f” Ratl[emisE EIMEIRAE M
is written at a separate disk location. o : s e = =T =
o In-place update: The disk version of the data T2 0 8 Begin
item is overwritten by the cache version. T1 2 5 Write Y Y =50 [Y =100
T1 4 7 Read M | M=200| M =200
T3 0 9 Read N N =400 | N =400
T1 5) null End

CS 435 — Fall 2004

12/12/2005 8:10 PM

The DBMS caching (1) The DBMS caching (2)
@Caching of disk pages is traditionally an
Data items to be modified are first operating system function
stored into database cache by the = Since WRITE's are so important, the DBMS
Cache Manager (CM) and after handles it usually by calling the low-level OS
modification they are flushed routines
(written) to the disk. ©The DBMS keeps a directory of RAM

buffers (copies of disk blocks stored in
the memory). It is called the DBMS cache.

©The buffer directory contains a table of
<disk block address, buffer location>

= Similar to page tables in OS’s with paging

. Writing buffers to disk (1
The DBMS caching (3) 9 1)
@It is often necessary to replace (flush) some L?{trpesnl{gecﬂstg specify when a buffer can be
of the cache buffers to make space for new)
items s Steal/no-steal modes:
o) sSteal: Cache can be flushed before transaction
= Different strategies are used commits.
5LRU - least recently used =No-Steal: Cache cannot be flushed before
sFIFO —first in first out transaction cammit.
©Each bUffer h.as .Several bits or flags sSteal is used when the DBMS cache manager steals
associated with it one buffer frame to use for another transactions
= The dirty bit — set to 0 if the buffer has not been +0f course, they have to be written to disk before the
modified since last write to disk, set to 1 if it has are overwritten , ,
. . . e . sSome buffers must not be written to disk yet because
= The pin-unpin bit — set to 1 if it cannot be written the transaction has not yet committed
back to disk yet (usually waiting for a commit) sBuffers that are no-steal have the pin-unpin bit set

Writing buffers to disk (2)

Terms used to specify when a buffer can be
written to disk

9 Force/no-force modes:
sForce: Cache is immediately flushed (forced) to

Writing buffers to disk (3)

©Typical database systems use a
steal/no-force strategy

disk. 9The advantage of steal is that less
sNo-Force: Cache is deferred until transaction RAM has to be set aside for buffers
commits. '

since DBMS is not forced to keep all

) .) updated pages in the RAM
s1f all pages updated by a transaction are immediately
w;itten to disk when the transaction commits, this is 2The advantage of no-force is that an
aforce updated buffer may still be in RAM

These give rise to four different wagls for handling when ar.‘ther transaction .neEdS to
recovery: Steal/No-Force (Undo/Redo), Steal/Force update it (less I/O operations)
(Undo/No-redo), No-Steal/No-Force (Redo/No-undo)
and No-Steal/Force (No-undo/No-redo).

CS 435 — Fall 2004

12/12/2005 8:10 PM

Flushing the buffers

Two common strategies, used when a
buffer is written to disk:
s In-place updating

aWrites the buffer back to the same original disk
location

a1t overwrites the old values of any changed data
items

sRecovery requires alog to undo and/or redo !!!

s Shadowing
=Write an updated buffer to a different disk location
=Thus the old values are not overwritten

=May take a lot of disk space, but then it is not strictly
necessary to keep alog of the BFIM (Before Image)
and AFIM

Transaction Roll-back (Undo)
and Roll-Forward (Redo)

To maintain atomicity, a transaction’s operations
are redone or undone.

Undo: Restore all BFIMs (Before Images) on the
disk (Remove all AFIMs).

Redo: Restore all AFIMs (After Images) on the
disk.

Database recovery is achieved either by
performing only Undos or only Redos or by a
combination of the two. These operations are
recorded in the log as they happen.

Write ahead logging

@lf in-place updating is used, a log is
necessary for recovery

©The log must be flushed to disk before
the BFIM is replaced by the AFIM in the
database

©Character of information kept in the log
depends on whether the recovery
mechanism needs to redo or undo, or
both

= A redo needs the AFIM (after image)
= An undo needs the BFIM (before image)

Checkpoints in the
System Log

®Another type of entry in the log is called a
checkpoint.

©Checkpoints are often used with a steal/no-
force protocol.

©Taking a checkpoint involves:

="force-writing" the contents of the DB buffers to
disk

swriting a checkpoint record to the log on disk. It
contains

sall transactions that were in progress at the time the
checkpoint was taken.

How checkpoints are used(1)

Time to time (randomly or under some criteria)
the database flushes its buffer to database disk
to minimize the task of recovery. The following
steps defines a checkpoint operation:
. Suspend execution of transactions temporarily.
. Force write modified buffer data to disk.

. Write a [checkpoint] record to the log, save the
log to disk.

. Resume normal transaction execution.

During recovery redo or undo is required to
transactions appearing after [checkpoint]
record.

h wWN P

How checkpoints are used(2)

During a system crash, the contents of
the db buffers are lost.

If a transaction had not successfully
completed, it must be undone.

1.

2.

3. Ifit did complete, but had not yet been
written to disk, it must be redone.

4,

Whether to undo or redo needs to be
decided —this is when we use the
checkpoint record

CS 435 — Fall 2004

12/12/2005 8:10 PM

Deferred update (1)

= The database is not actually updated until after
a transaction commits.

= Before commit, the updates are recorded in the
transaction workspace. (memory buffer)
9 This is impractical for large DBs with many large
transactions
= During commit, the updates are first recorded to
the log which is written to disk
20nly the AFIM is needed in the log
s After the log is written to disk, the buffers

containing all the updates are written to the
database

Deferred update (2)

©If a transaction fails, there is no need for
UNDO.

= the DB has not been changed
©May have to REDO, if the failure happened after
the commit, before writing the update was
complete.
®Known as no-undo/redo algorithm
®The redo operation is required to be
idempotent

= executing it over and over is equivalent to executing
it just once.

© This is necessary because the system may fail
during recovery.

Immediate Update (1)

©The database may be updated before
the transaction reaches a commit point.

©The operations are first recorded in the
log on disk before they are applied to
the DB system.

@If a transaction fails after recording
changes but before committing, the
transaction must be rolled back.
(operations undone)

Immediate Update (2)

Two main categories

sundo/no-redo uses steal-force
sall updates are recorded on the disk
before the transaction commits
sundo/redo uses steal/no-force

=The transaction is allowed to commit
before all its changes are written to the
DB system

= This leaves a committed transaction not
written to disk yet.

Shadow Paging (1)

The AFIM does not overwrite its BFIM but
recorded at another place on the disk. Thus,
at any time a data item has AFIM and BFIM
(Shadow copy of the data item) at two different
places on the disk.

X and Y: Shadow copies of data items
X" and Y': Current copies of data items

Shadow Paging (2)

To manage access of data items by concurrent
transactions two directories (current and
shadow) are used. The directory arrangement is
illustrated below. Here a page is a data item.

Current Directory Shadow Directory

(after updating pages 2, 5) Page 5 (old) (not updated)

Page 1

Page 4

Page 2 (old)
Page 3

Page 6

Page 2 (new)
Page 5 (new)

OabwWwNE
oabwN R

CS 435 — Fall 2004

12/12/2005 8:10 PM

Practice (1) Practice (2)

©The following log corresponds to
a particular schedule at the point

of a system crash for the four ©Suppose we use the immediate update

transactions T1, T2, T3, and T4. protocol (undo/redo category) with
checkpointing.

fégg—ittrgr?feﬁ“%r]" Ti] [fégg—it{g?fe}%'%r]" T4] ©Specify which transactions are rolled

read_item, T1, D] [start_transaction, T3] back, which operations in the log are

write_item, T1, D, 20] [write_item, T3, A, 30] redone, and which (if any) are undone,

commit, T1] [read_item, T4, A] and

checkpoint] [write_item, T4, A, 20])

start_transaction, T2] [comm_lt, T3] ©whether any cascading rollback takes

read_item, T2, B] read_item, T2, D] place.

write_item, T2, B, 12] Lwrite_item, T2, D, 25]

<---- System crash

CS 435 — Fall 2004

