Final Review

Dr. Rafal A. Angryk

Outline
- Covered readings in textbooks
- Regular type of test on the final (single choice!)
- A few exercises
 - ER
 - Normalization

Readings in textbook (1)
- Part 1 Introduction and Conceptual Modeling
 - Chapter 1.1-6: Databases and database Users
 - Chapter 2.1-7: System concepts and Architecture
 - Chapter 3.1-9: Modeling using the E-R diagram

Readings in textbook (2)
- Part 2 The Relational Model
 - Chapter 5: Concepts and Constraints
 - Chapter 6.1-7: Relational Algebra
 - Section 7.1-3: Mapping ER diagrams to tables
 - Chapter 8.1-8, 9.: SQL schema definition, constraints, queries, views

Readings in textbook (3)
- Part 3 Database Design
 - Chapter 10.1-6: Functional dependencies and normalization
 - Chapter 11.Intro: Two approaches to normalization

Readings in textbook (4)
- Part 4 Data storage, indexing, query processing
 - Chapter 13: Disk storage, file structures, & hashing
 - Chapter 14: Indexing structures for files
 - Section 15.1-3, 15.7: Query optimization & algorithms for join
 - Chapter 16 Practical design & tuning

CS 435 - Fall 2005
Be sure to practice at home:
- Prepare ER Design in Min, Max notation, and map it to the Relational Diagram
- Transform a Universal Relation to 3NF or BCNF tables, and find a minimal set of full functional dependencies
- Relational Algebra and SQL Commands
- Query optimization
- Insert and delete data to/from B+-trees
- Recommend the best type of indexing for given attributes and storage formats

Exe. - Model the following System Requirements:
1. The bank is organized into branches. Each branch is located in a particular city and is identified by a unique name. The bank monitors the assets of each branch.
2. Bank customers are identified by their `customer-id` values. The bank stores each customer's name, and the street and city where the customer lives. Customers may have multiple saving accounts and can take out loans. A customer may be associated with a particular banker, who may act as either a loan officer or a personal banker for that customer.

Exe. – cont.
3. Bank employees are identified by their `employee-id` values. The bank administration stores the name and telephone number of each employee, and the `employee-id` number of the employee's manager. The bank also keeps track of the employee's start date and, thus, length of employment.
4. The bank offers only two types of services - saving accounts and loans. Accounts can be held by more than one customer, and a customer can have more than one account. Each account is assigned a unique account number. The bank maintains a record of each account's balance. It also records all dates when the account was accessed by each customer holding the account. Each savings account has a separate interest rate and information about the branch name where it was opened.

Exe. – cont.
5. A loan originates at a particular branch and can be held by one or more customers. A loan is identified by a unique loan number. For each loan, the bank keeps track of the loan amount of the loan payments. Although a loan payment number does not uniquely identify a particular payment among those for all the bank's loans, a payment number does identify a particular payment for a specific loan. The date and amount are recorded for each payment.

Note: Do not worry about making this description complete. Just design data model so it would reflect all requirements mentioned above.

Readings in textbook (5)
- Part 5 Transaction Processing concepts
- Chapter 19-19.4: Database recovery techniques

This time - regular type of test for the theory part
- **Good news:**
 - Just a single answer will be correct
 - Strategy: CHOOSE THE BEST ANSWER
- **Bad news:**
 - Still tricky... Otherwise it would be trivial!
- **Why?** There is no way you can be good in practice, if you do not have strong foundations in theory
- **As usually there will be more practice than theory**

CS 435 - Fall 2005
ER Design Decisions
- The use of an attribute or entity type (set) to represent an object.
- Whether a real-world concept is best expressed by an entity set or a relationship type (set).
- The use of a ternary relationship versus a pair of binary relationships.
- The use of a strong or weak entity set.
 - The use of specialization/generalization – contributes to modularity in the design.
 - The use of aggregation – can treat the aggregate entity set as a single unit without concern for the details of its internal structure.

ER Design Crucial Elements
- Use of entity types vs. attributes
 Choice mainly depends on the structure of the enterprise being modeled, and on the semantics associated with the attribute in question.
- Use of entity types (sets) vs. relationship types (sets)
 Possible guideline is to designate a relationship set to describe an action that occurs between entities.
- Binary versus n-ary relationship types
 Although it is possible to replace any nonbinary (n-ary, for n > 2) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities participate in a single relationship.
- Appropriate placement of relationship attributes

More on normalization
- Boyce-Codd Normal Form (BCNF)
- One more example of normalization

Why BCNF is important
- When a relation has more than one candidate key, anomalies may result even though the relation is in 3NF.
- 3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys
 - i.e. composite candidate keys with at least one attribute in common.

Now map it to Relational Model and practice SQL on it
- E.g. Retrieve all bank account numbers (only unique values), which were opened in Bozeman, and accessed by Mr. John Smith (i.e. ‘John Smith’) on 10th of February (i.e. ‘Feb/05/2005’).
- Practice optimization of your queries
- Put the same in Relational Algebra
- What type of indexes would you specify?
- Are your tables normalized?

CS 435 - Fall 2005
Reminder

- Superkey of relation schema R - a set of attributes S of R that contains a key of R
- A relation schema R is in third normal form (3NF) if whenever a FD X -> A holds in R, then either:
 (a) X is a superkey of R, or
 (b) A is a prime attribute of R

NOTE:
Boyce-Codd normal form disallows condition (b) above

What is a Prime Attribute

A prime attribute must be a member of some candidate key

A nonprime (or nonkey) attribute is not a prime attribute - that is, it is not a member of any candidate key.

In other words ...

- A relation is in 3NF if every nonkey attribute is in 2NF and nontransitively dependent on a candidate key
- BCNF is based on the concept of a determinant.
 - A determinant is any attribute (simple or composite) on which some other attribute is fully functionally dependent
 - A relation is in BCNF if and only if every determinant is a candidate key
 i.e. whenever an FD X -> A holds in R, then X must be a superkey of R

Remember

- Each normal form is strictly stronger than the previous one
 - Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
- BCNF is a simpler, yet stricter form of 3NF
- NOTE: There exist relations that are in 3NF but not in BCNF

The theory

Consider the following relation and FDs:

R(a,b,c,d)

\[\begin{align*}
(1) \ a,c & \rightarrow \ b,d \\
(2) \ a,d & \rightarrow \ b
\end{align*} \]

- Here, the first determinant suggests that the primary key of R could be changed from a,b to a,c.
- If this change was done all of the non-key attributes present in R could still be determined, and therefore this change is legal.
- However, the second determinant indicates that a,d determines b, but a,d could not be the key of R as a,d does not determine all of the non-key attributes of R (it does not determine c).
- We would say that the determinant in the first FD is a candidate key, but the second determinant is not a candidate key, and thus this relation is not in BCNF.
- However, R is in 3NF since in the second FD b is a prime attribute of R

Normalization to BCNF – Example (1)

- The CLINIC relation above depicts a special weight-loss surgery clinic where the each patient has 4 appointments:
 - On the first they are weighed,
 - On the second they are exercised,
 - On the third they have gastric surgery,
 - And on the fourth they are re-examined and given diet tips to not gain the weight again
- Not all patients need all four appointments!
 - Appointment 1 is either 09:00 or 13:00, appointment 2 10:00 or 14:00, and so on...
Normalization to BCNF – Example (2)

Universal Table

<table>
<thead>
<tr>
<th>Patient No</th>
<th>PatientName</th>
<th>AppointmentNo</th>
<th>Time</th>
<th>Doctor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>John</td>
<td>1</td>
<td>09:00</td>
<td>Smith</td>
</tr>
<tr>
<td>2</td>
<td>Kerr</td>
<td>1</td>
<td>09:00</td>
<td>McCoy</td>
</tr>
<tr>
<td>3</td>
<td>Adam</td>
<td>2</td>
<td>10:00</td>
<td>Smith</td>
</tr>
<tr>
<td>4</td>
<td>Robert</td>
<td>1</td>
<td>13:00</td>
<td>McCoy</td>
</tr>
<tr>
<td>5</td>
<td>Zane</td>
<td>2</td>
<td>14:00</td>
<td>Smith</td>
</tr>
</tbody>
</table>

Normalization to BCNF – Example (3)

From this scenario DB designer extracted the following determinants:

a. PatNo -> PatName
b. PatNo, AppNo -> Time, Doctor
c. Time -> AppNo

Two options for 1NF primary key selection:
1. CLINIC (PatNo, PatName, AppNo, Time, Doctor)
2. CLINIC (PatNo, PatName, AppNo, Time, Doctor)

Transitive FD here: (Time-> AppNo), PatNo -> Doctor

First Choice of Primary Key

CLINIC (PatNo, PatName, AppNo, Time, Doctor)

1. 1NF - no non-atomic values, so in 1NF
2. 2NF – eliminate Redundant Information (i.e. Partial key dependencies):
 - VISIT (PatNo, AppNo, Time, Doctor)
 - PATIENT (PatNo, PatName)
3. 3NF – no transient dependences so in 3NF
4. Now we test for BCNF

Is EVERY determinant a Candidate Key?

Go through all determinates where ALL of the left hand side attributes are present in a relation and at least ONE of the right hand side attributes is also present in the relation.

Check for VISIT

VISIT (PatNo, AppNo, Time, Doctor)

a) Patno -> PatName
 Patno is present in DB, but not PatName, so irrelevant.
b) Patno, AppNo -> Time, Doctor
 All LHS and RHS present so relevant. Is this a candidate key? PatNo, AppNo IS the key, so this is a candidate key. OK for BCNF compliance
c) Time -> AppNo
 Time is present, and so is AppNo, so relevant. Is this a candidate key?
 If it was then we could rewrite VISIT as:
 VISIT (PatNo, AppNo, Time, Doctor)
 This will not work, as you need both Time and PatNo together to form a unique key. Thus this determinate is not a candidate key, and therefore VISIT is not in BCNF.

Now do the same for PATIENT relation
Can we fix the VISIT relation?

- Note: Time is enough to work out the appointment number of a particular patient
- VISIT (PatNo, Time, Doctor)
- PATIENT (PatNo, PatName)
- APPOINTMENT (Time, AppNo)
- Now BCNF is satisfied, and the final relations shown are in BCNF

Second Choice of Primary Key

CLINIC (PatNo, PatName, AppNo, Time, Doctor)

- 1NF - no non-atomic values, so in 1NF
- 2NF – eliminate Redundant Information (i.e. Partial key dependencies):
 - VISIT (PatNo, Time, Doctor)
 - PATIENT (PatNo, PatName)
 - APPOINTMENT (Time, AppNo)
- 3NF – no transient dependences so the same as 2NF
- Now we test for BCNF – we already know that this time 3NF is in BCNF

Questions?

<table>
<thead>
<tr>
<th>LOAN</th>
<th>loan-number</th>
<th>amount</th>
<th>originating-branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOMER</td>
<td>customer-id</td>
<td>customer-name</td>
<td>customer-street</td>
</tr>
<tr>
<td>PAYMENT</td>
<td>payment-number</td>
<td>loan-number</td>
<td>payment-date</td>
</tr>
<tr>
<td>BRANCH</td>
<td>branch-name</td>
<td>branch-city</td>
<td>assets</td>
</tr>
<tr>
<td>BORROWER</td>
<td>customer-id</td>
<td>loan-number</td>
<td></td>
</tr>
<tr>
<td>EMPLOYEE</td>
<td>employee-id</td>
<td>employee-name</td>
<td>telephone</td>
</tr>
<tr>
<td>DEPOSITS</td>
<td>customer-name</td>
<td>account-number</td>
<td>access-date</td>
</tr>
<tr>
<td>SAVINGS ACCOUNT</td>
<td>account-number</td>
<td>customer-id</td>
<td>interest-rate</td>
</tr>
</tbody>
</table>