ESOF 422 Homework 2

Instructions:

Work with your partner on this homework.

Make sure your printout is stapled together and all names appear in the front page.
Hand in copies (printouts) of UML class, UML object and UML sequence diagrams.
Hand in a copies (printouts) of .use, and .x files.

Your homework is worth 30 points.

Due: 2/6 (Thursday) during class. —No exceptions so plan accordingly.

Question 1 (10 pts)

In this exercise we will use the previously developed version of the Movie Rental model and the SOIL
enhancements (discussed in class) to further refine its structure. You will find a copy of the .use file with
this assignment.

Instructions

1. Start with the .use file provided
2. You will now refactor the design to move responsibilities to the classes that have the
information and to add a new method to the Customer class that calculates the total charges.
a. Move calculation of the amount charged for each rental from the
Customer.getAmount() method to the Rental class in a new method called getCharge().
b. Add a new method called getTotalCharge() to the Customer class to sum up all the
charges.

1. Printout a copy of your Class diagram showing all attributes, associations, roles,
multiplicities and operations.

2. Printout an Object diagram showing a valid state of the system. Make sure you ‘check’ the
validity of the structure.

3. Printout a Sequence diagram that shows the execution of the Statement() call on a
customer.

Question 2 (20 pts)

Select any design pattern (except Singleton) and create a USE model description of a generic version of
your design pattern. Make sure you include all operations (with SOIL), attributes and multiplicities as
intended by the pattern’s design. You will then add OCL constraints as needed to decorate your pattern.
Now generate a valid instantiation of said design pattern making sure that no constraint is violated. Your
constraints should come in the form of invariants, and/or pre and post conditions.

Trace a representative call of the pattern and also print out the sequence diagram.

Printout a copy of your Class and valid Object diagram and hand them in with your .use, and .x files.

-- This is a USE nodel that has enbedded SO L operations in it

nodel Mbvi eRent al
enum PriceCode {regular, famly, newRel ease}
--cl asses

cl ass Cust oner
attributes
nane: String
nunmRen: | nt eger

operati ons
addRent al ()
begi n
end

get Nane()

get Anount (aRen: Rent al) : Real
begi n
decl are wkCh: Real, m Movi e, pc:PriceCode, dy: | nteger;

m =aRen. get Movi e() ;
dy: =aRen. get DaysRent ed() ;
pc: =m get Pri ceCode();

wr kKCh: =0;

i f pc=PriceCode::regular then
wr kCh: =2. 0;

if dy > 2 then

wr kCh: =wr kCh + (dy - 2) * 1.5;
end;
end;

if pc=PriceCode::famly then
wr kCh: =1. 5;
if dy > 3 then
wr kCh: =wr kCh + (dy - 3) * 1.5;
end;
end;

i f pc=PriceCode:: newRel ease then
wr kCh: =dy * 3.0;
end;

result:=w kCh;

end

Statement ()
begi n
decl are aChar ge: Charge, sm Movi e, ch: Real

sel f. nunRen: =sel f.rental s->si ze();
for ren in self.rentals do
ch: =sel f. get Anount (ren);
sm =ren. get Movi e();
t:=smogetTitle();
aChar ge: = new Charge;
aChar ge. chval : =ch
aCharge. chT: =t ;
i nsert(self,aCharge) into custonerCharges
end
end
end

cl ass Rental
attributes
daysRent ed: | nt eger

operati ons
get DaysRent ed() : I nt eger
begi n
result := self.daysRented;
end

get Movie(): Movie
begi n
result := self.novie;
end
end

cl ass Movie
attributes
title:String
pri ceCode: Pri ceCode

operations
get PriceCode(): PriceCode
begi n
result := self.priceCode;
end

set Pri ceCode(code: Pri ceCode)
begi n
sel f. priceCode := code;
end

getTitle():String

t:String;

begi n
result :=self.title;
end
end

cl ass Charge

attributes
chVval : Real
chT: String

operati ons
end

--associ ati ons

associ ation custRental s between
Custoner [1] role renter
Rental [0..*] role rentals
end

associ ati on novRental between
Rental [0..*] role novRentals
Movie [1] role novie

end

associ ati on cust oner Char ges bet ween
Customer [1] role cust
Charge [0..*] role charges

end

--constraints
--Added for class exercises

constraints

--Exanpl e constraints

--You may renove these constraints in your design. They are here
--just as exanpl es.

cont ext Custoner
i nv maxRent al : nunRen <= 10
i nv agreenent:rental s->size = nunRen
inv rental s:rental s->not Enpty
i nv daysRent ed: rental s->sel ect (daysRented > 3)->not Enpty

