

ESOF 422 Homework 2

Instructions:

Work with your partner on this homework.

Make sure your printout is stapled together and all names appear in the front page.

Hand in copies (printouts) of UML class, UML object and UML sequence diagrams.

Hand in a copies (printouts) of .use, and .x files.

Your homework is worth 30 points.

Due: 2/6 (Thursday) during class. –No exceptions so plan accordingly.

Question 1 (10 pts)

In this exercise we will use the previously developed version of the Movie Rental model and the SOIL

enhancements (discussed in class) to further refine its structure. You will find a copy of the .use file with

this assignment.

Instructions

1. Start with the .use file provided

2. You will now refactor the design to move responsibilities to the classes that have the

information and to add a new method to the Customer class that calculates the total charges.

a. Move calculation of the amount charged for each rental from the

Customer.getAmount() method to the Rental class in a new method called getCharge().

b. Add a new method called getTotalCharge() to the Customer class to sum up all the

charges.

1. Printout a copy of your Class diagram showing all attributes, associations, roles,

multiplicities and operations.

2. Printout an Object diagram showing a valid state of the system. Make sure you ’check’ the

validity of the structure.

3. Printout a Sequence diagram that shows the execution of the Statement() call on a

customer.

Question 2 (20 pts)

Select any design pattern (except Singleton) and create a USE model description of a generic version of

your design pattern. Make sure you include all operations (with SOIL), attributes and multiplicities as

intended by the pattern’s design. You will then add OCL constraints as needed to decorate your pattern.

Now generate a valid instantiation of said design pattern making sure that no constraint is violated. Your

constraints should come in the form of invariants, and/or pre and post conditions.

Trace a representative call of the pattern and also print out the sequence diagram.

Printout a copy of your Class and valid Object diagram and hand them in with your .use, and .x files.

-- This is a USE model that has embedded SOIL operations in it
--

model MovieRental

enum PriceCode {regular, family, newRelease}

--classes

class Customer
attributes
 name:String
 numRen:Integer

operations
 addRental()
 begin
 end

 getName()

 getAmount(aRen:Rental):Real
 begin
 declare wrkCh:Real, m:Movie, pc:PriceCode,dy:Integer;

 m:=aRen.getMovie();
 dy:=aRen.getDaysRented();
 pc:=m.getPriceCode();

 wrkCh:=0;

 if pc=PriceCode::regular then
 wrkCh:=2.0;
 if dy > 2 then
 wrkCh:=wrkCh + (dy - 2) * 1.5;
 end;
 end;

 if pc=PriceCode::family then
 wrkCh:=1.5;
 if dy > 3 then
 wrkCh:=wrkCh + (dy - 3) * 1.5;
 end;
 end;

 if pc=PriceCode::newRelease then
 wrkCh:=dy * 3.0;
 end;

 result:=wrkCh;

 end

 Statement()
 begin
 declare aCharge:Charge, sm:Movie, ch:Real, t:String;

 self.numRen:=self.rentals->size();
 for ren in self.rentals do
 ch:=self.getAmount(ren);
 sm:=ren.getMovie();
 t:=sm.getTitle();
 aCharge:= new Charge;
 aCharge.chVal:=ch;
 aCharge.chT:=t;
 insert(self,aCharge) into customerCharges
 end
 end
end

class Rental
attributes
 daysRented:Integer

operations
 getDaysRented():Integer
 begin
 result := self.daysRented;
 end

 getMovie(): Movie
 begin
 result := self.movie;
 end
end

class Movie
attributes
 title:String
 priceCode:PriceCode

operations
 getPriceCode():PriceCode
 begin
 result := self.priceCode;
 end

 setPriceCode(code:PriceCode)
 begin
 self.priceCode := code;
 end

 getTitle():String

 begin
 result := self.title;
 end
end

class Charge
attributes
 chVal:Real
 chT: String

operations
end

--associations

association custRentals between
 Customer [1] role renter
 Rental [0..*] role rentals
end

association movRental between
 Rental [0..*] role movRentals
 Movie [1] role movie
end

association customerCharges between
 Customer [1] role cust
 Charge [0..*] role charges
end

--constraints
--Added for class exercises

constraints
--Example constraints
--You may remove these constraints in your design. They are here
--just as examples.

context Customer
 inv maxRental:numRen <= 10
 inv agreement:rentals->size = numRen
 inv rentals:rentals->notEmpty
 inv daysRented:rentals->select(daysRented > 3)->notEmpty

