
1

Alloy Lecture 1 1

An Overview of the Alloy
Language & Analyzer

Slides contain some modified content
from the Alloy Tutorial by G. Dennis &

R. Seater
(see alloy.mit.edu)

Alloy Lecture 1 2

What is Alloy?

• A formal language and analyzer based on
Z

• Developed at MIT by Daniel Jackson and
his team

• Based on relations, where a relation is a
set of tuples
– A tuple is a sequence of atomic items

• Treating all entities as relationships makes
it easier to analyze Alloy models

2

Alloy Lecture 1 3

Understanding Alloy
• Three parts

– The logic
• First-order expressions on relations

• Relations of relations (i.e., higher-order relations) are not
supported

• States and executions are described using constraints (like
Z, OCL)

– The language
• Provides structure and “syntactic sugar”

– The analysis mechanism
• Takes the form of constraint solving

• Simulation: Find instances that satisfy a set of constraints

• Checking: Find a counterexample that violates a constraint

Alloy Lecture 1 4

Structure of an Alloy Model
module tour/addressBook1h ------- Page 14..16

sig Name, Addr { }

sig Book {
addr: Name -> lone Addr

}

pred show [b: Book] {
#b.addr > 1
#Name.(b.addr) > 1

}
run show for 3 but 1 Book

pred add [b, b': Book, n: Name, a: Addr] {
b'.addr = b.addr + n->a

}

pred del [b, b': Book, n: Name] {
b'.addr = b.addr - n->Addr

}

assert delUndoesAdd {
all b, b', b'': Book, n: Name, a: Addr |

no n.(b.addr) and add [b, b', n, a] and del [b', b'', n]
implies
b.addr = b''.addr

}

// This command should not find any counterexample.
check delUndoesAdd for 3

Module header

Constraint
paragraphs:
specifies
constrainst (e.g.,
invariants)

Signatures: A
signature declares a
set of atoms

• can also
introduce field
• each field
represents a
relation

Assertions:
properties that are
expected to hold

commands are
in red

3

Alloy Lecture 1 5

A world of relations …
Everything is a relation in Alloy

– A relation is a set of tuples

• binary relation
names = {(B0, N0),

(B0, N1),
(B1, N2)}

• ternary relation
addrs = {(B0, N0, A0),

(B0, N1, A1),
(B1, N1, A2),
(B1, N2, A2)}

• sets are unary (1 column)
relations

Name = {(N0), (N1), (N2)}
Addr = {(A0), (A1), (A2)}
Book = {(B0),(B1)}

• scalars are singleton sets
myName = {(N1)}
yourName = {(N2)}
myBook = {(B0)}

Alloy Lecture 1 6

Analysis in Alloy
• Analysis: find some assignment of values

(relations) to variables that makes a constraint
true

• You can ask Alloy to perform 2 types of
constraint/assertion checks
– Find an instance of a model that satisfies constraints

(use the run command)
– Find an instance in which an assertion does not hold;

the instance is called a counterexample (use the
check command)

• Analysis is made tractable by restricting the
space in which it searches for solutions
– Defining the restricted search space is called scope

setting

4

Alloy Lecture 1 7

Alloy language elements: Signature
Fields

• Signature field
– A field in a signature is a relation in which the

domain is a subset of the signature elements

• sig A {f: e}
– f is a binary relation with domain A and range

given by expression e
– f is constrained to be a function
– (f: A -> e)

Alloy Lecture 1 8

Alloy language elements:
Constraints

• A fact is a constraint that is intended to
always hold

• An assertion is a constraint that is
intended to follow from facts

• A predicate is a reusable constraints, i.e.,
it is used to express facts and assertions

• A function defines a reusable expression

5

Alloy Lecture 1 9

Alloy language elements: the run
command

pred p[x: X, y: Y, ...] { F }
run p scope
• instructs analyzer to search for instance of

predicate within scope

pred show [b: Book] {
#b.addr > 1
#Name.(b.addr) > 1

}
run show for 3 but 1 Book

Alloy Lecture 1 10

Example (from tutorial)

sig Platform {}
there are “Platform” things

sig Man {ceiling, floor: Platform}
each Man has a ceiling and a floor Platform

pred Above[m, n: Man] {m.floor = n.ceiling}
Man m is “above” Man n if m's floor is n's ceiling

fact {all m: Man | some n: Man | Above (n,m)}
"One Man's Ceiling Is Another Man's Floor"

6

Alloy Lecture 1 11

assert BelowToo {
all m: Man | some n: Man | Above (m,n)
}
"One Man's Floor Is Another Man's Ceiling"?

check BelowToo for 2
check "One Man's Floor Is Another Man's Ceiling"
counterexample with 2 or less platforms and men?

– counterexample found

Alloy Lecture 1 12

A counterexample (from MIT Alloy
tutorial)

