Introduction to Software Testing
Chapter 1
Introduction

Paul Ammann & Jeff Offutt

A Talk In 3 Parts

1. Why do we test ?
2. What should we do during testing ?

3. How do we get to this future of testing ?

We are in the middle of arexablitoonin how software is tested

Research isfinally meeting practice

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Here! Test This!

My first “professional” job

Big software program

e ==

Jan/2007

dH-ZdIN
ajTereq

il
A stack of computer printouts—and no documentation

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Cost of Testing

You're going to spend at least half of
your development budget on testing,
whether you want to or not

= In the real-world, testing is theprinciple post-design activity
m Restricting early testing usuallyincreases cost

s Extensive hardware-software integration requiresmore testing

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Part 1 : Why Test?

If you don't know why you're conducting
a test, it won't be very helpful

Written test objectivesand requirements are rare
What are your planned coverage levels?
How much testing isenougif?

Common objective —spend the budget..

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Why Test?

If you don't start planning for each test when
the functional requirements are formed, you'll
never know why you're conducting the test

s 1980: “The software shall be easilmaintainable”
= Threshold reliability requirements?
s What fact is each test trying toverify ?

s Requirementsdefinition teams should include testers!

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Cost of NotTesting

Program Managers often say:
"Testing is too expensive.”

Not testing is evermore expensive

Planning for testing after development iorohibitively
expensive

A test station for circuit boards costshalf a million dollars ...

Software test tools cost less thaf®10,000!!

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Caveat: Impact of New Tools and
Techniques

They're teaching a new way NGV}’ - I already
of plowing over at the Grange don't plow as good
tonight - you going? as I know how...

o, " .\,
g | e o Yy -

“Knowing is not enough, we must apply. Willingnet enoughwe must do”
Goethe

Part 2 : What ?

But .. what should we do ?

1. Types of testactivities
2. Software testingterms

3. Changing notionsof testing
— testcoveragecriteria
— criteria based onstructures

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Testing In the 21st Century

We are going through atime of change

Software DefinesBehavior
— network routers

— financial networks Testlng Ideas have
— telephone switching networks matured enough to

— other infrastructure be used in practice
Embedded Control Applications

— airplanes, air traffic control — e
. —memory seats
— spaceships

—DVD players
— watches

—garage door openers
— ovens

—cell phones
— remote controllers
s Safetycritical, real-time software
x Web appsmust be highly reliable
= And of course ...security is now all about software faults !

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Types of Test Activities
= Testing can be broken up intdour general types of activities
1. Test Desigh =———>1 q) Criteria-based
2. Test Automation 1.b) Human-based
3. Test Execution
4. Test Evaluation

s Each type of activity requires differentskills, background

knowledge, educatior and training

= No reasonable software development organization uses the sa
people for requirements, design, implementation, integration
and configuration control

Why do test organizations still use the same people
for all four test activities??

This is clearly a waste of resources

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

1. Test Design — (a) Criteria-Based

Design test values to satisfy coverage criteria
or other engineering goal

This Is themost technicaljob in software testing

Requiresknowledgeof :
— Discrete math
— Programming
— Testing

Requires much of atraditional CS degree
This isintellectually stimulating, rewarding, and challenging

Test design is analogous teoftware architectureon the
development side

Using people who are not qualified to design tests is a sure way
getineffective tests

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

1. Test Design — (b) Human-Based

Design test values based on domain knowledge of
the program and human knowledge of testing
This iIs muchharder than it may seem to developers

Criteria-based approaches can be blind to special situations

Requiresknowledgeof :
— Domain, testing, and user interface

Requires almostno traditional CS
— A background in the domain of the software is essential
— An empirical background is very helpful (biology, psychology, ...)
— A logic backgroundis very helpful (law, philosophy, math, ...)
This isintellectually stimulating, rewarding, and challenging

— But not to typical CS majors — they want to solve poblems and build
things

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

2. Test Automation

Embed test values into executable scripts

This is slightly less technical

Requires knowledge ofprogramming
— Fairly straightforward programming — small pieces ard simple algorithms

Requires verylittle theory
Very boring for test designer:
Programming is out of reach for manydomain experts

Who is responsible for determining and embedding thexpected
outputs ?

— Test designergnay not always know the expected outputs
— Test evaluatorsneed to get involved early to help with this

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

3. Test Execution

Run tests on the software and record the results

This is easy— and trivial if the tests are well automated

Requires basiccomputer skills
— Interns
— Employees with no technical background

Asking qualified testdesigner:to execute tests is a sure way "
convince them to look for adevelopment job

If, for example, GUI tests are not well automated, this requirea
lot of manual labor

Test executors have to be vergareful and meticulouswith
bookkeeping

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

4. Test Evaluation

Evaluate results of testing, report to developers

This iIs muchharder than it may seem

Requiresknowledgeof :
— Domain
— Testing
— User interfaces and psycholoc
Usually requires almostno traditional CS
— A background in the domain of the software is essential
— An empirical background is very helpful (biology, psychology, ...)
— A logic backgroundis very helpful (law, philosophy, math, ...)
This isintellectually stimulating, rewarding, and challenging

— But not to typical CS majors — they want to solve poblems and build
things

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Other Activities

= Test management Sets policy, organizes team, interfaces with
development, chooses criteria, decides how much automation ig
needed, ...

m [est maintenance Tests must besaved for reuseas software
evolves

— Requires cooperation of testlesigners and automators

— Deciding when to trim the test suite is partly polty and partly technical-
and in general,very hard !

— Tests should be put irconfiguration control

s Test documentation: All parties participate

— Each test must document tvhy” — criterion and test requirement satisfied
or a rationale for human-designed tests

— Traceability throughout the process must be ensured
— Documentationmust be kept in the automated tests

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Approximate Number of Personnel

A mature test organizationonly one test designeto work with

several test automators, executors and evaluators

Improved automation will reduce the number of test executors
— Theoretically to zero ... but not in practice

Putting the wrong people on thewrong tasks leads to
Inefficiency, low job satisfactionand low job performance

— A qualified test designer will bebored with other tasks and look for a job
iIn development

— A qualified test evaluator will not understandthe benefits of test criteria

Test evaluators have the&lomain knowledge so theymust be free
to add tests that “blind” engineering processes will not thinlof

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Types of Test Activities — Summary

. Design Design test values to satisfy engineering goals
Criteria Requires knowledge of discrete math, programminptasting
. Design Design test values from domain knowledge and imniti
Human Requires knowledge of domain, Ul, testing
Automation Embed test values into executable scripts
Requires knowledge of scripting
Executior Run tests on the software and record the re
Requires very little knowledge
4. Evaluation Evaluate results of testing, report to developers
Requires domain knowledge

m These four general test activities are quite different
m Itis a poor use of resources to use people inappropriately

Most test teams use the same people for ALL FOUR activities !!

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt 19

Applying Test Activities

To use our people effectively
and to test efficiently

we need a process th

lets test designers

raise their level of abstraction

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Model-Driven Test Design

refined
requirements /
test specs

DESIGN
ABSTRACTION
LEVEL

model / test
structure requirements

IMPLEMENTATION

ABSTRACTION
software LEVEL input

artifact values

pass / test test
fail results scripts

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Model-Driven Test Design — Steps

model / criterion test refine refined

structure requirements

requirements /
test specs generate

analysis DESIGN
ABSTRACTION
LEVEL
IMPLEMENTATION

ABSTRACTION
software LEVEL input

artifact values

evaluate execute automate pref?_(
pass / test test fest postiix
fail results scripts cases expected

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Model-Driven Test Design — Activities

— o~"D>—"\ ABSTRACTION

‘ _ LEVEL

ising our abstraction level make
software test design MUCH easier input
artifact — values

U/

'I'e_s1' : test
scripts cases

Introduction to Software Testing (Ch 1), www.irdaftwaretesting.com © Ammpen & Offutt

Types of Activities in the Book

Most of this book is on test design

Other activities are well covered elsewhe

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Software Testing Terms

» Like any field, software testing comes with a large number of
specialized termghat have particular meanings in this context

s Some of the following terms arestandardized some are used
consistentlythroughout the literature and the industry, but some
vary by author, topic, or test organizatior

= The definitions here are intended to be thenost commonlyused

Introduction to Software Testing (Ch 1), www.irgadtwaretesting.com © Ammann & Offutt

Important Terms
Validation & Verification (IEEE)

= Validation : The process of evaluating software at the end of

software development to ensure compliance with intended
usage

= Verification : The process of determining whether the product
of a given phase of the software development process fulfill the
requirements established during the previous phase

IV&V stands for “ independent verification and validatidn

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Test Engineer & Test Managers

s Test Engineer: An IT professional who is in charge of one or
more technical test activities
— designing test inputs
producing test values
running test scripts
analyzing results
reporting results to developers and manage

m [est Manager: In Charge of one or more test engineers
— sets test policies and processes
— Interacts with other managers on the project
— otherwise helps the engineers do their work

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Test Engineer Activities

Test

Manager

Test

~

Instantiate

Test
Engineer

% ﬁ Design:

=

@—{ Computer

Executable

Tests

Test
Engineer

1 execut

)

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com

4[Evaluate J

© Ammann & Offutt

Static and Dynamic Testing

s Static Testing: Testing without executing the program
— This include software inspections and some forms of analyses

— Very effective at finding certain kinds of problems — espaally “potential” faults,
that is, problems that could lead to faults when the prograns modified

= Dynamic Testing: Testing by executing the program with real
Inputs

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Software Faults, Errors & Fallures

m Software Fault: A static defect in the software

m Software Error : An incorrect internal state that is the
manifestation of some fault

s Software Failure : External, incorrect behavior with respect to
the requirements or other description of the expected behavior

Faults in software are design mistakes and will always exis

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Testing & Debugging

m Testing: Finding inputs that cause the software to fail

= Debugqing: The process of finding a fault given a failure

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Fault & Failure Model

Three conditions necessary for a failure to be observed

1. Reachability: The location or locations in the program that
contain the fault must be reached

2. Infection : The state of the program must be incorrec

3. Propagation: The infected state must propagate to cause some
output of the program to be incorrect

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Test Case

s Test Case Values The values that directly satisfy one test
requirement

s Expected Results The result that will be produced when
executing the test if the program satisfies it intended behaw

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Observablility and Controllability

s Software Observablility : How easy it is to observe the behavior
of a program in terms of its outputs, effects on the environment
and other hardware and software components

— Software that affects hardware devices, databases, or remotéf have low
observability

= Software Controllability : How easy it is to provide a program
with the needed inputs, in terms of values, operations, and
behaviors
— Easy to control software with inputs from keyboards
— Inputs from hardware sensors or distributed software is hader
— Data abstraction reduces controllability and observability

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Inputs to Affect Controllability and
Observabillity

Prefix Values: Any inputs necessary to put the software into
the appropriate state to receive the test case values

Postfix Values: Any inputs that need to be sent to the software
after the test case values

Two types of postfix values
1. Verification Values: Values necessary to see the results of the test casaigal

2. Exit Commands: Values needed to terminate the program or otherwise retur it
to a stable state

Executable Test Script A test case that is prepared in a form
to be executed automatically on the test software and produce
a report

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Top-Down and Bottom-Up Testing

» Top-Down Testing: Test the main procedure, then go down
through procedures it calls, and so on

= Bottom-Up Testing: Test the leaves in the tree (procedures that
make no calls), and move up to the roc

— Each procedure is not tested until all of its children hve been tested

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

White-box and Black-box Testing

» Black-box testing: Deriving tests from external descriptions of
the software, including specifications, requirements, and degi

= \White-box testing: Deriving tests from the source code internals
of the software, specifically including branches, individua
conditions, and statements

This view is really out of date.

The more general question isfrom what level of abstractior
to we derive tes®

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Changing Notions of Testing

m Old view of testing Is of testing at specific
software developmentphases

— Unit, module, integration, system ...

m New view IS In terms ofstructures and criteria

— Graphs, logical expressions, syntax, input space

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Old : Testing at Different Levels

main Class P

/

Class A

\

Class B

method mA1()j\

method mA2()

method mB1{)

'imethod mB2()

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com

Acceptance testingls
the software acceptable
to the user?

System testing Test the
overall functionality of
the system

Integration testing:

Test how modules
Interact with each
other

Module testing Test

© Ammann & Offutt

each class, file, module
or component

Unit testing: Test each

unit (method)
individually

Old : Find a Graph and Cover It

Tallored to:
— a particular software artifact
e code, design, specifications
— a particular phase of the lifecycle
e requirements, specification, design, implementation

This viewpoint obscure: underlying similarities

Graphs do not characterizeall testing techniques well

Four abstract modelssuffice ...

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

New : Test Coverage Criteria

Atester’s job Is simple: Define a model of the
software, then find ways
to cover it

B Test Requirements. Specific things that must be satisfied or
covered during testing

B Test Criterion : A collection of rules and a process that define
test requirements

Testing researchers have defined dozens of criteria, but they
are all really just a few criteria on four types of structures ...

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

New : Criteria Based on Structures
Structures : Four ways to model software

1. Graphs

2. Logical Expressions

3. Input Domain
Characterization

4. Syntactic Structures

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com

(not X or not Y) and A and B

A: {0, 1, >1}
B: {600, 700, 800}
C: {swe, cs, isa, infs}

if (X>y)
Z=X-Y,

else
Z=2%*X;

© Ammann & Offutt

1. Graph Coverage — Structural

Path

Cover every path
« 12567
|| » 1257
| » 13567
« states and tr?nsitions * 1357
* » 1343567

This graph may represent

e statements & branches

*» methods & calls

e components & signals

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offu] ¢ 134357

1. Graph Coverage — Data Flow

def = {m}

This graph contains:

» defs nodes & edges where
variables get values

» uses nodes & edges where
values are accessed

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com

© Amman

Every def “reaches” every
use

«1,2,5,6,7
e1,2,57
«1,3,56,7
«1,3,5 7
1,3,4,3,5/7

1. Graph - FSM Example
Memory Seats in a Lexus ES 300

Trigger (input)

[Ignition = off] | Button2
Driver 1 [Driver 2
Configuration Configuration
[Ignition = off] | Buttonl
=on] | seatBack ()

(to Modified) + Configuration

Driver 2
Ignition =

[Ignition = on] | ReseTAND _Button2
New
Configuration
Driver 1

Modified
Configuration

[Ignition = on] | Reset AND Buttonl

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

2. Logical Expressions

((@>b)or G)and (x <y)

Transitions \

Program Decision Statements

Software Specifications/

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Logical

Expressions

2. Logical Expressions

((@>b)or G)and (x <y)

= Predicate Coverage Each predicate must be true and false
— ((a>b) or G) and (x <y) = True, False

s Clause Coveraqg : Each clause must be true and fal:
— (a>b)=True, False
— G =True, False
— (X <y)=True, False

= Combinatorial Coverage: Various combinations of clauses
— Active Clause Coveragd&ach clause must determine the predicate’s result

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

2. Logic — Active Clause Coverage

(@>Db)orG)and (x <y)

With these values

for G and (x<vy), 1 F T
(a>b) determines

the value of the 9 -

predicate

3 duplicate

A

5
6

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com

3. Input Domain Characterization

m Describe theinput domain of the software

— ldentify inputs, parameters, or other categorization
— Partition each input into finite setsof representative values
— Choosecombinationsof values

s System level
— Number of students {, 1, >1}
— Level of course 600, 700, 80}
— Major §we, cs, Isa, Iinfé
= Unit level
— Parameters F (int X, intY)
— Possible values X<0,0,1,2,>2},Y:{10, 20,30}
— Tests
 F (-5, 10), F (0, 20), F (1, 30), F (2, 10), F (5, 20)

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

4. Syntactic Structures

Based on agrammar, or other syntactic definition

Primary example ismutation testing
Induce small changedo the program: mutants
Find teststhat cause the mutant programs to fail;_killing mutants
. Failure is defined adifferent output from the original program
. Check the outputof useful tests on the original program

Example program and mutants

if (x>y)

Aif (x >=y)
Z=X-Y,
Az=XxX+Yy,;
Az=X-m;

else

Z2=2*X;

if (x>y)
Z=X-Y,

else
Z=2%*X;

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Source of Structures

m These structures can bextracted from lots of software artifacts

— Graphs can be extracted from UML use cases, finite stateawchines,
source code, ...

— Logical expressiongan be extracted from decisions in program source,
guards on transitions, conditionals in use cases,.

= Model-based testingerives tests from a model that describes
some aspects of the system under t

— The model usually describes part of thehavior
— The sourceis usually not considered a model

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Coverage Overview
odeling Software

nput Spac

pplied to
DNF

" VYUV UYL QULVV AL SLC UL Y. LI T ©Ammann & Oﬁutt

UL LU QUILWAIT 1 TOUll

Coverage

Given a s&t oftessrequirements TR for aoxeyagee arrieermom
C, atestt sefT satisfiesC coverage if and only iff for eseeyy
test requirement tr in TR, there iIs at leastone testt in T

such tiiait t satisfiestr

» Infeasible test requirement: : test requirements that cannot be
satisfied
— No test case values exist that meet the test requirements

— Dead code

— Detection of infeasible test requirements is formally udecidable for most test
criteria

s Thus, 100% coverage ismpossiblein practice

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Two Ways to Use Test Criteria

1. Directly generatetest valuesto satisfythe criterion often
assumed by the research community most obvious way to use

criteria very hard without automated tools

2. Generate test valuesxternally and measureagainst the
criterion usually favored by industry

— sometimes misleading
If tests do not reach 100% coverage, what does that mean?

Test criteria are sometimes calleanetrics

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Generators and Recognizers

Generator : A procedure that automatically generates values to
satisfy a criterion

Recognizer: A procedure that decides whether a given set of
test values satisfies a criterion

Both problems are provablyundecidable for most criteria

It is possible to recognize whether test cases satisfy a crita
far more often than it is possible to generate tests that safysthe
criterion

Coverage analysis toolare quite plentiful

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Comparing Criteria with Subsumption

Criteria Subsumption : A test criterion C1 subsumesC2if and
only If every set of test cases that satisfies criteriddl also
satisfiesC2

Must be true for every se of test case

Example: If a test set has covered every branch in a program
(satisfied the branch criterion), then the test set is guardeed to
also have covered every statement

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Test Coverage Criteria

Traditional software testing isexpensiveand labor-intensive

Formal coverage criteria are used to decide/hich test inputsto
use

More likely that the tester will find problems

Greater assurance that the software is diigh quality and
reliability

A goal or stopping rule for testing
Criteria makes testing moreefficient and effective

But how do we start to apply these ideas In practe?

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Part 3: How ?

Now we know why and what ..

How do we get there ?

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Testing Levels Based on Test Process
Maturity

Level O: There’s no difference betweeresting and debugging

Level 1: The purpose of testing Is to showorrectness

Level 2: The purpose of testing is to show that the software
doesn’t work

Level 3: The purpose of testing is not to prove anything specifi
but to reduce the riskof using the software

Level 4: Testing is amental disciplinethat helps all IT
professionals develop higher quality software

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Level O Thinking

m Testing is thesameas debugging

s Does notdistinguish between incorrectbehavior and mistakes in
the program

s Does not help develop software that iliable or safe

This is what we teach undergraduate CS majors

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Level 1 Thinking

Purpose is to showorrectness
Correctness ismpossibleto achieve

What do we know if no failures?
— Good software or bad tests?

Test engineerdhave no:
— Strict goal
— Real stopping rule
— Formal test technique
— Test managers aregowerless

This Is what hardware engineers often expect

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Level 2 Thinking

Purpose is to showailures

Looking for failures is a negativeactivity

Puts testers and developers into aadversarial relationship

What If there are no failures?

This describes most software companies.

How can we move to deam approact??

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Level 3 Thinking

Testing can only show theresence of failures

Whenever we use software, we incur sonresk
Risk may besmall and conseguences unimportant
Risk may begreat and the consequences catastrophic

Testers and developers work together toeduce risk

This describes a few “enlightened” software compaes

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Level 4 Thinking

A mental discipline that increases quality

Testing is onlyone wayto increase quality

Test engineers can becontechnical leadersof the project

Primary responsibility to measure and improvesoftware quality

Their expertise shouldhelp the developers

This is the way “traditional” engineering works

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Summary

m More testing savesnoney
— Planning for testing saves lots of money

m Testing iIsno longeran “art form”
— Engineers have a tool box of tescriteria

s When testers becomengineers the product gets better
— The developers get better

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Open Questions

Which criteria work best on embedded, highly reliable software”
— Which software structure to use?

How can we bestiutomatethis testing with robust tools?

— Deriving the software structure

— Constructing the test requirements

— Creating values from test requirements
— Creating full test scripts

— Solution to the “mapping problem”

Empirical validation
Technologytransition
Application to new domains

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

Summary of Today’s New ldeas

Why do we test — tareduce the riskof using the software

Four types oftest activities— test design, automation, execution
and evaluation

Software terms — faults, failures, the RIP model, observability
and controllability

Four structures — testrequirements and criteria

Testprocess maturitylevels — level 4 is anental disciplinethat
Improves thequality of the software

Earlier and better testing caneaampmwvaithe test
manager

Introduction to Software Testing (Ch 1), www.irdadtwaretesting.com © Ammann & Offutt

