
Introduction to Software Testing
Chapter 1

Introduction

Paul Ammann & Jeff Offutt

www.introsoftwaretesting.com

A Talk in 3 Parts
1. Why do we test ?

2. What should we do during testing ?

3. How do we get to this future of testing ?

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 2

We are in the middle of a We are in the middle of a revolutionrevolution in how software is testedin how software is tested

Research is Research is finallyfinally meeting practicemeeting practice

Here! Test This!

MicroSteff – big
software system
for the mac

V.1.5.1 Jan/2007

Big software program

Jan/2007

My first “professional” job

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 3

V.1.5.1 Jan/2007

Verdatim
DataLife
MF2-HD
1.44 MB

Jan/2007

A stack of computer printouts—and no documentation

Cost of Testing

You’re going to spend at least half of You’re going to spend at least half of
your development budget on testing, your development budget on testing,
whether you want to or notwhether you want to or not

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 4

■ In the real-world, testing is the principle post-design activity

■ Restricting early testing usually increases cost

■ Extensive hardware-software integration requires more testing

Part 1 : Why Test?

■ Written test objectivesand requirements are rare

If you don’t know If you don’t know whywhy you’re conducting you’re conducting
a test, it won’t be very helpfula test, it won’t be very helpful

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 5

■ What are your planned coverage levels?

■ How much testing is enough?

■ Common objective –spend the budget…

Why Test?

■ 1980: “The software shall be easily maintainable”

If you don’t start planning for each test when If you don’t start planning for each test when
the functional requirements are formed, you’ll the functional requirements are formed, you’ll
never know why you’re conducting the testnever know why you’re conducting the test

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 6

1980: “The software shall be easily maintainable”

■ Threshold reliability requirements?

■ What fact is each test trying to verify?

■ Requirementsdefinition teams should include testers!

Cost of NotTesting

■ Not testing is even more expensive

Program Managers often say: Program Managers often say:
“Testing is too expensive.”“Testing is too expensive.”

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 7

■ Planning for testing after development is prohibitively
expensive

■ A test station for circuit boards costs half a million dollars …

■ Software test tools cost less than $10,000!!!

Caveat: Impact of New Tools and
Techniques

They’re teaching a new way
of plowing over at the Grange
tonight - you going?

Naw - I already
don’t plow as good
as I know how...

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 8

“Knowing is not enough, we must apply. Willing is not enough, “Knowing is not enough, we must apply. Willing is not enough, we must dowe must do.” .”
GoetheGoethe

Part 2 : What ?

But … But … whatwhat should we do ?should we do ?

1. Types of test activities

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 9

1. Types of test activities

2. Software testing terms

3. Changing notionsof testing
– test coveragecriteria
– criteria based on structures

Testing in the 21st Century

■ We are going through a time of change
■ Software Defines Behavior

– network routers
– financial networks
– telephone switching networks
– other infrastructure

■ Embedded ControlApplications

Testing ideas have Testing ideas have
matured enough to matured enough to
be used in practicebe used in practice

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 10

■ Embedded ControlApplications
– airplanes, air traffic control
– spaceships
– watches
– ovens
– remote controllers

■ Safetycritical, real-time software
■ Web appsmust be highly reliable
■ And of course … security is now all about software faults !

– PDAs
– memory seats
– DVD players
– garage door openers
– cell phones

Types of Test Activities
■ Testing can be broken up into four general types of activities

1. Test Design

2. Test Automation

3. Test Execution

4. Test Evaluation

■ Each type of activity requires different skills, background
knowledge, educationand training

1.a) Criteria-based

1.b) Human-based

knowledge, educationand training
■ No reasonable software development organization uses the same

people for requirements, design, implementation, integration
and configuration control

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 11

Why do test organizations still use the same people Why do test organizations still use the same people
for all four test activities??for all four test activities??

This is clearly a This is clearly a wastewaste of resourcesof resources

1. Test Design – (a) Criteria-Based

■ This is the most technicaljob in software testing
■ Requires knowledgeof :

– Discrete math
– Programming

Design test values to satisfy coverage criteria Design test values to satisfy coverage criteria
or other engineering goalor other engineering goal

– Programming
– Testing

■ Requires much of a traditional CS degree
■ This is intellectually stimulating, rewarding, and challenging
■ Test design is analogous to software architectureon the

development side
■ Using people who are not qualified to design tests is a sure way to

get ineffective tests
Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 12

1. Test Design – (b) Human-Based

■ This is much harder than it may seem to developers
■ Criteria-based approaches can be blind to special situations
■ Requires knowledgeof :

– Domain, testing, and user interfaces

Design test values based on domain knowledge of Design test values based on domain knowledge of
the program and human knowledge of testingthe program and human knowledge of testing

– Domain, testing, and user interfaces

■ Requires almost no traditional CS
– A background in the domain of the software is essential
– An empirical background is very helpful (biology, psychology, …)
– A logic backgroundis very helpful (law, philosophy, math, …)

■ This is intellectually stimulating, rewarding, and challenging
– But not to typical CS majors – they want to solve problems and build

things

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 13

2. Test Automation

■ This is slightly less technical
■ Requires knowledge of programming

– Fairly straightforward programming – small pieces and simple algorithms

■ Requires very little theory
■ Very boring for test designers

Embed test values into executable scriptsEmbed test values into executable scripts

■ Very boring for test designers
■ Programming is out of reach for many domain experts
■ Who is responsible for determining and embedding the expected

outputs ?
– Test designersmay not always know the expected outputs
– Test evaluatorsneed to get involved early to help with this

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 14

3. Test Execution

■ This is easy– and trivial if the tests are well automated
■ Requires basic computer skills

– Interns
– Employees with no technical background

■ Asking qualified test designersto execute tests is a sure way to

Run tests on the software and record the resultsRun tests on the software and record the results

■ Asking qualified test designersto execute tests is a sure way to
convince them to look for a development job

■ If, for example, GUI tests are not well automated, this requires a
lot of manual labor

■ Test executors have to be very careful and meticulouswith
bookkeeping

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 15

4. Test Evaluation

■ This is much harder than it may seem
■ Requires knowledgeof :

– Domain
– Testing
– User interfaces and psychology

Evaluate results of testing, report to developersEvaluate results of testing, report to developers

– User interfaces and psychology

■ Usually requires almost no traditional CS
– A background in the domain of the software is essential
– An empirical background is very helpful (biology, psychology, …)
– A logic backgroundis very helpful (law, philosophy, math, …)

■ This is intellectually stimulating, rewarding, and challenging
– But not to typical CS majors – they want to solve problems and build

things

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 16

Other Activities

■ Test management : Sets policy, organizes team, interfaces with
development, chooses criteria, decides how much automation is
needed, …

■ Test maintenance : Tests must be saved for reuse as software
evolves

– Requires cooperation of test designers and automators
– Deciding when to trim the test suite is partly policy and partly technical –– Deciding when to trim the test suite is partly policy and partly technical –

and in general, very hard !
– Tests should be put in configuration control

■ Test documentation : All parties participate
– Each test must document “why” – criterion and test requirement satisfied

or a rationale for human-designed tests
– Traceability throughout the process must be ensured
– Documentationmust be kept in the automated tests

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 17

Approximate Number of Personnel

■ A mature test organization only one test designer to work with
several test automators, executors and evaluators

■ Improved automation will reduce the number of test executors
– Theoretically to zero … but not in practice

■ Putting the wrong people on the wrong tasks leads to
inefficiency, low job satisfactionand low job performance

– A qualified test designer will be bored with other tasks and look for a job
in development

– A qualified test evaluator will not understandthe benefits of test criteria

■ Test evaluators have the domain knowledge, so they must be free
to add tests that “blind” engineering processes will not think of

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 18

Types of Test Activities – Summary
1a. Design Design test values to satisfy engineering goals

Criteria Requires knowledge of discrete math, programming and testing

1b. Design Design test values from domain knowledge and intuition

Human Requires knowledge of domain, UI, testing

2. Automation Embed test values into executable scripts

Requires knowledge of scripting

3. Execution Run tests on the software and record the results

■ These four general test activities are quite different
■ It is a poor use of resources to use people inappropriately

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 19

3. Execution Run tests on the software and record the results

Requires very little knowledge

4. Evaluation Evaluate results of testing, report to developers

Requires domain knowledge

Most test teams use the same people for ALL FOUR activities !!Most test teams use the same people for ALL FOUR activities !!

Applying Test Activities

To use our people effectivelyTo use our people effectively

and to test efficientlyand to test efficiently

we need a process thatwe need a process that

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 20

we need a process thatwe need a process that

lets test designerslets test designers

raise their level of abstractionraise their level of abstraction

Model-Driven Test Design

model /
structure

test
requirements

refined
requirements /
test specs

IMPLEMENTATION
ABSTRACTION

DESIGN
ABSTRACTION

LEVEL

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 21

software
artifact

input
values

test
cases

test
scripts

test
results

pass /
fail

ABSTRACTION
LEVEL

Model-Driven Test Design – Steps

model /
structure

test
requirements

refined
requirements /
test specs

IMPLEMENTATION
ABSTRACTION

DESIGN
ABSTRACTION

LEVEL

analysis

criterion refine

generate

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 22

software
artifact

input
values

test
cases

test
scripts

test
results

pass /
fail

ABSTRACTION
LEVEL

prefix
postfix

expected

automateexecuteevaluate

Model-Driven Test Design – Activities

model /
structure

test
requirements

refined
requirements /
test specs

IMPLEMENTATION
ABSTRACTION

DESIGN
ABSTRACTION

LEVEL

Test DesignTest Design

Raising our abstraction level makes

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 23

software
artifact

input
values

test
cases

test
scripts

test
results

pass /
fail

ABSTRACTION
LEVEL

Test Test
ExecutionExecution

Test Test
EvaluationEvaluation

Raising our abstraction level makes
test design MUCH easier

Types of Activities in the Book

Most of this book is on test designMost of this book is on test design

Other activities are well covered elsewhereOther activities are well covered elsewhere

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 24

Other activities are well covered elsewhereOther activities are well covered elsewhere

Software Testing Terms

■ Like any field, software testing comes with a large number of
specialized terms that have particular meanings in this context

■ Some of the following terms are standardized, some are used
consistentlythroughout the literature and the industry, but some
vary by author, topic, or test organizationvary by author, topic, or test organization

■ The definitions here are intended to be the most commonlyused

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 25

Important Terms
Validation & Verification (IEEE)

■ Validation : The process of evaluating software at the end of
software development to ensure compliance with intended
usage

■ Verification : The process of determining whether the products

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 26

■ Verification : The process of determining whether the products
of a given phase of the software development process fulfill the
requirements established during the previous phase

IV&V stands for “ independent verification and validation”

Test Engineer & Test Managers

■ Test Engineer: An IT professional who is in charge of one or
more technical test activities

– designing test inputs
– producing test values
– running test scripts
– analyzing results
– reporting results to developers and managers

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 27

– reporting results to developers and managers

■ Test Manager: In charge of one or more test engineers
– sets test policies and processes
– interacts with other managers on the project
– otherwise helps the engineers do their work

Test Engineer Activities

Test

Designs

Executable

Tests

Test
Manager

design instantiate

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 28

Designs

Output

Tests

Computer EvaluateP

Test
Engineer

Test
Engineer

execute

Static and Dynamic Testing

■ Static Testing: Testing without executing the program
– This include software inspections and some forms of analyses
– Very effective at finding certain kinds of problems – especially “potential” faults,

that is, problems that could lead to faults when the program is modified

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 29

■ Dynamic Testing: Testing by executing the program with real
inputs

Software Faults, Errors & Failures

■ Software Fault : A static defect in the software

■ Software Error : An incorrect internal state that is the
manifestation of some fault

■ Software Failure : External, incorrect behavior with respect to

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 30

■ Software Failure : External, incorrect behavior with respect to
the requirements or other description of the expected behavior

Faults in software are design mistakes and will always existFaults in software are design mistakes and will always exist

Testing & Debugging

■ Testing : Finding inputs that cause the software to fail

■ Debugging: The process of finding a fault given a failure

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 31

Fault & Failure Model

Three conditions necessary for a failure to be observedThree conditions necessary for a failure to be observed

1. Reachability: The location or locations in the program that
contain the fault must be reached

2. Infection : The state of the program must be incorrect

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 32

2. Infection : The state of the program must be incorrect

3. Propagation: The infected state must propagate to cause some
output of the program to be incorrect

Test Case

■ Test Case Values: The values that directly satisfy one test
requirement

■ Expected Results: The result that will be produced when
executing the test if the program satisfies it intended behavior

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 33

executing the test if the program satisfies it intended behavior

Observability and Controllability

■ Software Observability : How easy it is to observe the behavior
of a program in terms of its outputs, effects on the environment
and other hardware and software components

– Software that affects hardware devices, databases, or remote files have low
observability

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 34

■ Software Controllability : How easy it is to provide a program
with the needed inputs, in terms of values, operations, and
behaviors

– Easy to control software with inputs from keyboards
– Inputs from hardware sensors or distributed software is harder
– Data abstraction reduces controllability and observability

Inputs to Affect Controllability and
Observability

■ Prefix Values: Any inputs necessary to put the software into
the appropriate state to receive the test case values

■ Postfix Values: Any inputs that need to be sent to the software
after the test case values

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 35

■ Two types of postfix values
1. Verification Values : Values necessary to see the results of the test case values
2. Exit Commands: Values needed to terminate the program or otherwise return it

to a stable state

■ Executable Test Script: A test case that is prepared in a form
to be executed automatically on the test software and produce
a report

Top-Down and Bottom-Up Testing

■ Top-Down Testing: Test the main procedure, then go down
through procedures it calls, and so on

■ Bottom-Up Testing: Test the leaves in the tree (procedures that
make no calls), and move up to the root.

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 36

make no calls), and move up to the root.
– Each procedure is not tested until all of its children have been tested

White-box and Black-box Testing

■ Black-box testing: Deriving tests from external descriptions of
the software, including specifications, requirements, and design

■ White-box testing: Deriving tests from the source code internals
of the software, specifically including branches, individual

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 37

of the software, specifically including branches, individual
conditions, and statements

This view is really out of date.This view is really out of date.
The more general question is: The more general question is: from what level of abstraction from what level of abstraction

to we derive teststo we derive tests??

Changing Notions of Testing

■ Old view of testing is of testing at specific
software development phases

– Unit, module, integration, system …

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 38

■ New view is in terms of structures and criteria

– Graphs, logical expressions, syntax, input space

Old : Testing at Different Levels

Class A Class B

main Class P
■ Acceptance testing: Is

the software acceptable
to the user?

■ System testing: Test the
overall functionality of
the system

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 39

method mA1()

method mA2()

method mB1()

method mB2()

■ Integration testing:
Test how modules
interact with each
other

■ Module testing: Test
each class, file, module
or component

■ Unit testing: Test each
unit (method)
individually

Old : Find a Graph and Cover It

■ Tailored to:
– a particular software artifact

• code, design, specifications
– a particular phase of the lifecycle

• requirements, specification, design, implementation

■ This viewpoint obscuresunderlying similarities

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 40

■ This viewpoint obscuresunderlying similarities

■ Graphs do not characterizeall testing techniques well

■ Four abstract modelssuffice …

New : Test Coverage Criteria

g Test Requirements: Specific things that must be satisfied or
covered during testing

A tester’s job is simple: Define a model of the
software, then find ways
to cover it

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 41

covered during testing

g Test Criterion : A collection of rules and a process that define
test requirements

Testing researchers have defined dozens of criteria, but they Testing researchers have defined dozens of criteria, but they
are all really just a few criteria on four types of structures …are all really just a few criteria on four types of structures …

New : Criteria Based on Structures

1. Graphs

2. Logical Expressions (not X or not Y) and A and B

Structures : Four ways to model software

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 42

3. Input Domain
Characterization

4. Syntactic Structures

if (x > y)
z = x - y;

else
z = 2 * x;

A: {0, 1, >1}
B: {600, 700, 800}
C: {swe, cs, isa, infs}

1. Graph Coverage – Structural

6

5

3

2

1 7

Node (Statement)Edge (Branch)Path

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 43

3

4

Node (Statement)

Cover every node

• 12567

• 1343567

This graph may represent

• statements & branches

• methods & calls

• components & signals

• states and transitions

Edge (Branch)

Cover every edge

• 12567

• 1343567

• 1357

Path

Cover every path

• 12567

• 1257

• 13567

• 1357

• 1343567

• 134357 …

Defs & Uses Pairs

1. Graph Coverage – Data Flow

6

5

3

2

1 7

def = {x, y}

def = {a , m}

def = {a}

def = {m}

use = {x}

use = {x}

use = {a}

use = {a}

use = {m}

use = {y}

All DefsAll Uses

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 44

• (x, 1, (1,2)), (x, 1, (1,3))

• (y, 1, 4), (y, 1, 6)

• (a, 2, (5,6)), (a, 2, (5,7)), (a,
3, (5,6)), (a, 3, (5,7)),

• (m, 2, 7), (m, 4, 7), (m, 6, 7)

3

4This graph contains:

• defs: nodes & edges where
variables get values

• uses: nodes & edges where
values are accessed

def = {m}

use = {y}

All Defs

Every def used once

• 1, 2, 5, 6, 7

• 1, 2, 5, 7

• 1, 3, 4, 3, 5, 7

All Uses

Every def “reaches” every
use

• 1, 2, 5, 6, 7

• 1, 2, 5, 7

• 1, 3, 5, 6, 7

• 1, 3, 5, 7

• 1, 3, 4, 3, 5,7

1. Graph - FSM Example
Memory Seats in a Lexus ES 300

Driver 1
Configuration

Driver 2
Configuration

[Ignition = off] | Button2

[Ignition = off] | Button1

seatBack ()[Ignition = on] |

Guard (safety constraint) Trigger (input)

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 45

Modified
Configuration

sideMirrors ()[Ignition = on] |

lumbar ()[Ignition = on] |

seatBottom ()[Ignition = on] |

seatBack ()[Ignition = on] |

New
Configuration

Driver 1

New
Configuration

Driver 2

[Ignition = on] | Reset AND Button1

[Ignition = on] | Reset AND Button2

Ignition = off

Ignition = off

(to Modified)

2. Logical Expressions

((a > b) or G) and (x < y)

Transitions

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 46

Software Specifications

Program Decision Statements
Logical

Expressions

2. Logical Expressions

■ Predicate Coverage: Each predicate must be true and false
– ((a>b) or G) and (x < y) = True, False

■ Clause Coverage: Each clause must be true and false

((a > b) or G) and (x < y)

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 47

■ Clause Coverage: Each clause must be true and false
– (a > b)= True, False
– G = True, False
– (x < y)= True, False

■ Combinatorial Coverage: Various combinations of clauses
– Active Clause Coverage: Each clause must determine the predicate’s result

2. Logic – Active Clause Coverage

((a > b) or G) and (x < y)

1 T F T

2 F F T

With these values
for G and (x<y),
(a>b) determines
the value of the
predicate

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 48

duplicate3 F T T

4 F F T

5 T T T

6 T T F

predicate

3. Input Domain Characterization
■ Describe the input domain of the software

– Identify inputs, parameters, or other categorization
– Partition each input into finite setsof representative values
– Choose combinationsof values

■ System level
– Number of students { 0, 1, >1}
– Level of course { 600, 700, 800}

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 49

– Level of course { 600, 700, 800}
– Major { swe, cs, isa, infs}

■ Unit level
– Parameters F (int X, int Y)

– Possible values X: { <0, 0, 1, 2, >2 }, Y : { 10, 20, 30 }

– Tests
• F (-5, 10), F (0, 20), F (1, 30), F (2, 10), F (5, 20)

4. Syntactic Structures

■ Based on a grammar, or other syntactic definition
■ Primary example is mutation testing

1. Induce small changesto the program: mutants
2. Find teststhat cause the mutant programs to fail: killing mutants
3. Failure is defined as different output from the original program
4. Check the outputof useful tests on the original program

■ Example program and mutants

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 50

■ Example program and mutants

if (x > y)

z = x - y;

else

z = 2 * x;

if (x > y)

∆∆∆∆if (x >= y)

z = x - y;

∆∆∆∆ z = x + y;

∆∆∆∆ z = x – m;

else

z = 2 * x;

Source of Structures

■ These structures can be extracted from lots of software artifacts
– Graphs can be extracted from UML use cases, finite state machines,

source code, …
– Logical expressionscan be extracted from decisions in program source,

guards on transitions, conditionals in use cases, …

■ Model-based testingderives tests from a model that describes
some aspects of the system under testsome aspects of the system under test

– The model usually describes part of the behavior
– The sourceis usually not considered a model

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 51

Coverage Overview
Four Structures for Four Structures for
Modeling SoftwareModeling Software

GraphsGraphs LogicLogic Input SpaceInput Space SyntaxSyntax
Applied to

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 52

Use casesUse cases

SpecsSpecs

DesignDesign

SourceSource

Applied
to

DNFDNFSpecsSpecs

FSMsFSMsSourceSource

InputInput

ModelsModels

IntegInteg

SourceSource

Applied
to

Coverage

■ Infeasible test requirements: test requirements that cannot be

GivenGiven aa setset ofof testtest requirementsrequirements TRTR forfor coveragecoverage criterioncriterion
CC,, aa testtest setsetTT satisfiessatisfiesCC coveragecoverage ifif andand onlyonly ifif forfor everyevery
testtest requirementrequirement trtr inin TRTR,, therethere isis atat leastleast oneone testtest tt inin TT
suchsuch thatthat tt satisfiessatisfiestrtr

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 53

■ Infeasible test requirements: test requirements that cannot be
satisfied

– No test case values exist that meet the test requirements
– Dead code
– Detection of infeasible test requirements is formally undecidable for most test

criteria

■ Thus, 100% coverage is impossiblein practice

Two Ways to Use Test Criteria

1. Directly generatetest values to satisfythe criterion often
assumed by the research community most obvious way to use
criteria very hard without automated tools

2. Generate test values externally and measureagainst the
criterion usually favored by industry

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 54

criterion usually favored by industry
– sometimes misleading
– if tests do not reach 100% coverage, what does that mean?

Test criteria are sometimes called metrics

Generators and Recognizers

■ Generator : A procedure that automatically generates values to
satisfy a criterion

■ Recognizer: A procedure that decides whether a given set of
test values satisfies a criterion

Both problems are provably undecidablefor most criteria

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 55

■ Both problems are provably undecidablefor most criteria
■ It is possible to recognize whether test cases satisfy a criterion

far more often than it is possible to generate tests that satisfy the
criterion

■ Coverage analysis toolsare quite plentiful

Comparing Criteria with Subsumption

■ Criteria Subsumption : A test criterion C1subsumes C2 if and
only if every set of test cases that satisfies criterion C1also
satisfies C2

■ Must be true for every setof test cases

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 56

■ Must be true for every setof test cases
■ Example: If a test set has covered every branch in a program

(satisfied the branch criterion), then the test set is guaranteed to
also have covered every statement

Test Coverage Criteria

■ Traditional software testing is expensiveand labor-intensive
■ Formal coverage criteria are used to decide which test inputsto

use
■ More likely that the tester will find problems
■ Greater assurance that the software is of high quality and

reliability

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 57

reliability
■ A goal or stopping rule for testing
■ Criteria makes testing more efficient and effective

But how do we start to apply these ideas in practice?But how do we start to apply these ideas in practice?

Part 3 : How ?

Now we know why and what …Now we know why and what …

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 58

How do we get there ?How do we get there ?

Now we know why and what …Now we know why and what …

Testing Levels Based on Test Process
Maturity

� Level 0 : There’s no difference between testing and debugging

� Level 1 : The purpose of testing is to show correctness
� Level 2 : The purpose of testing is to show that the software

doesn’t work
� Level 3 : The purpose of testing is not to prove anything specific,

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 59

� Level 3 : The purpose of testing is not to prove anything specific,
but to reduce the riskof using the software

� Level 4 : Testing is a mental disciplinethat helps all IT
professionals develop higher quality software

Level 0 Thinking

■ Testing is the sameas debugging

■ Does notdistinguish between incorrect behavior and mistakes in
the program

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 60

■ Does not help develop software that is reliable or safe

This is what we teach undergraduate CS majorsThis is what we teach undergraduate CS majors

Level 1 Thinking

■ Purpose is to show correctness
■ Correctness is impossibleto achieve
■ What do we know if no failures?

– Good software or bad tests?

■ Test engineershave no:

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 61

– Strict goal
– Real stopping rule
– Formal test technique
– Test managers are powerless

This is what hardware engineers often expectThis is what hardware engineers often expect

Level 2 Thinking

■ Purpose is to show failures

■ Looking for failures is a negativeactivity

■ Puts testers and developers into an adversarial relationship

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 62

■ Puts testers and developers into an adversarial relationship

■ What if there are no failures?

This describes most software companies.This describes most software companies.

How can we move to a How can we move to a team approachteam approach????

Level 3 Thinking

■ Testing can only show the presence of failures

■ Whenever we use software, we incur some risk

■ Risk may be small and consequences unimportant

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 63

■ Risk may be great and the consequences catastrophic

■ Testers and developers work together to reduce risk

This describes a few “enlightened” software companiesThis describes a few “enlightened” software companies

Level 4 Thinking

A mental discipline that increases quality

■ Testing is only one wayto increase quality

■ Test engineers can become technical leadersof the project

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 64

■ Primary responsibility to measure and improvesoftware quality

■ Their expertise should help the developers

This is the way “traditional” engineering worksThis is the way “traditional” engineering works

Summary

■ More testing saves money
– Planning for testing saves lots of money

■ Testing is no longeran “art form”
– Engineershave a tool box of test criteria

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 65

– Engineershave a tool box of test criteria

■ When testers become engineers, the product gets better
– The developers get better

Open Questions

■ Which criteria work best on embedded, highly reliable software?
– Which software structure to use?

■ How can we best automatethis testing with robust tools?
– Deriving the software structure
– Constructing the test requirements
– Creating values from test requirements
– Creating full test scripts

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 66

– Creating full test scripts
– Solution to the “mapping problem”

■ Empirical validation
■ Technology transition
■ Application to new domains

Summary of Today’s New Ideas

■ Why do we test – to reduce the riskof using the software
■ Four types of test activities– test design, automation, execution

and evaluation
■ Software terms – faults, failures, the RIP model, observability

and controllability
■ Four structures – test requirementsand criteriaFour structures – test requirementsand criteria
■ Test process maturity levels – level 4 is a mental disciplinethat

improves the quality of the software

Introduction to Software Testing (Ch 1), www.introsoftwaretesting.com © Ammann & Offutt 67

Earlier and better testing can Earlier and better testing can empowerempowerthe test the test
managermanager

