Ch. 2: Graph Coverage

Four Structures for Modeling Software

Graphs

Logic
Input Space
Syntax

Applied to

Source
Specs
FSMs
DNF

Source
Specs
Design
Use cases

Source
Models
Integ
Input
Covering Graphs
(2.1)

• Graphs are the most *commonly* used structure for testing

• Graphs can come from *many sources*
 – Control flow graphs
 – Design structure
 – FSMs and statecharts
 – Use cases

• Tests usually are intended to “*cover*” the graph in some way
Definition of a Graph

- A set \(N \) of **nodes**, \(N \) is not empty
- A set \(N_0 \) of **initial nodes**, \(N_0 \) is not empty
- A set \(N_f \) of **final nodes**, \(N_f \) is not empty
- A set \(E \) of **edges**, each edge from one node to another
 - \((n_i, n_j) \), \(i \) is **predecessor**, \(j \) is **successor**
Three Example Graphs

\[N_0 = \{ 0 \} \quad N_0 = \{ 0, 1, 2 \} \quad N_0 = \{ \} \]

\[N_f = \{ 3 \} \quad N_f = \{ 7, 8, 9 \} \quad N_f = \{ 3 \} \]
Paths in Graphs

- **Path**: A sequence of nodes – \([n_1, n_2, \ldots, n_M]\)
 - Each pair of nodes is an edge
- **Length**: The number of edges
 - A single node is a path of length 0
- **Subpath**: A subsequence of nodes in \(p\) is a subpath of \(p\)
- **Reach** \((n)\): Subgraph that can be reached from \(n\)

Reach \((0)\) = \(\{0, 3, 4, 7, 8, 5, 1, 9\}\)
Reach \((\{0, 2\}) = G\)
Reach([2,6]) = \(\{2, 6, 9\}\)
Test Paths and SESEs

- **Test Path**: A path that starts at an initial node and ends at a final node

- Test paths represent execution of test cases
 - Some test paths can be executed by many tests
 - Some test paths cannot be executed by any tests

- **SESE graphs**: All test paths start at a single node and end at another node
 - Single-entry, single-exit
 - N₀ and Nᵋ have exactly one node

Double-diamond graph

Four test paths

- [0, 1, 3, 4, 6]
- [0, 1, 3, 5, 6]
- [0, 2, 3, 4, 6]
- [0, 2, 3, 5, 6]
Visiting and Touring

- **Visit**: A test path p *visits* node n if n is in p

 A test path p *visits* edge e if e is in p

- **Tour**: A test path p *tours* subpath q if q is a subpath of p

Path $[0, 1, 3, 4, 6]$

Visits nodes 0, 1, 3, 4, 6

Visits edges $(0, 1), (1, 3), (3, 4), (4, 6)$

Tours subpaths $(0, 1, 3), (1, 3, 4), (3, 4, 6), (0, 1, 3, 4), (1, 3, 4, 6)$
Tests and Test Paths

- **path** (t) : The test path executed by test t

- **path** (T) : The set of test paths executed by the set of tests T

- Each test executes *one and only one* test path

- A location in a graph (node or edge) can be *reached* from another location if there is a sequence of edges from the first location to the second
 - **Syntactic reach** : A subpath exists in the graph
 - **Semantic reach** : A test exists that can execute that subpath
Tests and Test Paths

Deterministic software – a test always executes the same test path

Non-deterministic software – a test can execute different test paths
Testing and Covering Graphs (2.2)

- We use graphs in testing as follows:
 - Developing a model of the software as a graph
 - Requiring tests to visit or tour specific sets of nodes, edges or subpaths

- **Test Requirements (TR)**: Describe properties of test paths

- **Test Criterion**: Rules that define test requirements

- **Satisfaction**: Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement in TR, there is a test path in $\text{path}(T)$ that meets the test requirement tr

- **Structural Coverage Criteria**: Defined on a graph just in terms of nodes and edges

- **Data Flow Coverage Criteria**: Requires a graph to be annotated with references to variables
Node and Edge Coverage

- The first (and simplest) two criteria require that each node and edge in a graph be executed

Node Coverage (NC): Test set T satisfies node coverage on graph G iff for every syntactically reachable node n in N, there is some path p in $\text{path}(T)$ such that p visits n.

- This statement is a bit cumbersome, so we abbreviate it in terms of the set of test requirements

Node Coverage (NC): TR contains each reachable node in G.
Node and Edge Coverage

- Edge coverage is slightly stronger than node coverage

Edge Coverage (EC): TR contains each reachable path of length up to 1, inclusive, in G.

- The “length up to 1” allows for graphs with one node and no edges

- NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an “if-else” statement)

Node Coverage: TR = { 0, 1, 2 }
Test Path = [0, 1, 2]

Edge Coverage: TR = { (0,1), (0, 2), (1, 2) }
Test Paths = [0, 1, 2]
[0, 2]
Paths of Length 1 and 0

• A graph with **only one node** will not have any edges

 ![Graph with one node](image)

• It may be boring, but formally, Edge Coverage needs to require Node Coverage on this graph

• Otherwise, Edge Coverage will not subsume Node Coverage
 – So we define “length up to 1” instead of simply “length 1”

• We have the same issue with graphs that only have **one edge** – for Edge Pair Coverage …
Covering Multiple Edges

- **Edge-pair coverage requires** pairs of edges, or subpaths of length 2

 Edge-Pair Coverage (EPC): TR contains each reachable path of length up to 2, inclusive, in G.

- The “**length up to 2**” is used to include graphs that have less than 2 edges

- The logical extension is to require all paths ...

 Complete Path Coverage (CPC): TR contains all paths in G.

- Unfortunately, this is **impossible** if the graph has a loop, so a weak compromise is to make the tester decide which paths:

 Specified Path Coverage (SPC): TR contains a set S of test paths, where S is supplied as a parameter.
Structural Coverage Example

Node Coverage

TR = \{ 0, 1, 2, 3, 4, 5, 6 \}
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

Edge Coverage

TR = \{ (0,1), (0,2), (1,2), (2,3), (2,4), (3,6), (4,5), (4,6), (5,4) \}
Test Paths: [0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

Edge-Pair Coverage

TR = \{ [0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6], [2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] \}
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 2, 3, 6]
[0, 2, 4, 5, 4, 6]

Complete Path Coverage

Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6]
[0, 1, 2, 4, 5, 4, 5, 4, 6] ...
Loops in Graphs

• If a graph contains a loop, it has an infinite number of paths

• Thus, CPC is not feasible

• SPC is not satisfactory because the results are subjective and vary with the tester

• Attempts to “deal with” loops:
 – 1970s: Execute cycles once ([4, 5, 4] in previous example, informal)
 – 1980s: Execute each loop, exactly once (formalized)
 – 1990s: Execute loops 0 times, once, more than once (informal description)
 – 2000s: Prime paths
Simple Paths and Prime Paths

- **Simple Path**: A path from node n_i to n_j is simple if no node appears more than once, except possibly the first and last nodes are the same
 - No internal loops
 - Includes all other subpaths
 - A loop is a simple path

- **Prime Path**: A simple path that does not appear as a proper subpath of any other simple path

Simple Paths: $[0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1], [2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2], [2, 3, 0, 1], [0, 1, 3], [0, 2, 3], [1, 3, 0], [2, 3, 0], [3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0], [0], [1], [2], [3]

Prime Paths: $[0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1], [2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2], [2, 3, 0, 1]$
Prime Path Coverage

- A simple, elegant and finite criterion that requires loops to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path in G.

- Will tour all paths of length 0, 1, …
- That is, it subsumes node, edge, and edge-pair coverage
Round Trips

• **Round-Trip Path**: A prime path that starts and ends at the same node

- **Simple Round Trip Coverage (SRTC)**: TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.

- **Complete Round Trip Coverage (CRTC)**: TR contains all round-trip paths for each reachable node in G.

• These criteria **omit nodes and edges** that are not in round trips
• That is, they do **not** subsume edge-pair, edge, or node coverage
Prime Path Example

- The previous example has 38 simple paths
- Only nine prime paths

Prime Paths

- [0, 1, 2, 3, 6]
- [0, 1, 2, 4, 5]
- [0, 1, 2, 4, 6]
- [0, 2, 3, 6]
- [0, 2, 4, 5]
- [0, 2, 4, 6]
- [5, 4, 6]
- [4, 5, 4]
- [5, 4, 5]

Execute loop once

Execute loop more than once

Execute loop 0 times
Touring, Sidetrips and Detours

- Prime paths do not have **internal loops** … test paths might

- **Tour**: A test path p tours subpath q if q is a subpath of p

- **Tour With Sidetrips**: A test path p tours subpath q with sidetrips iff every edge in q is also in p in the same order
 - The tour can include a sidetrip, as long as it comes back to the same node

- **Tour With Detours**: A test path p tours subpath q with detours iff every node in q is also in p in the same order
 - The tour can include a detour from node ni, as long as it comes back to the prime path at a successor of ni
Sidetrips and Detours Example

Touring without sidetrips or detours

Touring with a sidetrip

Touring with a detour
Infeasible Test Requirements

• An **infeasible** test requirement cannot be satisfied
 – Unreachable statement (dead code)
 – A subpath that can only be executed if a contradiction occurs \((X > 0 \text{ and } X < 0)\)

• Most test **criteria** have some infeasible test requirements
• It is usually **undecidable** whether all test requirements are feasible
• When sidetrips are not allowed, many structural criteria have more infeasible test requirements
• However, always allowing **sidetrips weakens** the test criteria

Practical recommendation – Best Effort Touring

– Satisfy as many test requirements as possible without sidetrips
– Allow sidetrips to try to satisfy unsatisfied test requirements
Simple & Prime Path Example

Simple paths

Len 0
[0]
[1]
[2]
[3]
[4]
[5]
[6]!

Len 1
[0, 1]
[0, 2]
[1, 2]
[2, 3]
[2, 4]
[3, 6]!
[4, 6]!
[4, 5]
[5, 4]

Len 2
[0, 1, 2]
[0, 2, 3]
[1, 2, 3]
[2, 3, 6]!
[2, 4, 6]!
[2, 4, 5]!
[4, 5, 4]*
[5, 4, 6]!
[5, 4, 5]*

Len 3
[0, 1, 2, 3]
[0, 1, 2, 4]
[0, 2, 3, 6]!
[0, 2, 4, 6]!
[0, 2, 4, 5]!
[1, 2, 3, 6]!
[1, 2, 4, 5]!
[1, 2, 4, 6]!

Prime Paths

'!' means path terminates

'*' means path cycles
Data Flow Criteria

Goal: Try to ensure that values are computed and used correctly

- **Definition (def)**: A location where a value for a variable is stored into memory
- **Use**: A location where a variable’s value is accessed
- **def (n) or def (e)**: The set of variables that are defined by node n or edge e
- **use (n) or use (e)**: The set of variables that are used by node n or edge e

```
X = 42

0 → 1 → 2 → 3 → 4 ← 5 ← 6

Z = X*2
Z = X-8
```

Defs:
- def (0) = {X}
- def (4) = {Z}
- def (5) = {Z}

Uses:
- use (4) = {X}
- use (5) = {X}
DU Pairs and DU Paths

- **DU pair**: A pair of locations \((l_i, l_j)\) such that a variable \(v\) is defined at \(l_i\) and used at \(l_j\)
- **Def-clear**: A path from \(l_i\) to \(l_j\) is def-clear with respect to variable \(v\) if \(v\) is not given another value on any of the nodes or edges in the path
- **Reach**: If there is a def-clear path from \(l_i\) to \(l_j\) with respect to \(v\), the def of \(v\) at \(l_i\) reaches the use at \(l_j\)
- **du-path**: A simple subpath that is def-clear with respect to \(v\) from a def of \(v\) to a use of \(v\)
- **du** \((n_i, n_j, v)\) – the set of du-paths from \(n_i\) to \(n_j\)
- **du** \((n_i, v)\) – the set of du-paths that start at \(n_i\)
Touring DU-Paths

• A test path p **du-tours** subpath d with respect to v if p tours d and the subpath taken is def-clear with respect to v

• **Sidetrips** can be used, just as with previous touring

• **Three criteria**
 – Use every def
 – Get to every use
 – Follow all du-paths
Data Flow Test Criteria

- **First, we make sure** every def reaches a use

 All-defs coverage (ADC): For each set of du-paths \(S = du (n, v) \), TR contains at least one path \(d \) in \(S \).

- **Then we make sure that** every def reaches all possible uses

 All-uses coverage (AUC): For each set of du-paths to uses \(S = du (n_i, n_j, v) \), TR contains at least one path \(d \) in \(S \).

- **Finally, we cover** all the paths between defs and uses

 All-du-paths coverage (ADUPC): For each set \(S = du (n_i, n_j, v) \), TR contains every path \(d \) in \(S \).
Data Flow Testing Example

\[X = 42 \]

\[Z = X \times 2 \]
\[Z = X - 8 \]

All-defs for X

\[[0, 1, 3, 4] \]

All-uses for X

\[[0, 1, 3, 4] \]
\[[0, 1, 3, 5] \]

All-du-paths for X

\[[0, 1, 3, 4] \]
\[[0, 2, 3, 4] \]
\[[0, 1, 3, 5] \]
\[[0, 2, 3, 5] \]
Graph Coverage Criteria Subsumption

Complete Path Coverage
 CPC

Prime Path Coverage
 PPC

All-DU-Paths Coverage
 ADUP

All-uses Coverage
 AUC

All-defs Coverage
 ADC

Edge-Pair Coverage
 EPC

Edge Coverage
 EC

Node Coverage
 NC

Complete Round Trip Coverage
 CRTC

Simple Round Trip Coverage
 SRTC