
Introduction to Software Testing
Chapter 2.3

Graph Coverage for Source Code

Paul Ammann & Jeff Offutt

www.introsoftwaretesting.com

Overview

• The most common application of graph criteria is to
program source

• Graph : Usually the control flow graph (CFG)

• Node coverage: Execute every statement

• Edge coverage: Execute every branch

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 2

• Edge coverage: Execute every branch

• Loops : Looping structures such as for loops, while
loops, etc.

• Data flow coverage: Augment the CFG
– defsare statements that assign values to variables
– usesare statements that use variables

Control Flow Graphs

• A CFG models all executions of a method by describing control
structures

• Nodes: Statements or sequences of statements (basic blocks)
• Edges: Transfers of control
• Basic Block: A sequence of statements such that if the first

statement is executed, all statements will be (no branches)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 3

statement is executed, all statements will be (no branches)

• CFGs are sometimes annotated with extra information
– branch predicates
– defs
– uses

• Rules for translating statements into graphs …

CFG : The if Statement

if (x < y)
{

y = 0;
x = x + 1;

}
else
{

1

2 3

x >= yx < y

x = y
y = 0

x = x + 1

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 4

{
x = y;

}
4

if (x < y)
{

y = 0;
x = x + 1;

}
3

1

2
x >= y

x < y

y = 0
x = x + 1

CFG : The if-Return Statement

if (x < y)
{

return;
}
print (x);
return;

1

2
x >= y

x < y

return

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 5

return;
3 print (x)

return

No edge from node 2 to 3.
The return nodes must be distinct.

Loops

• Loops require “extra” nodes to be added

• Nodes that do notrepresent statements or basic blocks

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 6

CFG : while and for Loops

x = 0;
while (x < y)
{

y = f (x, y);
x = x + 1;

}

1x = 0

43
y =f(x,y)

x >= yx < y
1

2

dummy node

x = 0
implicitly

initializes loop

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 7

y =f(x,y)
x = x + 1

for (x = 0; x < y; x++)
{

y = f (x, y);
}

x = x + 1

2

3 5

x >= yx < y

y = f (x, y)

4

implicitly
increments loop

CFG : The case (switch) Structure

read (c) ;
switch (c)
{

case ‘N’:
y = 25;
break;

1 read (c);

c == ‘N’
c == ‘Y’ default

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 8

break;
case ‘Y’:

y = 50;
break;

default:
y = 0;
break;

}
print (y);

5

y = 0;
break;

2 43
y = 50;
break;

y = 25;
break;

print (y);

Example Control Flow – Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 9

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

Control Flow Graph for Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

i = 0

i >= length

1

2

3

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 10

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

i < length
i++

i >= length
i < length

i = 0

i++

5
4

6

87

Control Flow TRs and Test Paths – EC

1

2

3

TR
A. [1, 2]
B. [2, 3]
C. [3, 4]

Test Path
[1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Edge Coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 11

5
4

6

87

C. [3, 4]
D. [3, 5]
E. [4, 3]
F. [5, 6]
G. [6, 7]
H. [6, 8]
I. [7, 6]

Control Flow TRs and Test Paths – EPC

1

2

3

TR
A. [1, 2, 3]
B. [2, 3, 4]
C. [2, 3, 5]
D. [3, 4, 3]

Test Paths
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii. [1, 2, 3, 5, 6, 8]
iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7,

6, 7, 6, 8]

Edge-Pair Coverage

i A, B, D, E, F, G, I J C, H

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 12

5
4

6

87

D. [3, 4, 3]
E. [3, 5, 6]
F. [4, 3, 5]
G. [5, 6, 7]
H. [5, 6, 8]
I. [6, 7, 6]
J. [7, 6, 8]
K. [4, 3, 4]
L. [7, 6, 7]

6, 7, 6, 8]

TP TRs toured sidetrips

ii A, C, E, H

iii A, B, C, D, E, F, G,
I, J, K, L

H

Control Flow TRs and Test Paths – PPC

1

2

3

TR
A. [3, 4, 3]
B. [4, 3, 4]
C. [7, 6, 7]
D. [7, 6, 8]
E. [6, 7, 6]

Test Paths
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii. [1, 2, 3, 4, 3, 4, 3,

5, 6, 7, 6, 7, 6, 8]
iii. [1, 2, 3, 4, 3, 5, 6, 8]
iv. [1, 2, 3, 5, 6, 7, 6, 8]

Prime Path Coverage

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 13

5
4

6

87

E. [6, 7, 6]
F. [1, 2, 3, 4]
G. [4, 3, 5, 6, 7]
H. [4, 3, 5, 6, 8]
I. [1, 2, 3, 5, 6, 7]
J. [1, 2, 3, 5, 6, 8]

iv. [1, 2, 3, 5, 6, 7, 6, 8]
v. [1, 2, 3, 5, 6, 8]

i A, D, E, F, G H, I, J

TP TRs toured sidetrips

ii A, B, C, D, E, F, G, H, I, J

iii A, F, H J

iv D, E, F, I J

v J

Data Flow Coverage for Source

• def : a location where a value is stored into memory
– x appears on the left side of an assignment (x = 44;)
– x is an actual parameter in a call and the method changes its value
– x is a formal parameter of a method (implicit def when method starts)
– x is an input to a program

• use: a location where variable’s value is accessed

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 14

– x appears on the right side of an assignment
– x appears in a conditional test
– x is an actual parameter to a method
– x is an output of the program
– x is an output of a method in a return statement

• If a def and a use appear on the same node, then it is only a DU-
pair if the def occurs afterthe use and the node is in a loop

Example Data Flow – Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 15

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] - mean) * (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);
System.out.println ("standard deviation: " + sd);

}

1

2

3

Control Flow Graph for Stats
(numbers)
sum = 0
length = numbers.length

i = 0

i >= length

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 16

8

4 5

6

7

i < length

sum += numbers [i]
i++

med = numbers [length / 2]
mean = sum / (double) length;
varsum = 0
i = 0

i >= length

i < length

varsum = …
i++

var = varsum / (length - 1.0)
sd = Math.sqrt (var)
print (length, mean, med, var, sd)

1

2

3

CFG for Stats – With Defs & Uses

def (1) = { numbers, sum, length }

def (2) = { i }

use (3, 5) = { i, length }

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 17

8

4 5

6

7

def (5) = { med, mean, varsum, i }
use (5) = { numbers, length, sum }

def (8) = { var, sd }
use (8) = { varsum, length, mean,

med, var, sd }

use (3, 4) = { i, length }

def (4) = { sum, i }
use (4) = { sum, numbers, i }

use (6, 8) = { i, length }

use (6, 7) = { i, length }

def (7) = { varsum, i }
use (7) = { varsum, numbers, i, mean }

Defs and Uses Tables for Stats

Node Def Use
1 { numbers, sum,

length }
2 { i }

3
4 { sum, i } { numbers, i, sum }

5 { med, mean, { numbers, length, sum }

Edge Use

(1, 2)

(2, 3)

(3, 4) { i, length }
(4, 3)

(3, 5) { i, length }

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 18

5 { med, mean,
varsum, i }

{ numbers, length, sum }

6

7 { varsum, i } { varsum, numbers, i,
mean }

8 { var, sd } { varsum, length, var,
mean, med, var, sd }

(3, 5) { i, length }

(5, 6)

(6, 7) { i, length }

(7, 6)

(6, 8) { i, length }

DU Pairs for Stats

variable DU Pairs

numbers (1, 4) (1, 5) (1, 7)
length (1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))

med (5, 8)
var (8, 8)
sd (8, 8)

defs come beforeuses, do
not count as DU pairs

defs afteruse in loop,
these are valid DU pairs

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 19

mean (5, 7) (5, 8)
sum (1, 4) (1, 5) (4, 4) (4, 5)

varsum (5, 7) (5, 8) (7, 7) (7, 8)

i (2, 4) (2, (3,4)) (2, (3,5)) (2, 7) (2, (6,7)) (2, (6,8))
(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))
(5, 7) (5, (6,7)) (5, (6,8))
(7, 7) (7, (6,7)) (7, (6,8))

No def-clear path …
different scope for i

No path through graph from
nodes 5 and 7 to 4 or 3

DU Paths for Stats
variable DU Pairs DU Paths

numbers (1, 4)
(1, 5)
(1, 7)

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]

length (1, 5)
(1, 8)
(1, (3,4))
(1, (3,5))
(1, (6,7))

[1, 2, 3, 5]
[1, 2, 3, 5, 6, 8]
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]

variable DU Pairs DU Paths

mean (5, 7)
(5, 8)

[5, 6, 7]
[5, 6, 8]

varsum (5, 7)
(5, 8)
(7, 7)
(7, 8)

[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 8]

i (2, 4)
(2, (3,4))

[2, 3, 4]
[2, 3, 4]

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 20

(1, (6,7))
(1, (6,8))

[1, 2, 3, 5, 6, 7]
[1, 2, 3, 5, 6, 8]

med (5, 8) [5, 6, 8]

var (8, 8) No path needed

sd (8, 8) No path needed

sum (1, 4)
(1, 5)
(4, 4)
(4, 5)

[1, 2, 3, 4]
[1, 2, 3, 5]
[4, 3, 4]
[4, 3, 5]

(2, (3,4))
(2, (3,5))
(4, 4)
(4, (3,4))
(4, (3,5))
(5, 7)
(5, (6,7))
(5, (6,8))
(7, 7)
(7, (6,7))
(7, (6,8))

[2, 3, 4]
[2, 3, 5]
[4, 3, 4]
[4, 3, 4]
[4, 3, 5]
[5, 6, 7]
[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 7]
[7, 6, 8]

DU Paths for Stats – No Duplicates

There are 38 DU paths for Stats, but only 12 unique

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]
[1, 2, 3, 5, 6, 8]
[2, 3, 4]
[2, 3, 5]

[4, 3, 4]
[4, 3, 5]
[5, 6, 7]
[5, 6, 8]
[7, 6, 7]
[7, 6, 8]

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 21

[2, 3, 5] [7, 6, 8]

5 expect a loop not to be “entered”

5 require at least one iteration of a loop

2 require at least twoiteration of a loop

Test Cases and Test Paths
Test Case : numbers = (44) ; length = 1
Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
Additional DU Paths covered (no sidetrips)
[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]
The five stars that require at least one iteration of a loop

Test Case : numbers = (2, 10, 15) ; length = 3
Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com © Ammann & Offutt 22

Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]
DU Paths covered (no sidetrips)
[4, 3, 4] [7, 6, 7]
The two stars that require at least two iterations of a loop

Other DU paths require arrays with length 0 to skip loops
But the method fails with divide by zero on the statement …

mean = sum / (double) length; A fault was
found

Summary

• Applying the graph test criteria to control flow graphs is
relatively straightforward

– Most of the developmental researchwork was done with CFGs

• A few subtle decisionsmust be made to translate control
structures into the graph

• Some tools will assign each statement to a unique node
– These slides and the book uses basic blocks
– Coverage is the same, although the bookkeepingwill differ

