Introduction to Software Testing
Chapter 2.4
Graph Coverage for Design Elements

Paul Ammann & Jeff Offutt

OO Software and Designs

- Emphasis on modularity and reuse putgomplexity in
the design connections

 Testing design relationshipsis more important than
before

- Graphs are based on th&onnectionsamong the
software components
— Connections are dependency relations, also calleduplings

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Call Graph

- The most common graph for structural design testing
- Nodes: Units (in Java — methods)
- Edges: Calls to units

A Node coth least
/ ! once (me
B C\
= E Edge covmall at
Example call graph leas -

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Call Graphs on Classes

- Node and edge coverage of class call graphs often do not work
very well

- Individual methods might not call each other at all!

Class stack

public void push (Object 0)
public Object pop () ”

public boolean isEmpty (Object 0)

push

Other types of testing are needed — dodo mot use graph criteria

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Inheritance & Polymorphism

Caution : Ideas are preliminary and not widely used

Classes are not executable, so
this graph is not directly testable

We need objects

C D

Example inheritance |
hierarchy graph objects

What is coverage

@/ on this graph ?

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Coverage on Inheritance Graph

Create an object for each class ?
 This seems weak because there is no execution

Create an object for each class and apply call
coverage?

OO0 Call Cove
call graph of
hierarchy.

OO0 Object C:
In the call gra
the dasseres

- Data flow Is probably more appropriate ...

Introduction to Software Testing (Ch 2), www.irgadtwaretesting.com © Ammann & Offutt

Data Flow at the Design Level

Data flow couplings among units and classese more
complicatedthan control flow couplings

— When values are passed, they “change nanies
— Many different ways to share data

— Finding defs and uses can be difficult — finding whoh uses a def can reach
IS very difficult

When software gets complicated ... testers should get interes

— That's where the faults are!
Caller : A unit that invokes another unit

Callee: The unit that is called

Callsite : Statement or node where the call appears
Actual parameter : Variable in the caller

Formal parameter : Variable in the callee

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Example Call Site

A

B (X

interface énd A

3.(Y)

end B

Caller

Actual
Parameter

Callee

Formal

Parameter

Applying data flow criteria to def-use pairs between units i$00

expensive
Too many possibilities

But this is integration testing, and we really only care about the

Interface ...

Introduction to Software Testing (Ch 2), www.irgadtwaretesting.com

© Ammann & Offutt

Inter-procedural DU Pairs

- If we focus on the interface, then we just need to consider the
last definitions of variables before calls and returns andirst
usesinside units and after calls

Last-def: The set of nodes that define a variablg and has a
def-clear path from the node through a callsite to a use in the
other unit

— Can be from caller to callee (parameter or sharedariable) or from callee
to caller as a return value

First-use: The set of nodes that have uses of a variabjend for
which there is a def-clear and use-clear path from the calls to

the nodes

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Example Inter-procedural DU Pairs

Caller

F X=14
y=G(x)

print.)

Callee

G (a) print (a)

n=42

return (b)

last-def

callsite

first-use

first-use

last-def

Introduction to Software Testing (Ch 2), www.irgadtwaretesting.com

© Ammann & Offutt

Last Defs
2,3

First Uses

11,12

Example — Quadratic

25

1 /I Program to compute the quadratic root for 26 If Qk) :
two numbers 27 System.out.printin

2 import java.lang.Math; 28 (“Quadratic: ” HRootl + Root2);
3 29 else
4 class Quadratic 30 System.out.printin (“No Solutio.”);

{ 31 }

private static float Rootl, Root2 32 L : :

33 /I Three positive integers, finds quadratic root
public static void main (String[] argv) gg :
: int X, Y, Z; 36 float D;
boolean ok 37 boolean Resul

int controlFlag = Integer.parselnt (argv[0]) |38 D = (float) Math.pow ((doubleB,

I{f (controIFIag == l) (dOUb|82-4.0)’A*C);
39 if (D <0.0
X = Integer.parselint (argv[1]); 40 (D <0.0)

Y = Integer.parselnt (argv[2]); 41 Result= false:

Z = Integer.parselnt (argv([3]);
42 return (Result);

43 }

44 Rootl = (float) ((-B + Math.sqrt(D))/(2.0*A));
45 Root2 = (float) ((-B —Math.sqrt(D))/(2.0*A));
46 Result= true;

47 return (Result);

48 }//End method Root

49

50 }// End class Quadratic

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com oo

1 // Program to compute the quadratic root for two numbers
2 import java.lang.Math;

4 class Quadratic
5 {

6 private static floatRoot1, Root2 shared variables
7

8 public static void main (String[] argv)

9 {

10 intX,Y, Z

11 boolean ok;

12 int controlFlag = Integer.parselnt (argv[0]);
13 if (controlFlag ==

14

15 X = Integer.parselint (argv[1));
last-defs 16 Y = Integer.parselnt (argv[2]);

17 Z = Integer.parselnt (argv[3]);

18

19

20

21
22
23
24

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

first-use

first-use

last-def

last-defs

A
26
27
28
AS
30
31
32
33
34
35
36
37
38
39
40

11

42
43
44
45
46
47
48
49

ok =Root (X, Y, 2);
if Ok)
SyStem.out.printin
(“Quadratic:*+Rootl + Root2);
else
System.out.printin (“No Solution.”);

}

I/l Three positive integers, finds the quadratic root
private static boolean Root (int A, int B, int C)
I
float D;
booleari-Resuilt;
D = (float) Math.pow ({ccukleB, (doublez-4.0)*A*C):
if (D <0.0)

Result= false;

return (Result);
1

Rootl= (float) ((-B + Math.sqrt(D)) / (2.0*A));
Root2 == (float) ((-B — Math.sqrt(D)) / (2.0*A));
Result= true;
returr (Result);

} / /TEnd method Root

50 } // End class Quadratic

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Introduction

Quadratic — Coupling DU-pairs

Pairs of locations method name, variablename, statement
(main (), X, 15) — (Root (), A, 38)
(main (), Y, 16) — (Root (), B, 38)
(main (), Z, 17) — (Root (), C, 38)
(main (), X, 21) — (Root (), A, 38)
(main (), Y, 22) — (Root (), B, 38)
(main (), Z, 23) — (Root (), C, 38)

(Root (), Rootl, 44) — (main (), Rootl, 28)
(Root (), Root2, 45) — (main (), Root2, 28)
(Root (), Result, 41) — (main (), ok, 26)
(Root (), Result, 46) — (main (), ok, 26)

to Software Testing (Ch 2), www.irgoftwaretesting.com

Coupling Data Flow Notes

Only variables that are used or definedin the callee

Implicit initializations of class and global variables

Transitive DU-pairs are too expensive to hand
— A calls B, B calls C, and there is a variable defad in A and used in C

Arrays : a reference to one element is considered to b€
a reference to all elements

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Inheritance, Polymorphism &
Dynamic Binding

Additional control and data connectionsnake data flow
analysis more complex

The defining and using units may be irdifferent call hierarchies

When inheritance hierarchies are used, a def in one unit cou
reach uses irany classin the inheritance hierarchy

With dynamic binding, the same location can reach different
uses depending on the current type of the using object

The same location can have different definitions or uses at
different points in the execution !

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Additional Definitions

« Inheritance : If class B inherits from classA, then all variables
and methods IinA are implicitly in B, and B can add more

— A'is the parent or ancestor
— B is thechild or descendent

- An object referenceobj that is declared to be of typeA can be
assigned an object of either typA, B, or any of B's descendent

— Declared type: The type used in the declaration:A obj;
— Actual type : The type used in the object assignmentabj = new B();

« Class (State) Variables The variables declared at the class
level, often private

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Types of Def-Use Pairs

def last-def
AO| &[] A0

Inter-procedural
data flow

B () first-use
A() use | B()
Intra-procedural data flow :

(within the same unit)

ful | coupling

def

A() > A()

B() g ijse
B()

FQ

object-oriented direct

0

J AQ

N() -

M()

» def

B()

N()

FO

A

\4
» use

B()

object-oriented indirect

coupling data flow

© Ammann & Offutt

coupling data flow

Introduction to Software Testing (Ch 2), www.irgadtwaretesting.com

OO Data Flow Summary

« The defs and uses could be In theame classor
different classes

- Researcherdhave applied data flow testing to the direct
coupling OO situation

— Has not been used in practic
— No tools available

- Indirect coupling data flow testing hasnot been tried
either in research or in practice

— Analysis cost maybe prohibitive

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

Web Applications and Other Distributed
Software

message

def | use

A() | B0

distributed software data flow

« “message” could be HTTP, RMI, or other mechanism

« A() and B() could be in the same class or accessing a
persistent variable such as in a web session

- Beyond current technologies

Introduction to Software Testing (Ch 2), www.irgoftwaretesting.com © Ammann & Offutt

