
Introduction to Software Testing
Chapter 2.4

Graph Coverage for Design Elements

Paul Ammann & Jeff Offutt

www.introsoftwaretesting.com

OO Software and Designs

• Emphasis on modularity and reuse puts complexity in
the design connections

• Testing design relationships is more important than
before

© Ammann & Offutt 2

before

• Graphs are based on the connectionsamong the
software components

– Connections are dependency relations, also called couplings

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Call Graph
• The most common graph for structural design testing
• Nodes: Units (in Java – methods)
• Edges: Calls to units

A Node coverageNode coverage : call every unit at least : call every unit at least

© Ammann & Offutt 3

Example call graph

B C D

FE

Node coverageNode coverage : call every unit at least : call every unit at least
once (method coverage)once (method coverage)

Edge coverageEdge coverage : execute every call at : execute every call at
least once (call coverage)least once (call coverage)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Call Graphs on Classes
• Node and edge coverage of class call graphs often do not work

very well
• Individual methods might not call each other at all!

Class stack
public void push (Object o)
public Object pop () ? ? ?

© Ammann & Offutt 4

public Object pop ()
public boolean isEmpty (Object o)

Other types of testing are needed Other types of testing are needed –– do do notnot use graph criteriause graph criteria

poppush isEmpty

? ? ?

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Inheritance & Polymorphism
Caution : Ideas are preliminary and not widely used

A

B

Classes are not executable, so
this graph is not directly testable

We need objects

© Ammann & Offutt 5

Example inheritance
hierarchy graph

C D A

B

C D

a

b

dc

objects

What is coverage
on this graph ?

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Coverage on Inheritance Graph

• Create an object for each class ?
• This seems weak because there is no execution

• Create an object for each class and apply call
coverage?

OOOO CallCall CoverageCoverage:: TRTR containscontains eacheach reachablereachable nodenode inin thethe

© Ammann & Offutt 6

callcall graphgraph ofof anan objectobject instantiatedinstantiated forfor eacheach classclass inin thethe classclass
hierarchyhierarchy..

OOOO ObjectObject CallCall CoverageCoverage:: TRTR containscontains eacheach reachablereachable nodenode
inin thethe callcall graphgraph ofof everyevery objectobject instantiatedinstantiated forfor eacheach classclass inin
thethe classclass hierarchyhierarchy..

• Data flow is probably more appropriate …

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Data Flow at the Design Level
• Data flow couplings among units and classes are more

complicatedthan control flow couplings
– When values are passed, they “change names”
– Many different ways to share data
– Finding defs and uses can be difficult – finding which uses a def can reach

is very difficult

• When software gets complicated … testers should get interested

© Ammann & Offutt 7

• When software gets complicated … testers should get interested
– That’s where the faults are!

• Caller : A unit that invokes another unit
• Callee: The unit that is called
• Callsite : Statement or node where the call appears
• Actual parameter : Variable in the caller
• Formal parameter : Variable in the callee

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Example Call Site

A
MMMM

B (x)
MMMM

end A

B (Y)

Caller

Actual
Parameter

Callee
interface

© Ammann & Offutt 8

B (Y)
MMMM

end B

Formal
Parameter

• Applying data flow criteria to def-use pairs between units is too
expensive

• Too many possibilities
• But this is integration testing, and we really only care about the

interface …

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Inter-procedural DU Pairs
• If we focus on the interface, then we just need to consider the

last definitions of variables before calls and returns and first
usesinside units and after calls

• Last-def : The set of nodes that define a variable x and has a
def-clear path from the node through a callsite to a use in the
other unit

© Ammann & Offutt 9

other unit
– Can be from caller to callee (parameter or shared variable) or from callee

to caller as a return value

• First-use : The set of nodes that have uses of a variable y and for
which there is a def-clear and use-clear path from the callsite to
the nodes

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Example Inter-procedural DU Pairs

F X = 14
MMMM

y = G (x)
MMMM

print (y)

Caller

DU pair
11

B (int y)

Z = y T = y

10

12

callsite

first-use

last-def
x = 5

x = 4

x = 3

1

2

3

© Ammann & Offutt 10

G (a) print (a)
MMMM

b = 42
MMMM

return (b)

Callee

DU
pair

print (y)13

Last Defs
2, 3

First Uses
11, 12

first-use

last-def

B (x)4

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

1 // Program to compute the quadratic root for
two numbers
2 import java.lang.Math;
3
4 class Quadratic
5 {
6 private static float Root1, Root2;
7
8 public static void main (String[] argv)
9 {
10 int X, Y, Z;
11 boolean ok;

25 ok = Root (X, Y, Z);
26 if (ok)
27 System.out.println
28 (“Quadratic: ” + Root1+ Root2);
29 else
30 System.out.println (“No Solution.”);
31 }
32
33 // Three positive integers, finds quadratic root
34 private static booleanRoot (int A, int B, int C)
35 {
36 float D;
37 boolean Result;
38 D = (float) Math.pow ((double)B,

Example – Quadratic

© Ammann & Offutt 11

11 boolean ok;
12 int controlFlag = Integer.parseInt (argv[0]);
13 if (controlFlag == 1)
14 {
15 X = Integer.parseInt (argv[1]);
16 Y = Integer.parseInt (argv[2]);
17 Z = Integer.parseInt (argv[3]);
18 }
19 else
20 {

21 X = 10;
22 Y = 9;
23 Z = 12;
24 }

37 boolean Result;
38 D = (float) Math.pow ((double)B,

(double2-4.0)*A*C);
39 if (D < 0.0)
40 {
41 Result = false;

42 return (Result);
43 }
44 Root1= (float) ((-B + Math.sqrt(D))/(2.0*A));
45 Root2= (float) ((-B – Math.sqrt (D))/(2.0*A));
46 Result = true;
47 return (Result);
48 } / /End method Root
49
50 } // End class Quadratic

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

1 // Program to compute the quadratic root for two numbers
2 import java.lang.Math;
3
4 class Quadratic
5 {
6 private static float Root1, Root2;
7
8 public static void main (String[] argv)
9 {
10 int X, Y, Z;
11 boolean ok;
12 int controlFlag = Integer.parseInt (argv[0]);
13 if (controlFlag == 1)

shared variables

© Ammann & Offutt 12

13 if (controlFlag == 1)
14 {
15 X = Integer.parseInt (argv[1]);
16 Y = Integer.parseInt (argv[2]);
17 Z = Integer.parseInt (argv[3]);
18 }
19 else
20 {

21 X = 10;
22 Y = 9;
23 Z = 12;
24 }

last-defs

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

25 ok = Root (X, Y, Z);
26 if (ok)
27 System.out.println
28 (“Quadratic: ” + Root1 + Root2);
29 else
30 System.out.println (“No Solution.”);
31 }
32
33 // Three positive integers, finds the quadratic root
34 private static boolean Root (int A, int B, int C)
35 {
36 float D;
37 boolean Result;
38 D = (float) Math.pow ((double)B, (double2-4.0)*A*C);

first-use

first-use

© Ammann & Offutt 13

38 D = (float) Math.pow ((double)B, (double2-4.0)*A*C);
39 if (D < 0.0)
40 {
41 Result = false;

42 return (Result);
43 }
44 Root1 = (float) ((-B + Math.sqrt(D)) / (2.0*A));
45 Root2 = (float) ((-B – Math.sqrt(D)) / (2.0*A));
46 Result = true;
47 return (Result);
48 } / /End method Root
49
50 } // End class Quadratic

last-def

last-defs

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Quadratic – Coupling DU-pairs
Pairs of locations: method name, variablename, statement

(main (), X, 15) – (Root (), A, 38)
(main (), Y, 16) – (Root (), B, 38)
(main (), Z, 17) – (Root (), C, 38)
(main (), X, 21) – (Root (), A, 38)
(main (), Y, 22) – (Root (), B, 38)

© Ammann & Offutt 14

(main (), Y, 22) – (Root (), B, 38)
(main (), Z, 23) – (Root (), C, 38)

(Root (), Root1, 44) – (main (), Root1, 28)
(Root (), Root2, 45) – (main (), Root2, 28)
(Root (), Result, 41) – (main (), ok, 26)
(Root (), Result, 46) – (main (), ok, 26)

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Coupling Data Flow Notes

• Only variables that are used or definedin the callee

• Implicit initializations of class and global variables

• Transitive DU-pairs are too expensive to handle

© Ammann & Offutt 15

• Transitive DU-pairs are too expensive to handle
– A calls B, B calls C, and there is a variable defined in A and used in C

• Arrays : a reference to one element is considered to be
a reference to all elements

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Inheritance, Polymorphism &
Dynamic Binding

• Additional control and data connectionsmake data flow
analysis more complex

• The defining and using units may be in different call hierarchies

• When inheritance hierarchies are used, a def in one unit could

© Ammann & Offutt 16

• When inheritance hierarchies are used, a def in one unit could
reach uses in any classin the inheritance hierarchy

• With dynamic binding, the same location can reach different
uses depending on the current type of the using object

• The same location can have different definitions or uses at
different points in the execution !

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Additional Definitions

• Inheritance : If class B inherits from class A, then all variables
and methods in A are implicitly in B, and B can add more

– A is the parent or ancestor

– B is the child or descendent

• An object reference obj that is declared to be of type A can be
assigned an object of either type A, B, or any of B’s descendents

© Ammann & Offutt 17

assigned an object of either type A, B, or any of B’s descendents
– Declared type: The type used in the declaration: A obj;
– Actual type : The type used in the object assignment: obj = new B();

• Class (State) Variables: The variables declared at the class
level, often private

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Types of Def-Use Pairs
def

use

A ()
intra-procedural data flow

(within the same unit)

inter-procedural
data flow

def
A ()

B ()
use

last-def
A ()

first-use
B ()

full coupling

© Ammann & Offutt 18

def
A()

use
B()

A()

B()

F ()

object-oriented direct
coupling data flow

object-oriented indirect
coupling data flow

def
A()

use
B()

M ()

N()

F()

A()
M()

B()
N()

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

OO Data Flow Summary

• The defs and uses could be in the same class, or
different classes

• Researchershave applied data flow testing to the direct
coupling OO situation

– Has not been used in practice

© Ammann & Offutt 19

– Has not been used in practice
– No tools available

• Indirect coupling data flow testing has not been tried
either in research or in practice

– Analysis cost maybe prohibitive

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

Web Applications and Other Distributed
Software

use
B()

P1

def
A()

message P2

© Ammann & Offutt 20

distributed software data flow

B()A()

• “message” could be HTTP, RMI, or other mechanism
• A() and B() could be in the same class or accessing a

persistent variable such as in a web session
• Beyond current technologies

Introduction to Software Testing (Ch 2), www.introsoftwaretesting.com

