
Introduction to Software Testing
Chapter 3.6

Disjunctive Normal Form Criteria

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/

Disjunctive Normal Form
• Common Representation for Boolean Functions

– Slightly Different Notation for Operators
– Slightly Different Terminology

• Basics:
– A literal is a clause or the negation (overstrike) of a clause

• Examples: a, a
– A term is a set of literals connected by logical “and”– A term is a set of literals connected by logical “and”

• “and” is denoted by adjacency instead of ∧∧∧∧
• Examples: ab, ab, abfor a ∧∧∧∧ b, a ∧∧∧∧ ¬ b, ¬ a ∧∧∧∧ ¬ b

– A (disjunctive normal form) predicate is a set of terms connected by “or”

• “or” is denoted by + instead of ∨∨∨∨
• Examples: abc + ab + ac
• Terms are also called “implicants”

– If a term is true, that implies the predicate is true

Introduction to Software Testing (Ch 3) 2© Ammann & Offutt

Implicant Coverage

• Obvious coverage idea: Make each implicant evaluate to “true”.
– Problem: Only tests “true” cases for the predicate.
– Solution: Include DNF representations for negation.

Implicant Coverage (IC)Implicant Coverage (IC) : Given DNF representations of a : Given DNF representations of a
predicate predicate f f and its negation and its negation ff , for each implicant in , for each implicant in f f and and ff , TR , TR
contains the requirement that the implicant evaluate to true.contains the requirement that the implicant evaluate to true.contains the requirement that the implicant evaluate to true.contains the requirement that the implicant evaluate to true.

• Example: f = ab + bc f = b + ac

• Implicants: { ab, bc, b, ac }

• Possible test set: {TTF, FFT}
• Observation: IC is relatively weak

Introduction to Software Testing (Ch 3) 3© Ammann & Offutt

Improving on Implicant Coverage

• Additional Definitions:
– A proper subterm is a term with one or more clauses removed

• Example: abchas 6 proper subterms: a, b, c, ab, ac, bc

– A prime implicantis an implicant such that no proper subterm is also an
implicant.

• Example: f = ab + abc

• Implicant ab is a prime implicant• Implicant ab is a prime implicant
• Implicant abc is not a prime implicant (due to proper subterm ac)

– A redundant implicant is an implicant that can be removed without
changing the value of the predicate

• Example: f = ab + ac + bc

• ab is redundant
• Predicate can be written: ac + bc

Introduction to Software Testing (Ch 3) 4© Ammann & Offutt

Unique True Points

• A minimal DNF representation is one with only prime,
nonredundant implicants.

• A unique true point with respect to a given implicant is an
assignment of truth values so that

– the given implicant is true, and
– all other implicants are false

• Hence a unique true point test focuses on just one implicant• Hence a unique true point test focuses on just one implicant
• A minimal representation guarantees the existence of at least

one unique true point for each implicant

Unique True Point Coverage (UTPC)Unique True Point Coverage (UTPC): Given minimal DNF : Given minimal DNF
representations of a predicate representations of a predicate f f and its negation and its negation ff , TR , TR
contains a unique true point for each implicant in contains a unique true point for each implicant in f f and and ff ..

Introduction to Software Testing (Ch 3) 5© Ammann & Offutt

Unique True Point Example
• Consider again: f = ab + bc f = b + ac

– Implicants: { ab, bc, b, ac }

– Each of these implicants is prime
– None of these implicants is redundant

• Unique true points:
– ab: {TTT}
– bc: {FTF}– bc: {FTF}
– b: {FFF, TFF, TFT}
– ac: {FTT}

• Note that there are three possible (minimal) tests satisfying
UTPC

• UTPC is fairly powerful
– Exponential in general, but reasonable cost for many common functions
– No subsumption relation wrt any of the ACC or ICC Criteria

Introduction to Software Testing (Ch 3) 6© Ammann & Offutt

Near False Points
• A near false point with respect to a clause c in implicant i is an

assignment of truth values such that f is false, but if c is negated
(and all other clauses left as is), i (and hence f) evaluates to true.

• Relation to determination: at a near false point, c determines f
– Hence we should expect relationship to ACC criteria

Unique True Point and Near False Point Pair Coverage Unique True Point and Near False Point Pair Coverage

• Note that definition only mentions f, and not f.
• Clearly, CUTPNFP subsumes RACC

Unique True Point and Near False Point Pair Coverage Unique True Point and Near False Point Pair Coverage
(CUTPNFP)(CUTPNFP) : Given a minimal DNF representation of a : Given a minimal DNF representation of a
predicate predicate ff , for each clause , for each clause cc in each implicant in each implicant ii , TR contains , TR contains
a unique true point for a unique true point for ii and a near false point for and a near false point for cc such that such that
the points differ only in the truth value of the points differ only in the truth value of cc..

Introduction to Software Testing (Ch 3) 7© Ammann & Offutt

CUTPNFP Example
• Consider f = ab + cd

– For implicant ab, we have 3 unique true points: {TTFF, TTFT, TTTF}
• For clause a, we can pair unique true point TTFF with near false

point FTFF
• For clause b, we can pair unique true point TTFF with near false

point TFFF
– For implicant cd, we have 3 unique true points: {FFTT, FTTT, TFTT}

• For clause c, we can pair unique true point FFTT with near false • For clause c, we can pair unique true point FFTT with near false
point FFFT

• For clause d, we can pair unique true point FFTTwith near false
point FFTF

• CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT}
– First two tests are unique true points; others are near false points

• Rough number of tests required: # implicants * # literals

Introduction to Software Testing (Ch 3) 8© Ammann & Offutt

DNF Fault Classes
• ENF: Expression Negation Fault f = ab+c f’ = ab+c
• TNF: Term Negation Fault f = ab+c f’ = ab+c
• TOF: Term Omission Fault f = ab+c f’ = ab
• LNF: Literal Negation Fault f = ab+c f’ = ab+c
• LRF: Literal Reference Fault f = ab + bcd f’ = ad + bcd
• LOF: Literal Omission Fault f = ab + c f’ = a + c
• LIF: Literal Insertion Fault f = ab + c f’ = ab + bc• LIF: Literal Insertion Fault f = ab + c f’ = ab + bc
• ORF+: Operator Reference Fault f = ab + c f’ = abc
• ORF*: Operator Reference Fault f = ab + c f’ = a + b + c

Key idea is that fault classes are related with respect to testing:
Test sets guaranteed to detect certain faults are also
guaranteed to detect additional faults.

Introduction to Software Testing (Ch 3) 9© Ammann & Offutt

Fault Detection Relationships
Literal Insertion

Fault
LIF

Term Omission
Fault
TOF

Literal
Reference Fault

LRF

Literal Negation
Fault
LNF

Literal Omission
Fault
LOF

Expression
Negation Fault

ENF

LNF
Operator

Reference Fault
ORF+ Term Negation

Fault
TNF

Operator
Reference Fault

ORF*

Introduction to Software Testing (Ch 3) 10© Ammann & Offutt

Understanding The Detection Relationships
• Consider the TOF (Term Omission Fault) class

– UTPC requires a unique true point for every implicant (term)
– Hence UTPC detects all TOF faults
– From the diagram, UTPC also detects:

• All LNF faults (Unique true point for implicant no w false)
• All TNF faults (All true points for implicant are now false points)
• All ORF+ faults (Unique true points for joined terms now false)
• All ENF faults (Any single test detects this…)• All ENF faults (Any single test detects this…)

• Although CUTPNFP does not subsume UTPC, CUTPNFP
detects all fault classes that UTPC detects (Converse is false)

• Consider what this says about the notions of subsumption vs.
fault detection

• Literature has many more powerful (and more expensive) DNF
criteria

– In particular, possible to detect entire fault hierarchy (MUMCUT)

Introduction to Software Testing (Ch 3) 11© Ammann & Offutt

Karnaugh Maps for Testing Logic Expressions

• Fair Warning
– We use, rather than present, Karnaugh Maps
– Newcomer to Karnaugh Maps probably needs a tutorial

• Suggestion: Google “Karnaugh Map Tutorial”

• Our goal: Apply Karnaugh Maps to concepts used to test logic
expressions

– Identify when a clause determines a predicate– Identify when a clause determines a predicate
– Identify the negation of a predicate
– Identify prime implicants and redundant implicants
– Identify unique true points
– Identify unique true point / near false point pairs

• No new material here on testing
– Just fast shortcuts for concepts already presented

Introduction to Software Testing (Ch 3) 12© Ammann & Offutt

K-Map: A clause determines a predicate
• Consider the predicate: f = b + ac + ac

• Suppose we want to identify when b determines f
• The dashed line highlights where b changes value

– If two cells joined by the dashed line have different values for f, then b
determines f for those two cells.

– b determines f: ac + ac (but NOT at acor ac)

• Repeat for clauses a and c• Repeat for clauses a and c

ttt1

ttt0

10110100
ab

c

Introduction to Software Testing (Ch 3) 13© Ammann & Offutt

K-Map: Negation of a predicate
• Consider the predicate: f = ab + bc

• Draw the Karnaugh Map for the negation
– Identify groups
– Write down negation: f = b + a c

tt1

t0

10110100
ab

c

tt1

ttt0

10110100
ab

c

Introduction to Software Testing (Ch 3) 14© Ammann & Offutt

K-Map: Prime and redundant implicants
• Consider the predicate: f = abc + abd + abcd + abcd + acd

• Draw the Karnaugh Map
• Implicants that are not prime: abd, abcd, abcd, acd

• Redundant implicant: abd

• Prime implicants
– Three: ad, bcd, abc 10110100

ab
cd

– The last is redundant
– Minimal DNF representation

• f = ad + bcd
01

00

cd

tt

tt

tt11

10

Introduction to Software Testing (Ch 3) 15© Ammann & Offutt

K-Map: Unique True Points
• Consider the predicate: f = ab + cd

• Three unique true points for ab
– TTFF, TTFT, TTTF
– TTTT is a true point, but not a unique true point

• Three unique true points for cd
– FFTT, FTTT, TFTT

• Unique true points for f
10110100

ab
cd• Unique true points for f

f = ac + bc + ad + bd

– FTFT,TFFT, FTTF, TFTF

• Possible UTPC test set
– f: {TTFT, FFTT}
– f: {FTFT, TFFT, FTTF, TFTF}

01

00

cd

t

t

tt11

10

t

tt

Introduction to Software Testing (Ch 3) 16© Ammann & Offutt

K-Map: Unique True Point/
Near False Point Pairs

• Consider the predicate: f = ab + cd

• For implicant ab
– For a, choose UTP, NFP pair

• TTFF, FTFF
– For b, choose UTP, NFP pair

• TTFT, TFFT

• For implicant cd
00

10110100
ab

cd

t

• For implicant cd
– For c, choose UTP, NFP pair

• FFTT, FFFT
– For d, choose UTP, NFP pair

• FFTT, FFTF

• Possible CUTPNFP test set
– {TTFF, TTFT, FFTT //UTPs

FTFF, TFFT, FFFT, FFTF} //NFPs

01 t

t

tt11

10

tt

Introduction to Software Testing (Ch 3) 17© Ammann & Offutt

