Introduction to Software Testing
Chapter 3.6
Disjunctive Normal Form Criteria

Paul Ammann & Jeff Offutt

Disjunctive Normal Form

- Common Representation for Boolean Functions
— Slightly Different Notation for Operators
— Slightly Different Terminology

- Basics:
— A literal is a clause or the negation (overstrike) of a claas
« Examples: a,’a
— A termis a set of literals connected by logical “anc
 “and” is denoted by adjacency instead of
« Examples:ab, ab,abfor allb,all-b,-all-b
— A (disjunctive normal form) predicates a set of terms connected by “or”

 “or” is denoted by + instead of[]
« Examples:abc +ab + ac
 Terms are also called “implicants”
— If a term is true, that implies the predicate is tue

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Implicant Coverage

- Obvious coverage idea: Make each implicant evaluate to “true”.
— Problem: Only tests “true” cases for the predicate.
— Solution: Include DNF representations for negation.

Implicant Coverage (IC) : Given DNF representations of a
predicatef and its negationf, for each implicant inf andf, TR
contains the requirement that the implicant evaluate to true

. Example; f=ab+bc f=b+Fac
. Implicants: {ab, bc, b, ac}
« Possible test set: {TTF, FFT}

« Observation: IC is relatively weak

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Improving on Implicant Coverage

- Additional Definitions:
— A proper subterms a term with one or more clauses removed
« Example: abchas 6 proper subterms:a, b, c, ab, achc

— A prime implicantis an implicant such that no proper subterm is als@n
implicant.

« Example: f=ab + abc
* Implicant abis a prime implicant
* Implicant abcis not a prime implicant (due to proper subtermac)

— A redundant implicantis an implicant that can be removed without
changing the value of the predicate

« Example: f=ab + ac + bc
e abis redundant
 Predicate can be written: ac + bc

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Unigue True Points

A minimal DNF representations one with only prime,
nonredundant implicants.

A unique true pointwith respect to a given implicant is an
assignment of truth values so that

— the given implicant is true, and

— all other implicants are false
Hence a unique true point test focuses on just one implice

A minimal representation guarantees the existence of at least
one unique true point for each implicant

Unigue True Point Coverage (UTPC). Given minimal DNF
representations of a predicatd and its negationf, TR
contains a unique true point for each implicant inf andf.

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Unique True Point Example

Consider again;: f=ab+bc f=b ¥ac
— Implicants: {ab, bc, b;ac}
— Each of these implicants is prime
— None of these implicants is redundant

Unigue true points:
— ab: {TTT}
— bC: {FTF}

— b {FFF, TFF, TFT}
—ac: {FTT}

Note that there are three possible (minimal) tests satisfyin
UTPC

UTPC is fairly powerful
— Exponential in general, but reasonable cost for mancommon functions
— No subsumption relation wrt any of the ACC or ICC Qiteria

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Near False Points

- A near false pointwith respect to a clause in implicant | is an
assignment of truth values such that is false, but ifc is negated
(and all other clauses left as is),(and hencef) evaluates to true.

- Relation to determination at a near false point,c determinesf

— Hence we should expect relationship to ACC criteria

Unigue True Point and Near False Point Pair Coverag
(CUTPNEP) : Given a minimal DNF representation of a
predicatef, for each clausecin each implicanti, TR contains
a unigue true point fori and a near false point forc such that
the points differ only in the truth value of c.

. Note that definition only mentionsf, and notf.
« Clearly, CUTPNFP subsumes RACC

Introduction to Software Testing (Ch 3) © Ammann & Offutt

CUTPNFP Example

- Considerf=ab + cd
— For implicant ab, we have 3 unique true points: {TTFF, TTFT, TTTF}

* For clausea, we can pair unigue true point_ TTFF with near false
point ETFF

» For clause b, we can pair unique true point TFF with near false
point TEFF

— For implicant cd, we have 3 unique true points: {FFTT, FTTT, TFTT}

» For clausec, we can pair unique true point FFTT with near false
point FFET

* For claused, we can pair unigue true point FFTTwith near false
point FFTE

. CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT}
— First two tests are unique true points; others aranear false points

- Rough number of tests required: # implicants * # literals

Introduction to Software Testing (Ch 3) © Ammann & Offutt

DNF Fault Classes

ENF: Expression Negation Fault f=ab+c f =ab+c
TNF: Term Negation Fault f =ab+c f ="ab+c
TOF: Term Omission Fault f = ab+c f =ab

LNF: Literal Negation Fault f = ab+c f = ab+c
LRF: Literal Reference Fault f=ab+bcd f =ad+ bcg
LOF: Literal Omission Fault f=ab+c f=a+cC
LIF: Literal Insertion Fault f=ab +« f =ab + bc

ORF+: Operator Reference Fault f=ab+c f = abc
ORF*: Operator Reference Fault f=ab +c f=a+b+d

Key idea Is that fault classes are related with respect stirg:
Test sets guaranteed to detect certain faults are also
guaranteed to detect additional faults.

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Fault Detection Relationships

Literal Insertion
Fault

LIE T .
Literal

1 Reference Fault
LRF Literal Omission

TermFOmIJission Fault
au
1 — LOF
TOF : :
Literal Negation 1

1 Faul
LNF

Operator

Operator Reference Fault
Reference Faul 1 /
ORF*

ORF+ Term Negation
Fau

TNF

1

Expression
Negation Fault

ENF

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Understanding The Detection Relationships

- Consider the TOF (Term Omission Fault) class

— UTPC requires a unigue true point for every implicant (term)

— Hence UTPC detects all TOF faults

— From the diagram, UTPC also detects:
o All LNF faults (Unigue true point for implicant no w false)
o All TNF faults (All true points for implicant are now false points)
o All ORF+ faults (Unique true points for joined terms now false)
« All ENF faults (Any single test detects this...

 Although CUTPNFP does not subsume UTPC, CUTPNFP
detects all fault classes that UTPC detects (Converse &dse)

- Consider what this says about the notions of subsumption vs.
fault detection

- Literature has many more powerful (and more expensive) DNF
criteria

— In particular, possible to detect entire fault hiemrchy (MUMCUT)

Introduction to Software Testing (Ch 3) © Ammann & Offutt

Karnaugh Maps for Testing Logic Expressions

 Fair Warning
— We use rather than present Karnaugh Maps
— Newcomer to Karnaugh Maps probably needs a tutorial
e Suggestion: Google “Karnaugh Map Tutorial”
- Our goal: Apply Karnaugh Maps to concepts used to test logic
expressions
— Identify when a clause determines a predica
— Identify the negation of a predicate
— Identify prime implicants and redundant implicants
— Identify unigue true points
— Identify unigue true point / near false point pairs

« No new material here ontesting
— Just fast shortcuts for concepts already presented

Introduction to Software Testing (Ch 3) © Ammann & Offutt

K-Map: A clause determines a predicate

Consider the predicate:f=b + ac + ac
Suppose we want to identify wher determinesf

The dashed line highlights wherd changes value

— If two cells joined by the dashed line have diffenat values forf, thenb
determinesf for those two cells.

— bdeterminesf: ac + ac (but NOT at acor ac)

Repeat for clause@a and c

> o | |
A o0 ' o1 11 ! 10

O t t

Introduction to Software Testing (Ch 3) © Ammann & Offutt

K-Map: Negation of a predicate

- Consider the predicate: f = ab + bc

- Draw the Karnaugh Map for the negation
— Identify groups

— Write down negation: f=b +ac

Introduction to Software Testing (Ch 3) © Ammann & Offutt

K-Map: Prime and redundant implicants

Consider the predicate: f = abc + abd + abcd + abcd + acd
Draw the Karnaugh Map

Implicants that are not prime: abd, abcd, abcd, acd
Redundant implicant: abd

Prime implicants
— Three: ad, bed, abc

— The last is redundant
— Minimal DNF representation
e f=ad + bcd

Introduction to Software Testing (Ch 3) © Ammann & Offutt

K-Map: Unique True Points

Consider the predicate: f = ab + cd

Three unigque true points forab
— TTFF, TTFT, TTTF
— TTTT is a true point, but not a unique true point

Three unigue true points forcd
— FFTT, FTTT, TFTT ab
Unique true points for f &
f=ac + bc +ad + bd 00
— FTFT,TFFT, FTTF, TFTF —
Possible UTPC test set 01

—

10

0 |
— f: {TTFT, FFTT}
— L {FTFT, TFFT, FTTF, TFTF} 11‘@

Introduction to Software Testing (Ch 3) © Ammann & Offul

K-Map: Unique True Point/

Near False Point Pairs
Consider the predicate: f = ab + cd

For implicant ab
— For a, choose UTP, NFP pair
e TTFF, FTFF
— For b, choose UTP, NFP pair
e TTFT, TFFT

For implicant cd
— For ¢, choose UTP, NFP pair

e FFTT, FFFT
— For d, choose UTP, NFP pair

. FFTT, FFTF

Possible CUTPNFP test set
— {TTFF, TTFT, FFTT //UTPs
FTFF, TFFT, FFFT, FFTF} //INFPs

Introduction to Software Testing (Ch 3) © Ammann & Offutt

