Introduction to Software Testing
Chapter 3.6
Disjunctive Normal Form Criteria

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/
Disjunctive Normal Form

- **Common Representation for Boolean Functions**
 - Slightly Different Notation for Operators
 - Slightly Different Terminology

- **Basics:**
 - A *literal* is a clause or the negation (overstrike) of a clause
 - Examples: a, \overline{a}
 - A *term* is a set of literals connected by logical “and”
 - “and” is denoted by adjacency instead of \land
 - Examples: $ab, \overline{ab}, \overline{a}b$ for $a \land b, a \land \overline{b}, \overline{a} \land \overline{b}$
 - A *(disjunctive normal form) predicate* is a set of terms connected by “or”
 - “or” is denoted by $+$ instead of \lor
 - Examples: $abc + \overline{ab} + a\overline{c}$
 - Terms are also called “implicants”
 - If a term is true, that implies the predicate is true
Implicant Coverage

• Obvious coverage idea: Make each implicant evaluate to “true”.
 – Problem: Only tests “true” cases for the predicate.
 – Solution: Include DNF representations for negation.

Implicant Coverage (IC):
Given DNF representations of a predicate \(f \) and its negation \(\overline{f} \), for each implicant in \(f \) and \(\overline{f} \), \(TR \) contains the requirement that the implicant evaluate to true.

• Example: \(f = ab + b\overline{c} \quad \overline{f} = \overline{b} + \overline{a}c \)
 • Implicants: \(\{ ab, b\overline{c}, \overline{b}, \overline{a}c \} \)
 • Possible test set: \(\{ \text{TTF, FFT} \} \)
 • Observation: IC is relatively weak
Improving on Implicant Coverage

- **Additional Definitions:**
 - A *proper subterm* is a term with one or more clauses removed
 - Example: abc has 6 proper subterms: a, b, c, ab, ac, bc
 - A *prime implicant* is an implicant such that no proper subterm is also an implicant.
 - Example: $f = ab + abc$
 - Implicant ab is a prime implicant
 - Implicant abc is not a prime implicant (due to proper subterm ac)
 - A *redundant implicant* is an implicant that can be removed without changing the value of the predicate
 - Example: $f = ab + ac + b\overline{c}$
 - ab is redundant
 - Predicate can be written: $ac + b\overline{c}$
Unique True Points

- A *minimal DNF representation* is one with only prime, nonredundant implicants.
- A *unique true point* with respect to a given implicant is an assignment of truth values so that
 - the given implicant is true, and
 - all other implicants are false
- Hence a unique true point test focuses on just one implicant
- A minimal representation guarantees the existence of at least one unique true point for each implicant

Unique True Point Coverage (UTPC): Given minimal DNF representations of a predicate f and its negation \overline{f}, TR contains a unique true point for each implicant in f and \overline{f}.

Introduction to Software Testing (Ch 3)

© Ammann & Offutt 5
Unique True Point Example

- Consider again: $f = ab + b\overline{c}$, $\overline{f} = \overline{b} + \overline{a}c$
 - Implicants: $\{ab, bc, \overline{b}, \overline{ac}\}$
 - Each of these implicants is prime
 - None of these implicants is redundant

- Unique true points:
 - ab: $\{\text{TTT}\}$
 - bc: $\{\text{FTF}\}$
 - \overline{b}: $\{\text{FFF, TFF, TFT}\}$
 - \overline{ac}: $\{\text{FTT}\}$

- Note that there are three possible (minimal) tests satisfying UTPC

- UTPC is fairly powerful
 - Exponential in general, but reasonable cost for many common functions
 - No subsumption relation wrt any of the ACC or ICC Criteria
Near False Points

• A near false point with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true.

• Relation to determination: at a near false point, c determines f
 – Hence we should expect relationship to ACC criteria

Unique True Point and Near False Point Pair Coverage (CUTPNFP) : Given a minimal DNF representation of a predicate f, for each clause c in each implicant i, TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c.

• Note that definition only mentions f, and not \overline{f}.
• Clearly, CUTPNFP subsumes RACC
CUTPNFP Example

• Consider $f = ab + cd$
 – For implicant ab, we have 3 unique true points: \{TTFF, TTFT, TTTF\}
 • For clause a, we can pair unique true point TTFF with near false point FTFF
 • For clause b, we can pair unique true point TTFF with near false point TFFF
 – For implicant cd, we have 3 unique true points: \{FFTT, FTTT, TFTT\}
 • For clause c, we can pair unique true point FFTT with near false point FFFT
 • For clause d, we can pair unique true point FFTT with near false point FFTF
• CUTPNFP set: \{TTFF, FTTT, TFFF, FTFF, FFTF, FFFT\}
 – First two tests are unique true points; others are near false points
• Rough number of tests required: $\#$ implicants $\times \#$ literals
DNF Fault Classes

- ENF: Expression Negation Fault
 \[f = ab+c \quad f' = \overline{ab}+c \]
- TNF: Term Negation Fault
 \[f = ab+c \quad f' = \overline{ab}+c \]
- TOF: Term Omission Fault
 \[f = ab+c \quad f' = ab \]
- LNF: Literal Negation Fault
 \[f = ab+c \quad f' = a\overline{b}+c \]
- LRF: Literal Reference Fault
 \[f = ab + bcd \quad f' = ad + bcd \]
- LOF: Literal Omission Fault
 \[f = ab + c \quad f' = a + c \]
- LIF: Literal Insertion Fault
 \[f = ab + c \quad f' = ab + bc \]
- ORF+: Operator Reference Fault
 \[f = ab + c \quad f' = abc \]
- ORF*: Operator Reference Fault
 \[f = ab + c \quad f' = a + b + c \]

Key idea is that fault classes are related with respect to testing:
Test sets guaranteed to detect certain faults are also guaranteed to detect additional faults.
Fault Detection Relationships

Literal Insertion Fault

- LIF

Term Omission Fault

- TOF

Operator Reference Fault

- ORF+

Literal Reference Fault

- LRF

Literal Negation Fault

- LNF

Term Negation Fault

- TNF

Expression Negation Fault

- ENF

Literal Omission Fault

- LOF

Operator Reference Fault

- ORF*
Understanding The Detection Relationships

- Consider the TOF (Term Omission Fault) class
 - UTPC requires a unique true point for every implicant (term)
 - Hence UTPC detects all TOF faults
 - From the diagram, UTPC also detects:
 - All LNF faults (Unique true point for implicant now false)
 - All TNF faults (All true points for implicant are now false points)
 - All ORF+ faults (Unique true points for joined terms now false)
 - All ENF faults (Any single test detects this…)

- Although CUTPNFP does not subsume UTPC, CUTPNFP detects all fault classes that UTPC detects (Converse is false)

- Consider what this says about the notions of subsumption vs. fault detection

- Literature has many more powerful (and more expensive) DNF criteria
 - In particular, possible to detect entire fault hierarchy (MUMCUT)
Karnaugh Maps for Testing Logic Expressions

• Fair Warning
 – We *use*, rather than *present*, Karnaugh Maps
 – Newcomer to Karnaugh Maps probably needs a tutorial
 • Suggestion: Google “Karnaugh Map Tutorial”

• Our goal: Apply Karnaugh Maps to concepts used to test logic expressions
 – Identify when a clause determines a predicate
 – Identify the negation of a predicate
 – Identify prime implicants and redundant implicants
 – Identify unique true points
 – Identify unique true point / near false point pairs

• No new material here on *testing*
 – Just fast shortcuts for concepts already presented
K-Map: A clause determines a predicate

- Consider the predicate: \(f = b + \bar{a}\bar{c} + ac \)
- Suppose we want to identify when \(b \) determines \(f \)
- The dashed line highlights where \(b \) changes value
 - If two cells joined by the dashed line have different values for \(f \), then \(b \) determines \(f \) for those two cells.
 - \(b \) determines \(f \): \(\bar{a}c + a\bar{c} \) (but NOT at \(ac \) or \(\bar{a}\bar{c} \))
- Repeat for clauses \(a \) and \(c \)
K-Map: Negation of a predicate

• Consider the predicate: \(f = ab + bc \)
• Draw the Karnaugh Map for the negation
 – Identify groups
 – Write down negation: \(\overline{f} = \overline{b} + \overline{a} \overline{c} \)
K-Map: Prime and redundant implicants

- Consider the predicate: \(f = abc + abd + \overline{abcd} + \overline{abcd} + \overline{acd} \)

- Draw the Karnaugh Map

- Implicants that are not prime: \(abd, \overline{abcd}, \overline{abcd}, \overline{acd} \)

- Redundant implicant: \(abd \)

- Prime implicants
 - Three: \(\overline{ad}, bcd, abc \)
 - The last is redundant
 - Minimal DNF representation
 - \(f = \overline{ad} + bcd \)
K-Map: Unique True Points

• Consider the predicate: \(f = ab + cd \)

• Three unique true points for \(ab \)
 – TTFF, TTFT, TTTF
 – TTTT is a true point, but not a unique true point

• Three unique true points for \(cd \)
 – FFFT, FTTT, TFTT

• Unique true points for \(\overline{f} \)
 \(\overline{f} = \overline{a}c + \overline{b}c + \overline{a}d + \overline{b}d \)
 – FTFT, TFFT, FTTF, TFTF

• Possible UTPC test set
 – \(f \): \{TTFT, FTTT\}
 – \(\overline{f} \): \{FTFT, TFFT, FTTF, TFTF\}
K-Map: Unique True Point/Near False Point Pairs

- Consider the predicate: \(f = ab + cd \)

- For implicant \(ab \)
 - For \(a \), choose UTP, NFP pair
 - TTFF, FTFF
 - For \(b \), choose UTP, NFP pair
 - TTFT, TFFT

- For implicant \(cd \)
 - For \(c \), choose UTP, NFP pair
 - FFFT, FFFT
 - For \(d \), choose UTP, NFP pair
 - FFFT, FFTF

- Possible CUTPNFP test set
 - \{TTFF, TTFT, FFFT \} //UTPs
 - \{FTFF, TFFT, FFTT, FFTF\} //NFPs