Introduction to Software Testing
Chapter 4
Input Space Partition Testing

Paul Ammann & Jeff Offutt

Ch. 4 : Input Space Coverage
Modeling Software

Graphs Logic ynta

Applied to

Applied

:

Source Specs Models

Design se case

Introduction to Software Testing (Ch 4), www. introsoftwaretesting. com © Ammann & Offutt 2

Input Domains

The input domain to a program contains all the possible inputs
to that program

For even small programs, the input domain is so large that it
might as well beinfinite

Testing is fundamentally aboutchoosing finite setof values
from the input domain

Input parameter: define the scope of the input domal
— Parameters to a method
— Data read from a file
— Global variables
— User level inputs

Domain for each input parameter ispartitioned into regions
At least one valueis chosen from each region

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Benefits of ISP

Can beequally appliedat several levels of testing
— Unit
— Integration
— System

Relatively easy to apply withno automation

Easy toadjust the procedure to get more or fewer tests

No implementation knowledgeis needed
— Just the input space

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Partitioning Domains

Domain D
Partition schemeq of D
The partition ¢ defines a set of blocksBq =b;, by, ... bQ

The partition must satisfy two properties
1. blocks must bepairwise disjoint(no overlap)
2. together the blockscoveithe domainD (complete

b, n b, =®,0i#j, b, b OB,

b=D
b O Bg

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Using Partitions — Assumptions

Choose avalue from each partition
Each value is assumed to bequally usefulfor testing

Application to testing
— Find characteristicsin the inputs : parameters, semantic descriptions,..
— Partition each characteristics
— Choose test by combining values from characteristic

Example Characteristics
— Input X is null
— Order of the input file F (sorted, inverse sortedarbitrary, ...)
— Min separation of two aircraft
— Input device (DVD, CD, VCR, computer, ...)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Choosing Partitions

- Choosing (or defining) partitions seems easy, but is easy to get
Wige]gle

« Consider the “order of file F”

b, = sorted in ascending order Solution:

b, = sorted in descending order Each characteristic should
b, = arbitrary order address just one propert

but ... something’s fishy ... File F sorted ascending
- b1 =true

What if the file is of length 1? - b2 =false |
File F sorted descending

- bl = true
- b2 = false

The file will be in all three blocks ...
That Is, disjointness is not satisfied

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Properties of Partitions

If the partitions are not completeor disjoint, that means the
partitions have not been considered carefully enough

They should be reviewed carefully, like anylesignattempt
Different alternatives should be considered

We model the input domain infive steps...

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Modeling the Input Domain

- Step 1: Identify testable functions
— Individual methodshave one testable function
— In a class each method has the same characteristics

— Programs have more complicated characteristics—modeling docnents
such as UML use cases can be used to design chagaistics

— Systemsof integrated hardware and software components canse
devices, operating systems, hardware platforms, bvesers, etc

- Step 2: Find all the parameters
— Often fairly straightforward , even mechanical
— Important to be complete
— Methods: Parameters and state (non-local) variables used
— Components: Parameters to methods and state variables
— System: All inputs, including files and databases

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Modeling the Input Domain (cont)

- Step 3: Model the input domain
— The domain is scoped by th@arameters
— The structure is defined in terms ofcharacteristics
— Each characteristic ispartitioned into sets ofblocks
— Each block represents a set ofalues
— This is the mostcreative design stepn applying ISP

- Step <: Apply a testcriterion to choosecombinations of values
— A test input has avalue for each parameter
— Oneblock for each characteristic
— Choosingall combinationsis usually infeasible
— Coverage criteria allowsubsetso be chosen

- Step 5: Refine combinations of blocks intaest inputs
— Chooseappropriate valuesfrom each block

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Two Approaches to Input Domain Modeling

1. Interface-basedapproach
— Develops characteristics directly fromndividual input parameters
— Simplestapplication
— Can bepartially automated in some situations

2. Functionality-basedapproach

— Develops characteristics from @ehavioral view of the program under
test

— Harder to develop—requires more design effort
— May result in better tests or fewer tests that are as effective

Input Domain Model(IDM)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

1. Interface-Based Approach

Mechanically consider each parameter in isolation
This Is an easy modeling technigue and relies mostly @gntax

Somedomain and semanticinformation won'’t be used
— Could lead to anincomplete|DM

Ignores relationships among parameters

Consider TriTyp from Chapter 3

Three int parameters
IDM for each parameter is identical

Reasonable characteristic Relation of side with zero

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

2. Functionality-Based Approach

|dentify characteristics that correspond to the intended
functionality

Requires moredesign effortfrom tester
Can incorporate domain and semanticknowledge
Can userelationships among parameters
Modeling can be based orequirements, not implementatior
The same parameter may appear in multiple characteristics, so
It's harder to translate values to test cases

Consider TriTyp again

The three parameters represent driangle
IDM can combine all parameters

Reasonable characteristic Type of triangle

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Steps 1 & 2 — Identifying Functionalities,
Parameters and Characteristics
A creative engineeringstep

More characteristics means more tests

Interface-based: Translate parameters to characteristics
Candidatesfor characteristics :

— Preconditionsand postconditions
— Relationships among variable

— Relationship of variables with special value¢zero, null, blank, ...)

Should not use program source — characteristics should be
based on theinput domain

— Program source should be used with grapbr logic criteria

Better to havemore characteristicswith few blocks
— Fewer mistakes and fewer tests

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Steps 1 & 2 : Interface vs Functionality-Based

public boolean findElement (List list, Object element)
I/ Effects: if list or element is null throw NullPointerException
Il else return true if element is in the list, false otherwise

Interface-Based Approach
Two parameters : list, element
Characteristics :
list is null (blockl = true, block2 = false)
list is empty (blockl = true, block2 = false)

Functionality-Based Approach
Two parameters : list, element
Characteristics :
number of occurrences of element in list
0, 1, »>1)
element occurs first in list
(frue, false)
element occurs last in list
(tfrue, false)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Step 3 : Modeling the Input Domain

Partitioning characteristics into blocks and values is a very
creative engineeringstep

More blocks means more tests
The partitioning often flows directly from the definition of

characteristicsand both steps are sometimes done together

— Should evaluatethem separately — sometimes fewer characteristics cwde
used with more blocks and vice vers

Strategiesfor identifying values :
— Include valid, invalid and specialvalues
— Sub-partition some blocks
— Explore boundariesof domains
— Include values that represent ormal usé’
— Try to balancethe number of blocks in each characteristic
— Check for completenes@&nd disjointness

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Interface-Based IDM — TriTyp

- TriTyp , from Chapter 3, had one testable function and three
Integer inputs

First Characterization of TriTyp’s Inputs
Characteristic b b, b,

g, = “Relation of Side 1to 0" | greaterthan @ equal to|@ess than O

g, = “Relation of Side 2to 0” | greaterthan @ equal to|@ess than O

g; = “Relation of Side 3to 0” | greaterthan @ equal to|@ess than O

« A maximum of 3*3*3 = 27 tests
- Some triangles arevalid, some arenvalid
- Refining the characterization can lead to more tests ...

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Interface-Based IDM — TriTyp (cont)

SecondCharacterization of TriTyp’s Inputs
Characteristic / \ b, b,

g, = “Refinement off \ equaltg O less the

g, = “Refinement of\ }equal tg 0 less the

qB:uRefinementon\ // equaltd O less the

« A maximum of 4*4*4 = 64 tests
- This Is only completebecause the inputs are integers (0. . 1)

Possible values for partition q
Characteristic b

Sidel

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Functionality-Based IDM — TriTyp

First two characterizations are based orsyntax—parameters and their type

A semanticlevel characterization could use the fact that théhree integers
represent a triangle

Geometric Characterization of TriTyp’s Inputs
Characteristic b b, b, o

g, = “Geometric Classification” scalene isosceles edenk&l| invalid

Oops ... something’dishy ... equilateral is also isosceles !
We need torefine the example to make characteristics valid

Correct Geometric Characterization of TriTyp’s Inputs
Characteristic b b, b,

g, = “Geometric Classification] sc - uilaterall invalid

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Functionality-Based IDM — TriTyp (cont)

- Valuesfor this partitioning can be chosen as

Possible values for geometric partition ¢
Characteristic b b, b, b,

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Functionality-Based IDM — TriTyp (cont)

- A different approach would be to break the geometric
characterization into four separate characteristics

Four Characteristics for TriTyp
Characteristic b b,

g, = “Scalene True False

g, = “Isosceles” True False

g; = “Equilateral”| True False

q, = “Valid” True False

- Useconstraintsto ensure that
— Equilateral = True implies Isosceles= True
— Valid = Falseimplies Scalene= Isosceles= Equilateral = False

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Using More than One IDM

Some programs may have dozens or even hundreds of
parameters

Create severalsmall IDMs

— A divide-and-conquer approach

Different parts of the software can be tested with different
amounts ofrigor

— For example, some IDMs may include a lot of invalidvalues

It is okay If the different IDMs overlap
— The same variable may appear in more than one IDM

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Step 4 — Choosing Combinations of Values

- Once characteristics and partitions are defined, the nextep is
to choose test values

« We usecriteria — to choose effectiveubsets
« The most obvious criterion is to choose all combinations ...

All Combinations (ACoC) : All combinations of blocks from all
characteristics must be usel

Number of tests is the product of the number of blocks in each
characteristic :
I_I 21(B|)

The second characterization of TriTyp results in 4*4*4 =64 tests
—too many ?

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

ISP Criteria — Each Choice

64 tests for TriTyp is almost certainly way too many

One criterion comes from the idea that we should try alleast
onevalue from each block

Each Choice (EC): One value from each block for each
characteristic must be used In at least one test case.

Number of tests is the number of blocks in thlargesi

characteristic 0
Max :,(B)
For TriTyp: 2, 2, 2
1,1,1
0,0,0
-1,-1, -1

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

ISP Criteria — Pair-Wise

- Each choice yields few tests eneapbut perhaps ineffective
- Another approach asks values to beombinedwith other values

Pair-Wise (PW): A value from each block for each
characteristic must be combined with a value from every block
for each other characteristic.

- Number of tests Is at least the product of two large:
characteristics

For TriTyp: 2, 2, 2 2,1,1 2,0,0 2,-1,-1

1,2, 1 1,1,0 1,0,-1 1,-1,2
0,2,0 0,1,-1 0,0,2 0,-1,1
-1,2,-1 -1,1,2 -1,0,1 -1,-1,0

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

ISP Criteria —T-Wise

A natural extension is to require combinations of values
Instead of2

I-Wise (TW) : A value from each block for each group of t
characteristics must be combined.

Number of tests is at least the product ot largest
characteristics

If all characteristics are the same size, the formula is

(M axX gl(Bi))t

If tis the number of characteristicQ, then all combinations
Thatis ... Q-wise= AC
t-wise isexpensiveand benefits are not clear

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

ISP Criteria — Base Choice

- Testers sometimes recognize that certain values araportant
 This usesdomain knowledgeof the program

Base Choice (BC) A base choice block is chosen for each
characteristic, and a base test is formed by using the base choice
for each characteristic. Subsequent tests are chosen by holgiall
but one base choice constant angsusingaeaamombassectlotied mn

each other characteristic

« Number of tests iIs one base test + one test for each other bloc
1+Y.2 (B-1)

For TriTyp: Base 2,2,2 2,2,1 2,1,2 1,2,2
2,2,0 2,0,2 0,2,2
2,2,-1 2,-1,2 -1,2,2

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

ISP Criteria — Multiple Base Choice

- Testers sometimes havmore than onelogical base choice

Multiple Base Choice (MBC): One or more base choice blocks are
chosen for each characteristic, and base tests are formed by ngi
each base choice for each characteristic. Subsequent tests are
chosen by holding all but one base choice constant for each base
test and using each noibhsselthicE: fie act v ihec thaeieiesistic

- If there are M base tests anim, base choices for eac

characteristic:

M+ D2 (M*(B;-m))

For TriTyp: Base

2,2,2 2,2,0 2,0,2 0,22
2,2,-1 2,-1,2 -1,2,2

1,1,1 1,1,0 1, 0,1 O,1,!
1,1,-1 1,-1,1 -1,1,1

Introduction to Softwar

ISP Coverage Criteria Subsumption

All Combinations
Coverage

AC

/N

T-Wise Multiple Base
Coverage Choice Coverage

TW MBC

l |

Pair-Wise Base Choice
Coverage Coverage

PW =]®

N/

Each Choice
Coverage

=@

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Constraints Among Characteristics

Some combinations of blocks arenfeasible
— “less than zero” and “scalene” ... not possible at th same time

These are represented asonstraintsamong blocks

Two general types of constraints

— A block from one characteristiccannot becombined with a specific block
from another

— A block from one characteristic canONLY BE combined with a specific
block form another characteristic

Handling constraints depends on the criterion used

— AC, PW, TW : Drop the infeasible pairs

— BC, MBC : Change a value to another non-base choice to firafeasible
combination

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Example Handling Constraints

- Sorting an array

— Input :

variable length array of arbitrary type

— Qutputs : sorted array, largest value, smallest value

Characte
 Length

* Type of
 Max val
e Min valt
 Position
 Position

Partitions:

elen (0,1, 2..100, 101.MAXINT }
 Type int, char, string, oiher }

s Max {<0,1,>1,a,'Z,'b, .., Y}
Min {...}

e Max Pos {1,2..Len-1, Len}
MinPos {1,2. Len-1, Len}

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

Input Space Partitioning Summary

Fairly easy to apply, even withno automation

Convenient ways toadd more or lesgesting

Applicable to all levels of testing— unit, class, integration,
system, etc.

Based only on thanput spaceof the program, not the
Implementation

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com © Ammann & Offutt

