
Introduction to Software Testing
Chapter 4

Input Space Partition Testing

Paul Ammann & Jeff Offutt

www.introsoftwaretesting.com

Ch. 4 : Input Space Coverage
Four Structures for Four Structures for
Modeling SoftwareModeling Software

GraphsGraphs LogicLogic Input SpaceInput Space SyntaxSyntax
Applied to

© Ammann & Offutt 2

Use casesUse cases

SpecsSpecs

DesignDesign

SourceSource

Applied
to

DNFDNFSpecsSpecs

FSMsFSMsSourceSource

InputInput

ModelsModels

IntegInteg

SourceSource

Applied
to

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Input Domains

• The input domain to a program contains all the possible inputs
to that program

• For even small programs, the input domain is so large that it
might as well be infinite

• Testing is fundamentally about choosing finite setsof values
from the input domain
Input parametersdefine the scope of the input domain

© Ammann & Offutt 3

• Input parametersdefine the scope of the input domain
– Parameters to a method
– Data read from a file
– Global variables
– User level inputs

• Domain for each input parameter is partitioned into regions
• At least one valueis chosen from each region

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Benefits of ISP

• Can be equally applied at several levels of testing
– Unit
– Integration
– System

• Relatively easy to apply with no automation

© Ammann & Offutt 4

• Easy to adjust the procedure to get more or fewer tests

• No implementation knowledgeis needed
– just the input space

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Partitioning Domains

• Domain D

• Partition schemeq of D
• The partition q defines a set of blocks, Bq = b1 , b2 , … bQ
• The partition must satisfy two properties :

1. blocks must be pairwise disjoint(no overlap)
2. together the blocks coverthe domain D (complete)

© Ammann & Offutt 5

2. together the blocks coverthe domain D (complete)

bi ∩∩∩∩ bj = ΦΦΦΦ, ∀∀∀∀ i ≠≠≠≠ j, b i, bj ∈∈∈∈ Bqb1 b2

b3 ∪∪∪∪ b = D
b ∈∈∈∈ Bq

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Using Partitions – Assumptions

• Choose a value from each partition
• Each value is assumed to be equally usefulfor testing
• Application to testing

– Find characteristicsin the inputs : parameters, semantic descriptions, …
– Partition each characteristics
– Choose testsby combining values from characteristics

© Ammann & Offutt 6

– Choose testsby combining values from characteristics

• Example Characteristics
– Input X is null
– Order of the input file F (sorted, inverse sorted, arbitrary, …)
– Min separation of two aircraft
– Input device (DVD, CD, VCR, computer, …)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Choosing Partitions

• Choosing (or defining) partitions seems easy, but is easy to get
wrong

• Consider the “order of file F”

b1 = sorted in ascending order

b2 = sorted in descending order

b = arbitrary order

Solution:Solution:

Each characteristic should Each characteristic should
address just one propertyaddress just one property

© Ammann & Offutt 7

b3 = arbitrary order

but … something’s fishy …

What if the file is of length 1?

The file will be in all three blocks …

That is, disjointness is not satisfied

address just one propertyaddress just one property

File F sorted ascendingFile F sorted ascending
-- b1 = trueb1 = true
-- b2 = falseb2 = false

File F sorted descendingFile F sorted descending
-- b1 = trueb1 = true
-- b2 = falseb2 = false

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Properties of Partitions

• If the partitions are not completeor disjoint , that means the
partitions have not been considered carefully enough

• They should be reviewed carefully, like any designattempt

• Different alternativesshould be considered

© Ammann & Offutt 8

• We model the input domain in five steps…

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Modeling the Input Domain
• Step 1: Identify testable functions

– Individual methodshave one testable function
– In a class, each method has the same characteristics
– Programshave more complicated characteristics—modeling documents

such as UML use cases can be used to design characteristics
– Systemsof integrated hardware and software components can use

devices, operating systems, hardware platforms, browsers, etc

© Ammann & Offutt 9Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

• Step 2: Find all the parameters
– Often fairly straightforward , even mechanical
– Important to be complete
– Methods: Parameters and state (non-local) variables used
– Components: Parameters to methods and state variables
– System: All inputs, including files and databases

Modeling the Input Domain (cont)
• Step 3: Model the input domain

– The domain is scoped by the parameters
– The structure is defined in terms of characteristics
– Each characteristic is partitioned into sets of blocks
– Each block represents a set of values
– This is the most creative design stepin applying ISP

Step 4: Apply a test criterion to choose combinationsof values

© Ammann & Offutt 10Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

• Step 4: Apply a test criterion to choose combinationsof values
– A test input has a value for each parameter
– One block for each characteristic
– Choosing all combinationsis usually infeasible
– Coverage criteria allow subsetsto be chosen

• Step 5: Refine combinations of blocks into test inputs
– Choose appropriate valuesfrom each block

Two Approaches to Input Domain Modeling

1. Interface-basedapproach
– Develops characteristics directly from individual input parameters
– Simplestapplication
– Can be partially automated in some situations

2. Functionality-basedapproach

© Ammann & Offutt 11

– Develops characteristics from a behavioral viewof the program under
test

– Harder to develop—requires more design effort
– May result in better tests, or fewer tests that are as effective

Input Domain ModelInput Domain Model(IDM)(IDM)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

1. Interface-Based Approach

• Mechanically consider each parameter in isolation
• This is an easy modeling technique and relies mostly on syntax
• Some domain and semanticinformation won’t be used

– Could lead to an incompleteIDM

• Ignores relationshipsamong parameters

© Ammann & Offutt 12

Consider TriTyp from Chapter 3

Three int parameters

IDM for each parameter is identical

Reasonable characteristic : Relation of side with zero

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

2. Functionality-Based Approach

• Identify characteristics that correspond to the intended
functionality

• Requires more design effort from tester
• Can incorporate domain and semanticknowledge
• Can use relationshipsamong parameters
• Modeling can be based on requirements, not implementation

© Ammann & Offutt 13

• Modeling can be based on requirements, not implementation
• The same parameter may appear in multiple characteristics, so

it’s harder to translate values to test cases

Consider TriTyp again

The three parameters represent a triangle

IDM can combine all parameters

Reasonable characteristic : Type of triangle
Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Steps 1 & 2 – Identifying Functionalities,
Parameters and Characteristics

• A creative engineeringstep
• More characteristics means more tests
• Interface-based: Translate parameters to characteristics
• Candidatesfor characteristics :

– Preconditionsand postconditions
– Relationshipsamong variables

© Ammann & Offutt 14

– Relationshipsamong variables
– Relationship of variables with special values(zero, null, blank, …)

• Should not use program source – characteristics should be
based on the input domain

– Program source should be used with graphor logic criteria

• Better to have more characteristicswith few blocks
– Fewer mistakes and fewer tests

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Steps 1 & 2 : Interface vs Functionality-Based
public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
// else return true if element is in the list, false otherwise

Interface-Based Approach
Two parameters : list, element
Characteristics :

list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

© Ammann & Offutt 15

list is empty (block1 = true, block2 = false)

Functionality-Based Approach
Two parameters : list, element
Characteristics :

number of occurrences of element in list
(0, 1, >1)

element occurs first in list
(true, false)

element occurs last in list
(true, false)

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Step 3 : Modeling the Input Domain

• Partitioning characteristics into blocks and values is a very
creative engineeringstep

• More blocks means more tests
• The partitioning often flows directly from the definition of

characteristicsand both steps are sometimes done together
– Should evaluatethem separately – sometimes fewer characteristics can be

used with more blocks and vice versa

© Ammann & Offutt 16

used with more blocks and vice versa

• Strategiesfor identifying values :
– Include valid, invalid and specialvalues
– Sub-partition some blocks
– Explore boundariesof domains
– Include values that represent “normal use”
– Try to balancethe number of blocks in each characteristic
– Check for completenessand disjointness

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Interface-Based IDM – TriTyp

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” greater than 0 equal to 0less than 0

First Characterization of TriTyp’s Inputs

• TriTyp , from Chapter 3, had one testable function and three
integer inputs

© Ammann & Offutt 17

• A maximum of 3*3*3 = 27 tests
• Some triangles are valid, some are invalid
• Refining the characterization can lead to more tests …

q2 = “Relation of Side 2 to 0” greater than 0 equal to 0less than 0

q3 = “Relation of Side 3 to 0” greater than 0 equal to 0less than 0

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Interface-Based IDM – TriTyp (cont)
SecondCharacterization of TriTyp’s Inputs

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 less than 0

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 less than 0

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 less than 0

© Ammann & Offutt 18

• A maximum of 4*4*4 = 64 tests
• This is only completebecause the inputs are integers (0 . . 1)

Possible values for partition q1
Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary conditions
Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Functionality-Based IDM – TriTyp
• First two characterizations are based on syntax–parameters and their type
• A semanticlevel characterization could use the fact that the three integers

represent a triangle

GeometricCharacterization of TriTyp’s Inputs
Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles equilateral invalid

© Ammann & Offutt 19

Characteristic b1 b2 b3 b4

q1 = “Geometric Classification” scalene isosceles, not
equilateral

equilateral invalid

• Oops … something’s fishy … equilateral is also isosceles !
• We need to refine the example to make characteristics valid

Correct Geometric Characterization of TriTyp’s Inputs

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Functionality-Based IDM – TriTyp (cont)

• Valuesfor this partitioning can be chosen as

Possible values for geometric partition q1
Characteristic b1 b2 b3 b4

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

© Ammann & Offutt 20Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Functionality-Based IDM – TriTyp (cont)

• A different approach would be to break the geometric
characterization into four separate characteristics

Four Characteristics for TriTyp
Characteristic b1 b2

q1 = “Scalene” True False

© Ammann & Offutt 21

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

• Use constraints to ensure that
– Equilateral = True implies Isosceles= True
– Valid = Falseimplies Scalene= Isosceles= Equilateral = False

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Using More than One IDM

• Some programs may have dozens or even hundreds of
parameters

• Create severalsmall IDMs
– A divide-and-conquer approach

• Different parts of the software can be tested with different
amounts of rigor

© Ammann & Offutt 22

– For example, some IDMs may include a lot of invalid values

• It is okay if the different IDMs overlap
– The same variable may appear in more than one IDM

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Step 4 – Choosing Combinations of Values

• Once characteristics and partitions are defined, the next step is
to choose test values

• We use criteria – to choose effectivesubsets
• The most obvious criterion is to choose all combinations …

All Combinations (All Combinations (ACoCACoC)) : All combinations of blocks from all : All combinations of blocks from all
characteristics must be used.characteristics must be used.

© Ammann & Offutt 23

characteristics must be used.characteristics must be used.

• Number of tests is the product of the number of blocks in each
characteristic : ΠΠΠΠ Q

i=1(Bi)

• The second characterization of TriTyp results in 4*4*4 = 64 tests
– too many ?

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

ISP Criteria – Each Choice

• 64 tests for TriTyp is almost certainly way too many
• One criterion comes from the idea that we should try at least

onevalue from each block

Each Choice (EC)Each Choice (EC): : One value from each block for each One value from each block for each
characteristic must be used in at least one test case.characteristic must be used in at least one test case.

Number of tests is the number of blocks in the largest

© Ammann & Offutt 24

• Number of tests is the number of blocks in the largest
characteristic

Max Q
i=1(Bi)

For TriTyp: 2, 2, 2

1, 1, 1

0, 0, 0

-1, -1, -1

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

ISP Criteria – Pair-Wise

• Each choice yields few tests –cheapbut perhaps ineffective
• Another approach asks values to be combinedwith other values

PairPair--Wise (PW)Wise (PW): : A value from each block for each A value from each block for each
characteristic must be combined with a value from every block characteristic must be combined with a value from every block
for each other characteristic.for each other characteristic.

• Number of tests is at least the product of two largest

© Ammann & Offutt 25

• Number of tests is at least the product of two largest
characteristics

For TriTyp: 2, 2, 2 2, 1, 1 2, 0, 0 2, -1, -1

1, 2, 1 1, 1, 0 1, 0, -1 1, -1, 2

0, 2, 0 0, 1, -1 0, 0, 2 0, -1, 1

-1, 2, -1 -1, 1, 2 -1, 0, 1 -1, -1, 0

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

(Max Q
i=1(Bi)) * (Max Q

j=1, j!=i (Bj))

ISP Criteria –T-Wise

• A natural extension is to require combinations of t values
instead of 2

tt--Wise (TW)Wise (TW) : : A value from each block for each group of t A value from each block for each group of t
characteristics must be combined.characteristics must be combined.

• Number of tests is at least the product of t largest

© Ammann & Offutt 26

• Number of tests is at least the product of t largest
characteristics

• If all characteristics are the same size, the formula is

(Max Q
i=1(Bi))t

• If t is the number of characteristics Q, then all combinations
• That is … Q-wise= AC

• t-wise is expensiveand benefits are not clear

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

ISP Criteria – Base Choice
• Testers sometimes recognize that certain values are important
• This uses domain knowledgeof the program

Base Choice (BC)Base Choice (BC): : A base choice block is chosen for each A base choice block is chosen for each
characteristic, and a base test is formed by using the base choice characteristic, and a base test is formed by using the base choice
for each characteristic. Subsequent tests are chosen by holding all for each characteristic. Subsequent tests are chosen by holding all
but one base choice constant andbut one base choice constant and using each nonusing each non--base choice in base choice in
each other characteristic.each other characteristic.

© Ammann & Offutt 27

each other characteristic.each other characteristic.

• Number of tests is one base test + one test for each other block

1 + ∑∑∑∑Q
i=1 (Bi -1)

For TriTyp: Base 2, 2, 2 2, 2, 1 2, 1, 2 1, 2, 2

2, 2, 0 2, 0, 2 0, 2, 2

2, 2, -1 2, -1, 2 -1, 2, 2

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

ISP Criteria – Multiple Base Choice
• Testers sometimes have more than onelogical base choice

Multiple Base Choice (MBC)Multiple Base Choice (MBC): : One or more base choice blocks are One or more base choice blocks are
chosen for each characteristic, and base tests are formed by using chosen for each characteristic, and base tests are formed by using
each base choice for each characteristic. Subsequent tests are each base choice for each characteristic. Subsequent tests are
chosen by holding all but one base choice constant for each base chosen by holding all but one base choice constant for each base
test and using each nontest and using each non--base choices in each other characteristic.base choices in each other characteristic.
• If there are M base tests and m base choices for each

© Ammann & Offutt 28

• If there are M base tests and mi base choices for each
characteristic:

M + ∑∑∑∑Q
i=1 (M * (B i - mi))

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

For TriTyp: Base

2, 2, 2 2, 2, 0 2, 0, 2 0, 2, 2

2, 2, -1 2, -1, 2 -1, 2, 2

1, 1, 1 1, 1, 0 1, 0, 1 0, 1, 1

1, 1, -1 1, -1, 1 -1, 1, 1

ISP Coverage Criteria Subsumption
All Combinations

Coverage
AC

T-Wise
Coverage

TW

Multiple Base
Choice Coverage

MBC

© Ammann & Offutt 29

Each Choice
Coverage

EC

Pair-Wise
Coverage

PW

Base Choice
Coverage

BC

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Constraints Among Characteristics

• Some combinations of blocks are infeasible
– “less than zero” and “scalene” … not possible at the same time

• These are represented as constraintsamong blocks
• Two general types of constraints

– A block from one characteristic cannot becombined with a specific block
from another

– A block from one characteristic can ONLY BE combined with a specific

© Ammann & Offutt 30

– A block from one characteristic can ONLY BE combined with a specific
block form another characteristic

• Handling constraints depends on the criterion used
– AC, PW, TW : Drop the infeasible pairs
– BC, MBC : Change a value to another non-base choice to find a feasible

combination

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Example Handling Constraints

• Sorting an array
– Input : variable length array of arbitrary type
– Outputs : sorted array, largest value, smallest value

Characteristics:
• Length of array
• Type of elements

Partitions:

• Len { 0, 1, 2..100, 101..MAXINT }

• Type { int, char, string, other }

Blocks from other
characteristics are
irrelevant

Blocks must be
combined

© Ammann & Offutt 31

• Type of elements
• Max value
• Min value
• Position of max value
• Position of min value

• Type { int, char, string, other }

• Max { ≤≤≤≤0, 1, >1, ‘a’, ‘Z’, ‘b’, …, ‘Y’ }

• Min { … }

• Max Pos { 1, 2 .. Len-1, Len }

• Min Pos { 1, 2 .. Len-1, Len }

Blocks must be
combined

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

Input Space Partitioning Summary

• Fairly easy to apply, even with no automation

• Convenient ways to add more or lesstesting

• Applicable to all levelsof testing – unit, class, integration,

© Ammann & Offutt 32

• Applicable to all levelsof testing – unit, class, integration,
system, etc.

• Based only on the input spaceof the program, not the
implementation

Introduction to Software Testing (Ch 4), www.introsoftwaretesting.com

