
The Object Constraint

Language (OCL)

Robert B. France
Dept. of Computer Science
Colorado State University

USA
france@cs.colostate.edu

Semantics and UML models

� UML models often treated as informal
descriptions
� Useful if you use UML as a sketching language –

this is not the focus of the course
� Focus is on using as a formal language that can � Focus is on using as a formal language that can

be used to create machine analyzable models

� UML models can be treated formally
� Necessary if we are to use UML as a software

engineering language

12/26/2013 2

Defining semantics

� Three key concepts
� Syntactic domain : Syntactic elements of the

language (e.g., class symbol)
� Semantic domain : Elements representing

meaningful concepts described by statements in meaningful concepts described by statements in
the language (e.g., objects)

� Semantic mapping : Mapping of syntactic
elements to semantic elements; the semantic
elements denote the meaning of the syntactic
elements that are mapped to it

12/26/2013 3

Semantics of class models
� A class model characterizes a set of valid object

configurations
� Syntactic domain: UML class diagram notation (e.g.,

class, association)
� Semantic domain: Object configurations
� Example:

� A class is a set of objects� A class is a set of objects
� An abstract class is the set of all objects of its concrete

subclasses
� A subclass is a subset of the set of all objects of its superclass
� An association is a set of links between objects of the associated

classes

A class model is a specification of valid object
configurations.

12/26/2013 4

Example

Ali:Employee

Wayne:Employee
OOCorp:Company OOCorp's Board:

Pat:Employee

Company Board

Employee

1 board
1 comp

1..*
employer

*
employees

Class diagram

© Robert B. France 5

Ali:Employee

Carla:Employee UML inc's BoardUML inc:Company

Terry:Employee

This is a valid configuration (satisfies the class diagram)
and thus is in the semantic domain of the above class
diagram

This is an invalid configuration and thus is not in the
semantic domain of the above class diagram

How are constraints expressed in a

class model?
� Association multiplicities constrain the number of

elements that can participate in an association
� Note: the multiplicity * is not a constraint. Why? If you can

answer this then you know what it means to be constrained (or
restricted)

� Attribute types restrict the type of values that can be
associated with an attribute.

� Are the above enough? What if you defined an attribute
age: Integer, and wanted to restrict the value to integers
greater than 18?
� You can write it in natural language but you won’t be able to

mechanically reason using this information

12/26/2013 6

What is OCL?

� OCL can be used
� to describe constraints

� A constraint is a restriction on one or more values of a
model or system.

� A constraint is an expression that evaluate to true or false
� as a query language

� Queries are expressions that evaluate to a value (true,

7

� Queries are expressions that evaluate to a value (true,
false and other values)

� Can be used to define new attributes and operations

� OCL expressions are always associated with a
UML model
� OCL expressions can be associated with any model

element in UML

© Robert B. France

Constraints vs. Queries

� Examples of constraints:
� Duration of a flight is the same as the difference between the arrival and

departure times

Airport

Flight

*

*

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-
nation

name: String

arriving
Flights

departing
Flights

1

1

8

departure times
� The maximum number of passengers on a flight must be less than

1,001
� The origin of a flight must be different than its destination

� Examples of queries:
� Return all the departing flights from a given airport
� Return all the flights departing from a given airport with a departure time

after 4p.m.
� Derive the arrival time by adding the duration of the flight to the

departure time.

© Robert B. France

Specifying Constraints -

Invariants

9© Robert B. France

Different kinds of constraints

� Class invariant
� a constraint that must always be met by all

instances of the class

� Precondition of an operation
� a constraint that must always be true BEFORE the

execution of the operation

� Postcondition of an operation
� a constraint that must always be true AFTER the

execution of the operation

10© Robert B. France

Example model

Airport

Flight

*

*
*

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-

name: String

arriving

departing
Flights

flights

airline

1

1
1

Passenger

Airline

*

*

minAge: Integer
age: Integer
needsAssistance: Boolean

desti-
nation

name: String{ordered}

arriving
Flights

CEO

0..1

passengers

book(f : Flight)

0..1

airline

airline

11 © Robert B. France

1

1

Constraint context and self

� Every OCL expression is bound to a specific
context.
� The context is often the element that the

constraint is attached to

� The context may be denoted within the
expression using the keyword ‘self’.
� ‘self’ is implicit in all OCL expressions
� Similar to`this’ in C++

12© Robert B. France

Notation

� Constraints may be denoted within the
UML model or in a separate document.
� the expression:

context Flight inv: self.duration < 4

� is identical to:
context Flight inv: duration < 4context Flight inv: duration < 4

� is identical to:

Flight

duration: Integer<<invariant>>
duration < 4

13© Robert B. France

Elements of an OCL expression

� In an OCL expression these elements may
be used:
� basic types: String, Boolean, Integer, Real.
� classifiers from the UML model and their features

attributes, and class attributes� attributes, and class attributes
� query operations, and class query operations (i.e., those

operations that do not have side effects)

� associations from the UML model

14© Robert B. France

Example: OCL basic types

context Airline inv:
name.toLower = ‘klm’

context Passenger inv:
age >= ((9.6 - 3.5)* 3.1).floor implies
mature = true

15 © Robert B. France

Model classes and attributes

� “Normal” attributes
context Flight inv:
self.maxNrPassengers <= 1000

� Class attributes
context Passenger inv:
age >= Passenger.minAge

16© Robert B. France

Example: Using query operations

context Flight inv:
self.departTime.difference(self.arrivalTime)

.equals(self.duration)

Time Interval

midnight: Time nrOfDays : Integer

difference(t:Time):Interval
before(t: Time): Boolean
plus(d : Interval) : Time

equals(i:Interval):Boolean
$Interval(d, h, m : Integer) :

Interval

midnight: Time
month : String
day : Integer
year : Integer
hour : Integer
minute : Integer

nrOfDays : Integer
nrOfHours : Integer
nrOfMinutes : Integer

17© Robert B. France

Associations and navigations

� Every association in the model is a
navigation path.

� The context of the expression is the � The context of the expression is the
starting point.

� Role names are used to identify the
navigated association.

18© Robert B. France

Example: navigations

context Flight

Airport

Flight

*

*

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-
nation

name: String

arriving
Flights

departing
Flights

1

1

context Flight
inv: origin <> destination
inv: origin.name = ‘Amsterdam’

context Flight
inv: airline.name = ‘KLM’

19© Robert B. France

Association classes

context Person inv:
if employer.name = ‘Klasse Objecten’ then

job.type = JobType::trainer
else

job.type = JobType::programmer
endif

Person Company

Job

* 1
employee employer

type : JobType

name : String

20© Robert B. France

Significance of Collections in OCL

� Most navigations return collections rather
than single elements

10..*Flight Airplane

type : Airtype type : Airtypeflights

21© Robert B. France

Three Subtypes of Collection

� Set:
� arrivingFlights(from the context Airport)
� Non-ordered, unique

� Bag:
arrivingFlights.duration (from the context Airport)� arrivingFlights.duration (from the context Airport)

� Non-ordered, non-unique

� Sequence:
� passengers (from the context Flight)
� Ordered, non-unique

22© Robert B. France

Collection operations

� OCL has a great number of predefined
operations on the collection types.

� Syntax:
� collection->operation� collection->operation

Use of the “->” (arrow)
operator instead of the
“.” (dot) operator

23© Robert B. France

The collect operation

� The collect operation results in the collection
of the values obtained by evaluating an
expression for all elements in the collection

24© Robert B. France

The collect operation

context Airport inv:
self.arrivingFlights -> collect(airLine) ->notEmpty

airp1
f1

f2
airline1

airp2

f2

f3

f4

f5

airline1

airline2

airline3

departing flights arriving flights
25© Robert B. France

The collect operation syntax

� Syntax:
collection->collect(elem : T | expr)
collection->collect(elem | expr)
collection->collect(expr)

� Shorthand:� Shorthand:
collection.expr

� Shorthand often trips people up. Be Careful!

26© Robert B. France

The select operation

context Airport inv:
self.departingFlights->select(duration<4)->notEmpty

airp1

f1
duration = 2

The select operation results in the subset of all elements for which
a boolean expression is true

departing flights

arriving flights

airp1

airp2

airline1

airline2

airline3

f5
duration = 2

f4
duration = 5

f2
duration = 5

f3
duration = 3

27© Robert B. France

The select operation syntax

� Syntax:
collection->select(elem : T | expression)
collection->select(elem | expression)
collection->select(expression)collection->select(expression)

28© Robert B. France

The forAll operation

� The forAll operation results in true if a given
expression is true for all elements of the
collection

29© Robert B. France

Example: forAll operation

context Airport inv:
self.departingFlights->forAll(departTime.hour>6)

airp1
airline1

f1
depart = 7

f2

departing flights arriving flights

airp2

airline1

airline2

airline3

f5
depart = 8

f4
depart = 9

depart = 5

f3
depart = 8

30© Robert B. France

The forAll operation syntax

� Syntax:
� collection->forAll(elem : T | expr)
� collection->forAll(elem | expr)
� collection->forAll(expr)� collection->forAll(expr)

31© Robert B. France

The exists operation

� The exists operation results in true if there is
at least one element in the collection for
which a given expression is true.

32© Robert B. France

Example: exists operation

context Airport inv:
self.departingFlights->exists(departTime.hour<6)

airp1
airline1

f1
depart = 7

f2
depart = 5

departing flights arriving flights

airp2

airline1

airline2

airline3

f5
depart = 8

f4
depart = 9

depart = 5

f3
depart = 8

33© Robert B. France

The exists operation syntax

� Syntax:
collection->exists(elem : T | expr)
collection->exists(elem | expr)
collection->exists(expr) collection->exists(expr)

34© Robert B. France

Other collection operations

� isEmpty: true if collection has no elements
� notEmpty: true if collection has at least one

element
� size: number of elements in collection

count(elem): number of occurences of elem in � count(elem): number of occurences of elem in
collection

� includes(elem): true if elem is in collection
� excludes(elem): true if elem is not in collection
� includesAll(coll): true if all elements of coll are in

collection

35© Robert B. France

Local variables

� The let construct defines variables local to
one constraint:
Let var : Type = <expression1> in <expression2>

Example:� Example:
context Airport inv:
Let supportedAirlines : Set (Airline) =

self.arrivingFlights -> collect(airLine) in
(supportedAirlines ->notEmpty) and
(supportedAirlines ->size < 500)

36© Robert B. France

Iterate

� The iterate operation for collections is the
most generic and complex building block.

collection->iterate(elem : Type;collection->iterate(elem : Type;
answer : Type = <value> |

<expression-with-elem-and-answer>)

37© Robert B. France

Iterate example

� Example iterate:
context Airline inv:
flights->select(maxNrPassengers > 150)->notEmpty

� Is identical to:
context Airline inv:
flights->iterate (f : Flight;

answer : Set(Flight) = Set{ } |
if f.maxNrPassengers > 150 then

answer->including(f)
else

answer endif)->notEmpty

38© Robert B. France

Specifying Constraints:

Operation Specifications

39© Robert B. France

Pre- and PostCondition Example

A class named Account has an attribute balance and an
operation overdraft() that returns true if the bala nce is
less than 0 and false otherwise.

context Account::overdraft():Boolean

40

context

pre : -- none

post : result = (balance < 0)

© Robert B. France

More complex operation

specifications
The operation birthdayOccurs() adds 1 to the

customer age.
context Customer::birthdayOccurs()

pre : -- none

post : age = age@pre + 1

41

context Account::safeWithdraw(amt:Integer)

pre : balance > amt

post : balance = balance@pre - amt

© Robert B. France

Example model

Airport

Flight

Passenger

Airline

*

*
*

*

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPassengers: Integer

origin

desti-
nation

name: String

name: String

{ordered}

arriving
Flights

departing
Flights

flights

passengers

airline

Time
midnight: Time
month : String

1
1

1

1

42

Passenger

minAge: Integer
age: Integer
needsAssistance: Boolean

CEO

0..1

book(f : Flight)

0..1airline

difference(t:Time):Interval
before(t: Time): Boolean
plus(d : Interval) : Time

month : String
day : Integer
year : Integer
hour : Integer
minute : Integer

Interval

equals(i:Interval):Boolean
Interval(d,h,m : Integer) : Interval

nrOfDays : Integer
nrOfHours : Integer
nrOfMinutes : Integer

© Robert B. France

Derived Attribute & Initial Value

Example
Defining derived attributes
context Flight::arrivalTime:Time

derive:departTime.plus(duration)

Defining initial attribute value

43

Defining initial attribute value
context Flight::maxNrPassengers:Integer

init: 100

Defining initial association end value
context Flight::passengers:Set(Passenger)

init: Set{}

© Robert B. France

Query operation examples

Return all the departing flights from a given airport
context Airport::departures():Set(Flight)

body: result=departingFlights

Query operation example: Return all the airports served
by an airline

44

by an airline
context Airline::served():Set(Airport)

body: result=flights.destination->asSet

© Robert B. France

Inheritance of constraints

� Guiding principle Liskov’s Substitution
Principle (LSP):
� “Whenever an instance of a class is expected,

one can always substitute an instance of any of its

45

subclasses.”

© Robert B. France

Inheritance of constraints

� Consequences of LSP for invariants:
� An invariant is always inherited by each subclass.
� Subclasses may strengthen the invariant.

� Consequences of LSP for preconditions and
postconditions:

46

postconditions:
� A precondition may be weakened (contravariance)
� A postcondition may be strengthened (covariance)

© Robert B. France

An Example: Royal and Loyal

Model

Taken from “The Object Constraint
Language” by Warmer and Kleppe

47 © Robert B. France

48© Robert B. France

Defining initial values & derived

attributes

context LoyaltyAccount::points
init :0

context CustomerCard::validcontext CustomerCard::valid
init : true

context CustomerCard::printedName
Derive : owner.title.concat(‘ ’).concat(owner.name)

49 © Robert B. France

context LoyaltyProgram
inv : partners.deliveredServices -> size() >= 1

context LoyaltyProgram
inv : partners.deliveredServices ->
forAll(pointsEarned = 0 and pointsBurned = 0)
implies Membership.account -> isEmpty()implies Membership.account -> isEmpty()

A note on the collect operation
partners -> collect(numberIOfCustomers)
can also be written as
partners.numberOfCustomers

50© Robert B. France

context Customer
inv : programs -> size() = cards -> select (valid = true) -> size()

context ProgramPartner
inv : numberOfCustomers = programs.participants ->
asSet() -> size()

51© Robert B. France

Defining Query Operations in OCL

context
LoyaltyProgram::getServices(pp:ProgramPa
rtner:Set(Service)
body : if partners -> includes(pp) then
pp.deliveredServices

else Set{}
endifendif

52 © Robert B. France

Defining new attributes and operations

context LoyaltyAccount
def : turnover :
Real = transactions.amount -> sum()
//Attributes introduced in this manner are always derived attributes

context LoyaltyProgram
def : getServicesByLevel(levelName:String): Set(Service)
= levels -> select (name = levelName).availableServices ->asSet()

53© Robert B. France

Specifying Operations

context LoyaltyAccount::isEmpty():Boolean
pre : true
post : result = (points = 0)

context Customer::birthdayHappens()
post : age = age@pre +1

context LoyaltyProgram::enroll(c:Customer)
pre : c.name <> ‘ ’
post : participants @pre -> including(c)

context Service::upgradePointsEarned(amount: Integer)
post : calcPoints() = calcPoints@pre() + amount

54 © Robert B. France

Inheritance of constraints

� Guiding principle Liskov’s Substitution
Principle (LSP):
� “Whenever an instance of a class is expected,

one can always substitute an instance of any of its
subclasses.”

55© Robert B. France

Inheritance of constraints

� Consequences of LSP for invariants:
� An invariant is always inherited by each subclass.
� Subclasses may strengthen the invariant.

� Consequences of LSP for preconditions and � Consequences of LSP for preconditions and
postconditions:
� A precondition may be weakened (contravariance)
� A postcondition may be strengthened (covariance)

56© Robert B. France

OCL Summary

� OCL invariants allow you to
� model more precisely
� remain implementation independent

� OCL pre- and post-conditions allow you to
� specify contracts (design by contract)
� specify interfaces of components more precisely

� OCL usage tips
� keep constraints simple
� always give natural language comments for OCL

expressions
� use a tool to check your OCL

57© Robert B. France

Conclusion

12/26/2013 58

