
SOFTWARE SPECIFICATIONS

SE 422 Advanced Software Engineering

The Role of Sepcifications

� Requirements are seldom communicated
accurately
� Why? Not understood or recorded correctly.

� Consequences? The development team produces � Consequences? The development team produces
a functioning system that is not correct. There
exists a gap between the requirements and the
implementation.

� Formal Methods provide a foundation for:
� describing complex systems

� Reasoning about their behavior

The Role of Sepcifications

� Most application domains are complex
� Nuclear, avionics, medical, weather, etc.

� Application domains demand dependable
softwaresoftware
� Reliable, safe, secure, and correct.

� Dependability must be understood in the context of
environmental interactions –not just conformance to
its local system properties.

� Formal Methods intensify the rigor with which
requirements are gathered, analyzed and
specified.

Complexity

� Complex systems are large (LOC, coupling,

people, resources, communication,

documentation, processes…)

� We would like to control complexity

� We would like to reduce complexity by introducing

simplicity in the construction of large systems

Complexity

� Simple System
� Components can be modeled in a simple way and the

interactions are governed by well-defined
deterministic rules.

� The overall behavior becomes predictable to a high � The overall behavior becomes predictable to a high
degree of accuracy.

� Complex System
� Components are difficult to model accurately.

� Interactions amongst components are not governed
by well defined rules.

� Behavior is not predictable.

Complexity Types

� Size

� Structural

� Environmental

� Domain

� Communication

Size Complexity

� The size of a system refers to:

� The number of components

� The number of requirements to describe each

componentcomponent

� The number of interactions between the

components

� The number of quality constraints

� … many more

Size Complexity

� The behavior of a large system is governed by

the behavior of the individual parts as well as

the interactions between the parts.

� Large Size � higher complexity� Large Size � higher complexity

Formal methods help us manage

complexities by removing conflicts

Structural Complexity

� Two aspects:

� Management

� Each phase in the lifecycle adds new complexity.

� The organizational structures of teams are reflected � The organizational structures of teams are reflected

in the software.

� Technical

� Coupling between modules

� Packaging

Environmental Complexity

� Environment refers to the physical and logical

structure within which the software will

operate.

� Software environment refers to the � Software environment refers to the

combination of:

� Operating system

� Software tools

� Interfaces

� Database systems

Environmental Complexity

� The software environment is the sum of:
� The requirements specification environment

� The development environment

� The testing environment� The testing environment

� The deployment environment

� Etc.

� To earn the trust of a client, the attributes
and constraints of the environment must be
taken into consideration when designing the
software.

Domain Complexity

� The domain refers to a particular field of

Knowledge

� If the domain is complex (most are) then the

software must necessarily also be complex in software must necessarily also be complex in

order to provide reasonable solutions.

� In this case the software developers cannot

remove complexities inherent in the domain, but

they can control it.

� Formal methods help minimize complexity

Domain Complexity

� Additionally:

� Domains can be interrelated

� Domains can have fuzzy boundaries

� Knowledge acquisition in a domain will be � Knowledge acquisition in a domain will be

incomplete. Not all objects are known.

Communication Complexity

� Communication complexities exist at the
technology as well as the organizational (people)
level.

� Technology
� Distributed systems� Distributed systems

� Multi-core processors

� Network protocols

� People
� Team organizations

� Different lifecycles between collaborating teams

� Geographic distribution

� People may play different roles.

Formal Methods help us model different

types of complexities thus reducing the errors

made in the requirements analysis of made in the requirements analysis of

software.

Software Specification

1) A proper specification can control and

adequately contain certain types of

complexity

2) Without specification software complexity is

uncontrollable

What is Specification?

� A statement that describes structural and

behavioral details of the software to be

developed.

� The software specification must contain:� The software specification must contain:

� A precise description of the system objects

� A set of methods to manipulate the objects

� A statement of their collective behavior for the

duration of their existence in the system

Why Specify?

� Because we want to produce software products

that “successfully work in the environment where

they are intended to be used”

� The vast amount of information and data in the � The vast amount of information and data in the

target domain is otherwise unmanageable

� Abstraction and decomposition are the most

useful tools when specifying.

� Abstraction : Helps simplify

� Decomposition : Helps precission

What to Specify?

� For each object:

� Description

� Properties

� Simple or structured. State constraints, invariants.� Simple or structured. State constraints, invariants.

� Operations

� Behaviors

� Pre and Post conditions.

� For each pair of objects:

� Interaction rules

Controlling Complexity

� It is not possible to control domain or
environmental complexity.

� Size complexities are best approached
through:through:
� Decomposition. We can partition objects into

manageable collections.

� Reuse. Use existing and well understood software
components.

� Abstraction. Top down functional decomposition
produces hierarchies with simpler concepts
(abstractions) at the top of the hierarchies.

Controlling Complexity

� Structural complexities are best dealt with:

� Set theory

� Predicate logic

� Relations and function abstraction� Relations and function abstraction

� Communication complexity is best dealt by:

� Understanding organization of teams

� Precise notations and protocols

