
Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book
Model-Driven Software Engineering in Practice
by Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE PRINCIPLES

Chapter #2

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Principles
Contents

§ Concepts
§ Approaches
§ Adoption

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)
Reduction Feature A model only reflects a (relevant) selection

of the original‘s properties
Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

Model

represents System

Purposes:
•  descriptive purposes
•  prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE aim at large

§ MDSE considers models as first-class citizens in software
engineering

§ The way in which models are defined and managed is
based on the actual needs that they will address.

§ MDSE defines sound engineering approaches to the
definition of
§ models
§  transformations
§ development process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Principles and objectives

§ Abstraction from specific realization technologies
§ Requires modeling languages, which do not hold specific concepts of

realization technologies (e.g., Java EJB)
§  Improved portability of software to new/changing technologies – model

once, build everywhere
§  Interoperability between different technologies can be automated (so

called Technology Bridges)

§ Automated code generation from abstract models
§ e.g., generation of Java-APIs, XML Schemas, etc. from UML
§ Requires expressive und precise models
§  Increased productivity and efficiency (models stay up-to-date)

§ Separate development of application and infrastructure
§ Separation of application-code and infrastructure-code (e.g. Application

Framework) increases reusability
§ Flexible development cycles as well as different development roles

possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE methodology ingredients

§ Concepts: The components that build up the methodology
§ Notations: The way in which concepts are represented
§ Process and rules: The activities that lead to the

production of the final product
§ Tools: Applications that ease the execution of activities or

their coordination

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Equation

Models + Transformations = Software

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MD* Jungle of Acronyms

§  Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

§  Model-driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

§  Model-Driven Engineering (MDE) is a superset of MDD becauseit
goes beyond of the pure development

§  Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Target of MDSE

§ The Problem Domain
is defined as the field
or area of expertise
that needs to be
examined to solve a
problem.

§ The Domain Model is
the conceptual model
of the problem domain

§ Technical Spaces
represent specific
working contexts for
the specification,
implementation, and
deployment of
applications.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

§ Domain-Specific Languages (DSLs): languages that are
designed specifically for a certain domain or context

§ DSLs have been largely used in computer science.
Examples: HTML, Logo, VHDL, Mathematica, SQL

§ General Purpose Modeling Languages (GPMLs, GMLs,
or GPLs): languages that can be applied to any sector or
domain for (software) modeling purposes

§ The typical examples are: UML, Petri-nets, or state
machines

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodeling

§ To represent the models
themselves as “instances” of
some more abstract models.

§ Metamodel = yet another
abstraction, highlighting
properties of the model itself

§ Metamodels can be used for:
§ defining new languages
§ defining new properties or

features of existing information
(metadata)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations

§ Transforming items
§ MDSE provides appropriate languages for defining model

transformation rules
§ Rules can be written manually from scratch by a developer, or can

be defined as a refined specification of an existing one.
§ Alternatively, transformations themselves can be produced

automatically out of some higher level mapping rules between
models
§ defining a mapping between elements of a model to elements to another

one (model mapping or model weaving)
§ automating the generation of the actual transformation rules through a

system that receives as input the two model definitions and the mapping
§ Transformations themselves can be seen as models!!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Model Engineering basic architecture

R
ea

liz
at

io
n

M
od

el
in

g

Model

Artifacts
(e.g. code)

Modeling
language

Platform

Meta-
modeling
language

Transformation
definition

Transformation
language

uses

defined using

defined by

Application domain Application Meta-Level

Au
to

m
at

io
n

Transformation /
Code generation

Abstraction (bottom-up) Reuse

Construction (top-down)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modelware vs. Grammarware

§ Two technical spaces

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations
MOF and transformation setting

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types of models

§ Static models: Focus on the static aspects of the system in
terms of managed data and of structural shape and
architecture of the system.

§ Dynamic models: Emphasize the dynamic behavior of the
system by showing the execution

§ Just think about UML!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Consequences or Preconditions

§ Modified development process
§ Two levels of development – application and infrastructure

§  Infrastructure development involves modeling language, platform (e.g.
framework) and transformation definition

§  Application development only involves modeling – efficient reuse of the
infrastructure(s)

§ Strongly simplified application development
§  Automatic code generation replaces programmer
§  Working on the code level (implementation, testing, maintenance) becomes

unnecessary
§  Under which conditions is this realistic … or just futuristic?

§ New development tools
§ Tools for language definition, in particular meta modeling
§ Editor and engine for model transformations
§ Customizable tools like model editors, repositories, simulation,

verification, and testing tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Overview

§ Considered Approaches
§ Computer Aided Software Engineering (CASE)
§ Executable UML
§ Model Driven Architecture (MDA)
§ Architecture Centric Model Driven Software Development (AC-MDSD)
§ MetaCASE
§ Software Factories

§ Distinguishing features
§ Special objectives and fields of application
§ Restrictions or extensions of the basic architecture
§ Concrete procedures
§ Specific technologies, languages, tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
CASE

§  Historic approach (end of 20th century)
§  Example: Computer Associates’ AllFusion Gen

§  Supports the Information Engineering Method by James Martin by a series of diagram types
(incl. user interface)

§  Fully automated code generation for one architecture (3-Tier) and plenty of execution
platforms (Mainframe, Unix, .NET, J2EE, different databases, …)

§  Advantage/Disadvantage: no handling with the target platform required/possible
§  Different implementation versions of the basic architecture

§  Meta-Level often not supported / not accessible
§  Modeling language often fixed, tool specific versions
§  Execution platform often not considered or fixed

§  Advantages
§  Productivity, development and maintenance costs, quality, documentation

§  Disadvantages
§  Proprietary (version of a) modeling language
§  Tool interoperability nonexistent
§  Strongly dependent on the tool vendor regarding execution platforms, further development
§  Tools are highly complex

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Executable UML

§  “CASE with UML”
§ UML-Subset: Class Diagram, State Machine, Package/Component

Diagram, as well as
§ UML Action Semantic Language (ASL) as programming language

§ Niche product
§ Several specialized vendors like Kennedy/Carter
§ Mainly used for the development of Embedded Systems

§ One part of the basic architecture implemented
§ Modeling language is predetermined (xUML)
§ Transformation definitions can be adapted or can be established by the

user (via ASL)
§ Advantages compared to CASE

§ Standardized modeling language based on the UML
§ Disadvantages compared to CASE

§ Limited extent of the modeling language

[S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

§  Interoperability through platform independent models
§ Standardization initiative of the Object Management Group (OMG), based

on OMG Standards, particularly UML
§ Counterpart to CORBA on the modeling level: interoperability between

different platforms
§ Applications which can be installed on different platforms à portability, no

problems with changing technologies, integration of different platforms,
etc.

§ Modifications to the basic architecture
§ Segmentation of the model level

§  Platform Independent Models (PIM): valid for a set of (similar) platforms
§  Platform Specific Models (PSM): special adjustments for one specific

platform
§ Requires model-to-model transformation (PIM-PSM; compare QVT) and

model-to-code transformation (PSM-Code)
§ Platform development is not taken into consideration – in general industry

standards like J2EE, .NET, CORBA are considered as platforms

[www.omg.org/mda/]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Base Level: UML
Platform-Independent

Model of Business
Functionality & Behavior

Automated
Transformation

Intermediate Level UML
Platform-Specific

Model|s| on
selected platforms

generated from PIM

Implementation
generated from PSMs

Modeling in a technology-
independent UML profile allows

a precise representation
of business process/rules

Executed by MDA tool which
follows OMG standard mappings.
Resulting PSM may need some

hand adjustments based
on infrastructure decisions

Modeled in a technology-
specific UML profile.

Represents every aspect of a
coded application, but still as a model

Executed by MDA tool.
Many tools on the market

execute this step very well today

Generated code and auxiliary files
ready for compilation, linking

with legacy or other code, and deployment

Automated
Transformation

M
od

el
in

g
S

pa
ce

C

od
e

S
pa

ce

Approaches
MDA development cycle

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Levels
CIM, PIM, PSM

§ Computation independent (CIM): describe requirements and
needs at a very abstract level, without any reference to
implementation aspects (e.g., description of user
requirements or business objectives);

§ Platform independent (PIM): define the behavior of the
systems in terms of stored data and performed algorithms,
without any technical or technological details;

§ Platform-specific (PSM): define all the technological aspects
in detail.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
CIM

§ Eg., business process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Independent Model (PIM)

§ specification of
structure and behaviour
of a system, abstracted
from technologicical
details

§ Using the UML(optional)

§ Abstraction of structur and behaviour of a system with the PIM

simplifies the following:
§ Validation for correctness of the model
§ Create implementations on different platforms
§ Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Specific Model (PSM)

§ Specifies how the functionality described
 in the PIM is realized on a certain platform
§ Using a UML-Profile for the
 selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA Reverse Engineering / Roundtrip Engineering

§ Re-integration onto
new platforms via
Reverse Engineering
of an existing
application into a PIM
und subsequent code
generation

§ MDA tools for
Reverse Engineering
automate the model
construction from
existing code

Legacy
App

COTS
App

Other

Other
Model

Reverse-engineer
existing application

into a model and
redeploy PIM (UML)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Excursus: OMG Standards

§ CORBA - Common Object Request Broker Architecture
§ Language- and platform-neutral interoperability standard (similar to

WSDL, SOAP and UDDI)
§ UML - Unified Modeling Language

§ Standardized modeling language, industry standard
§ CWM - Common Warehouse Metamodel

§  Integrated modeling language for Data Warehouses
§ MOF – Meta Object Facility

§ A standard for metamodels and model repositories
§ XMI - XML Metadata Interchange

§ XML-based exchange of models
§ QVT – Queries/Views/Transformations

§ Standard language for Model-to-Model transformations

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA with UML

§ Problems when using UML as PIM/PSM
§ Method bodies?
§  Incomplete diagrams, e.g. missing attributes
§  Inconsistent diagrams
§ For the usage of the UML in Model Engineering special guidelines have to

be defined and adhered to
§ Different requirements to code generation

§ get/set methods
§ Serialization or persistence of an object
§ Security features, e.g. Java Security Policy
§ Using adaptable code generators or PIM-to-PSM transformations

§ Expressiveness of the UML
§ UML is mainly suitable for “generic” software platforms like Java,

EJB, .NET
§ Lack of support for user interfaces, code, etc.
§ MDA tools often use proprietary extensions

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

§ Many UML tools are expanded to MDA tools
§ UML profiles and code generators
§ Stage of development partly still similar to CASE: proprietary UML

profiles and transformations, limited adaptability
§ Advantages of MDA

§ Standardization of the Meta-Level
§ Separation of platform independent and platform specific models

(reuse)
§ Disadvantages of MDA

§ No special support for the development of the execution platform and
the modeling language

§ Modeling language practically limited to UML with profiles
§ Therefore limited code generation (typically no method bodies, user

interface)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE industry
Adoption and acceptance (hype)

§ Not yet mainstream in all industries
§ Strong in core industry (defense, avionics, …)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Industry (2)
Adoption

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

§ Drawing vs. modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
AC-MDSD

§  Efficient reuse of architectures
§  Special attention to the efficient reuse of infrastructures/frameworks (= architectures) for a

series of applications
§  Specific procedure model

§  Development of a reference application
§  Analysis in individual code, schematically recurring code and generic code (equal for all applications)
§  Extraction of the required modeling concepts and definition of the modeling language, transformations and

platform
§  Software support (www.openarchitectureware.org)

§  Basic architecture almost completely covered
§  When using UML profiles there is the problem of the method bodies
§  The recommended procedure is to rework these method bodies not in the model but in the

generated code
§  Advantages compared to MDA

§  Support for platform- and modeling language development

§  Disadvantages compared to MDA
§  Platform independence and/or portability not considered

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MetaCASE/MetaEdit+

§ Free configurable CASE
§ Meta modeling for the development of domain-specific modeling

languages (DSLs)
§ The focus is on the ideal support of the application area, e.g. mobile-

phone application, traffic light pre-emption, digital clock – Intentional
Programming

§ Procedural method driven by the DSL development
§ Support in particular for the modeling level

§ Strong Support for meta modeling, e.g. graphical editors
§ Platform development not assisted specifically, the usage of components

and frameworks is recommended
§ Advantages

§ Domain-specific languages
§ Disadvantages

§ Tool support only focuses on graphical modeling

[www.metacase.com]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Software Factories

§ Series production of software products
§ Combines the ideas of different approaches (MDA, AC-MDSD,

MetaCASE/DSLs) as well as popular SWD-technologies (patterns,
components, frameworks)

§ Objective is the automatically processed development of software product
series, i.e., a series of applications with the same application area and the
same infrastructure

§ The SW-Factory as a marketable product
§ Support of the complete basic architecture

§ Refinements in particular on the realization level, e.g. deployment
§ Advantages

§ Comprehensive approach
§ Disadvantages

§ Approach not clearly delimited (similar MDA)
§ Only little tool support

[J. Greenfield, K. Short: Software Factories. Wiley, 2004]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse and EMF

§ Eclipse Modeling Framework
§ Full support for metamodeling and language design
§ Fully MD (vs. programming-based tools)
§ Used in this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the last century

§ Critical Statements of Software Developers

§ »When it comes down to it, the real point of software
development is cutting code«

§ »Diagrams are, after all, just pretty pictures«

§ »No user is going to thank you for pretty pictures;
 what a user wants is software that executes«

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the new millennium – Much has changed!

§  »When it comes down to it, the real point of software development is cutting
code«
§  To model or to program, that is not the question!
§  Instead: Talk about the right abstraction level

§  »Diagrams are, after all, just pretty pictures«
§  Models are not just notation!
§  Instead: Models have a well-defined syntax in terms of metamodels

§  »No user is going to thank you for pretty pictures;
 what a user wants is software that executes«
§  Models and code are not competitors!
§  Instead: Bridge the gap between design and implementation by model transformations

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
 (revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book
Model-Driven Software Engineering in Practice
by Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE
ENGINEERING IN PRACTICE
Marco Brambilla,
Jordi Cabot,
Manuel Wimmer.
Morgan & Claypool, USA, 2012.

www.mdse-book.com
www.morganclaypool.com
or buy it on www.amazon.com

