
1

Fault Tolerance

CS460 - Senior Design Project I (AY2004) 2

Fault tolerance
• References:

– L. Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Problem”, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 3, July 1982, pp. 382–
401.

– V.P. Nelson, “Fault-Tolerant Computing: Fundamental
Concepts”, IEEE Computer, July 1990, pp. 19–25.

– A. Avizienis, “Toward Systematic Design of Fault-Tolerant
Systems”, IEEE Computer, April 1997, pp. 51–58.

– R. Geist and K. Trivedi, “Reliability Estimation of Fault-
Tolerant Systems: Tools and Techniques”, IEEE Computer,
July 1990, pp. 52–61.

2

CS460 - Senior Design Project I (AY2004) 3

Fault-tolerance is software engineering?
• A system is an entire set of components that provides a service

to a user. Systems are developed to satisfy a set of
requirements that meet a need.

• Software engineering principles aim to deliver reliable code that
behaves as expected.

• More and more, faults must be tolerated by the system in order
to meet users expectations.

• We need to handle failure in order to deliver the reliable
software we are striving for.

• It is an essential property of systems such as:
– Aircraft systems.
– Telephone systems
– Banking systems
– Medical monitoring systems
– Nuclear power plants

CS460 - Senior Design Project I (AY2004) 4

System dependability
• User’s view of a system:

– The system provides a service on which users depend on to
accomplish their own objectives. Users come to place an
expectation, a reliance, or trust in the level of service
provided by the system.

• The extent to which the system delivers a service assording to
user expectations can be qualitatively measured in terms of the
system’s dependability.

3

CS460 - Senior Design Project I (AY2004) 5

Dependability
• For a system to be dependable, it must be:

– Available – ready for use when users require it.
– Reliable – able to provide continuity of service while it is in

use.
– Safe – does not have a catastrophic impact on its

environment.
– Secure – able to preserve confidentiality.

• These system attributes are interdependent.

CS460 - Senior Design Project I (AY2004) 6

Reliability
• Reliability is a measure of a systems capacity to deliver without

failure when it is put into service. It suggests a high level os
assurance that the system will continuously deliver its expected
level of service throughout the life of its expected mission.

• It is a measure used to describe systems in which:
– A repair is not possible (e.g., space mission).
– The system is performing a critical function and cannot be

lost even for a short space of time (e.g., flight systems).
– The repair is prohibitively expensive.

4

CS460 - Senior Design Project I (AY2004) 7

Availability
• Availability is often used as a figure of merit in systems in which

service can be delayed or denied for a brief period without
serious consequence.
– Many transaction processing systems can tolerate short

service degradations such as slowdowns or outages.
– High-availability system strive to keep downtime to a

minimum, as well as distribute downtime in prescribed ways.
• Maintainability of a failed system is a measure of the continuous

service interruption or, equivalently, of the time to restoration.
• Computer systems reliability must be considered during system

design – it cannot be built in afterwards.

CS460 - Senior Design Project I (AY2004) 8

Fault prevention
• Fault prevention/avoidance

– Reduce the possibility of a failure through conservative
design practices, such as:

• Employing the method of worst-case design.
• Using high quality components.
• Keep the system as simple as possible.
• Imposing strict quality control procedures (testing,

verification – fault removal).
– Such practices can bot eliminate all faults. They are also

extremely expensive.
• Fault tolerance masks, or detects and recovers, from the effect

of faults during system operation.

5

CS460 - Senior Design Project I (AY2004) 9

Fault tolerance
• A fault-tolerant computing system is one which has the built in

capacity to preserve the continued correct behaviour in the
presence of a certain set of faults.

• A fault-tolerant design can provide dramatic improvements in
system availability and lead to a substantial reduction in
maintenance costs as a consequence of fewer system failures.

• Fault tolerance is not a replacement, but rather a supplement, to
the important principles of fault-prevention design.

• The effectiveness of fault tolerance for enhancing system
reliability is most pronounced in a system composed of basically
reliable components than in a system of unreliable components.

CS460 - Senior Design Project I (AY2004) 10

Terminology
• A fault is a cause of error which may lead to failure.
• A failure is a malfunction. A failure is said to have occurred in a

system or a module if it derivates from its specified behaviour.
• An error is an incorrect response from a system module. It is

that part of the system state that is likely to lead to subsequent
failure.

• An error is a manifestation of a fault: the occurrence of an error
indicates that a fault is present in the module.

• A fault is a condition or a physical defect that may cause a
failure. A fault is an unspecified deviation of the correct value of
a logic variable in the system hardware or a fault in the software
development.

6

CS460 - Senior Design Project I (AY2004) 11

Terminology
• Consider a computer system controlling the temperature of a

boiler by calculating the firing rate of the burner for the boiler.
– If a bit in memory becomes stuck at 1, that is a fault.
– If the memory fault effects the operation of the program in

such a way that the computer system causes the boiler
temperature to rise out of the expected range, that is a
computer system failure and a fault in the overall boiler
system. The fault can be tolerated to prevent it from causing
failures in the boiler system.

– If the boiler explodes because of the faulty firing
calculations, that is a (catastrophic) systems failure.

CS460 - Senior Design Project I (AY2004) 12

Terminology
• An error will lead to the failure of a system unless tolerance of

the underlying fault has been provided. A failure is therefore the
effect of an error on system service.

• A fault may exist without the occurrence of an error under
certain conditions.

• A system is fault tolerant to the extent that it can prevent faults
from becoming failures in the system services.

7

CS460 - Senior Design Project I (AY2004) 13

Classification
• There is no such thing as a truly fault tolerant system. There

are only systems which can tolerate certain classes of faults.
• The faults that are encountered during system operation fall into

2 groups:
– Anticipated faults – those whose occurrence in the system

can be forseen.
– Unanticipated faults – those whose occurrence cannot be

foreseen but whose presence affect system operation (e.g.,
design faults).

CS460 - Senior Design Project I (AY2004) 14

Characterisation
• Faults may be characterised by a number of properties.
• Type

– Hardware faults are caused by physical factors resulting
from wear, manufacturing defects, etc.

– Software faults are the result of design or implementation
flaws.

• Nature
– A logical fault causes the logical value at a point in the

system to become different from the specified value.
– Non-logical faults include the rest of the faults such as the

malfunction of a component, power failure etc. (the are
indeterminate and have no logical equivalents).

8

CS460 - Senior Design Project I (AY2004) 15

Characterisation
• Level

– The level at which a fault occurs may be that of a
component, module, subsystem or a system.

• Extent
– The extent of a fault refers to the scope of its effect on the

system and ranges from localised to global (distributed). A
local fault only affects a single component while a global
fault has its damage propagated to other system
components.

CS460 - Senior Design Project I (AY2004) 16

Characterisation
• Duration

– A fault is permanent if its cause will not disappear without
repair and its effect is always present.

– Temporary faults are also referred to as transient or
intermittent.

• An intermittent fault will not disappear without repair but
its effect may not always be present.

• A transient fault will exist from some period of time and
then disappears without the need for repair action.

9

CS460 - Senior Design Project I (AY2004) 17

Characterisation
• Latency

– The property of a fault to allow it to go undetected by virtue
of not causing an error.

• An overt failure is a failure that is caused by instantly
detectable errors or faults, and are instantly detected
after they occur.

• A hidden failure is a failure that is caused by errors
detected only some time after the errors occurred. A
hidden failure may never be detected and the system will
continue to execute based on the erroneous part of the
system state which may corrupt other parts of the system
and cause data deterioration.

CS460 - Senior Design Project I (AY2004) 18

Failure mode
• The term failure mode refers to the behaviour of a component

upon a failure.
– Fail-stop (crash failure): A component can fail only by

producing no response, (i.e., it stops functioning as soon as
an error is detected).

– Omission failure: A faulty component omits the production of
some of its prescribed outputs. The outputs that it does
generate are always correct.

– Timing failure: A component is functionally correct but
untimely (i.e., the response occurs outside the real-time
interval specified).

– Malicious failure: A component behaves arbitrarily upon a
failure. This is the most complicated failure mode.

• A given component can have several failure modes.

10

CS460 - Senior Design Project I (AY2004) 19

Stages In handling faults
• Fault detection

– Detect the presence of a fault so that corrective and/or
protective action can be undertaken. How?

• Most often through the detection of errors that result from
the fault.

• Diagnostic testing.
• Fault confinement

– Limit the scope of a fault to as small as area as possible in
order to protect the rest of the system.

• Fault diagnosis
– Manual/automatic identification of faulty modules so that it

can be replaced

CS460 - Senior Design Project I (AY2004) 20

Stages in handling faults
• Repair and/or reconfiguration

– Eliminate the faulty component or else reconfigure the
system so that the faulty component can no longer affect the
operation of the system.

• Recovery
– Place or restore the system into an acceptable state from

which it can continue execution, unless the effects of the
fault have been masked from the rest of the system.

• Backward recovery – backup the system to an error free
previous state.

• Forward recovery – move the system forward to an error
free result, attempting to make use of the erroneous
state.

• Restart

11

CS460 - Senior Design Project I (AY2004) 21

Redundancy
• Fault tolerance begins with the assumption that computer

systems are susceptible to many kinds of failure, and then
attempts to meet the reliability goals of the system by
incorporating various kinds of redundancy into the design.

• Redundancy refers to the use of extra hardware, software,
information, or time to mask faults or to reconfigure a faulty
system. The costs associated with redundancy can be justified
when weighted against the cost of system failure.

• For achieving fault tolerance, in all cases, some form of
redundancy is required in the system to implement the selected
fault tolerance strategies.

CS460 - Senior Design Project I (AY2004) 22

Redundancy
• Hardware redundancy

– Extra hardware is employed to provide fault detection, fault
masking, fault diagnosis or functional spares.

• Information redundancy
– Redundant bits which can be utilised to allow detection

and/or correction of errors within information. In multi-
processor systems, information can be replicated to provide
high availability and fault tolerance.

• Software redundancy
– Extra software that can be utilised to provide fault detection,

fault diagnosis, fault masking, or fault tolerance of hardware
and/or software faults.

12

CS460 - Senior Design Project I (AY2004) 23

Redundancy
• Temporal redundancy

– Operations ranging from single bus cycles to program
executions that can be repeated to allow recovery from
transient and intermittent faults.

• Redundancy can be static or dynamic
– Static redundancy (also known as masking redundancy)

uses extra components such that the effect of a faulty
component is masked instantly.

– Dynamic redundancy uses several modules, but with only
one operating at any one time. If a fault is detected in the
operating module it is switched out and replaced by a spare.

CS460 - Senior Design Project I (AY2004) 24

Consensus
• The aim of consensus is to reach agreement between the fault-

free members of the resource population on a quantum of
information. Fault-free members should be able to consistently
agree on and produce correct results despite the actions,
malicious or not, of the faulty segment of the population.

• Consensus is the core of the protocols which handle
synchronisation, reliable communication, resource allocation,
task scheduling, and other services.

• The Byzantine Generals Problem explores this consensus
problem.

13

CS460 - Senior Design Project I (AY2004) 25

Byzantine generals problem
• The problem of reaching agreement in a system where

components can fail in an arbitrary manner is called the
Byzantine Generals Problem.

• The historical Byzantine Generals problem involves a group of
Byzantine generals who have surrounded the enemy with their
many armies. They wish to organise a concerted attack by
sending messages back and forth amongst themselves. The
messengers, though, may carry conflicting (sometimes false
and sometimes true) messages to the Byzantine generals (e.g.,
the enemy is clever and has been sending his own messengers,
or some of the generals may be traitors). The problem is to
devise a scheme that will guarantee that the Byzantine generals
agree to either attack or retreat.

CS460 - Senior Design Project I (AY2004) 26

Byzantine generals problem

Commander

Lieutenant 2Lieutenant 1

“attack” “attack”

“he said
retreat”

14

CS460 - Senior Design Project I (AY2004) 27

Byzantine generals problem
• In order to cope with m traitors, it can be proved that there must

be at least 3m+1 generals.
• Assume that:

– Every message that is sent is delivered correctly.
– The receiver of a message knows who sent it.
– The absence of a message can be detected.

• A traitorous general may decide not to send any order. Since
the lieutenants must obey some order, they need a default
order. We let RETREAT be the default order.

CS460 - Senior Design Project I (AY2004) 28

Byzantine generals problem
• Let v(i) be the information communicated by the ith general.
• Assume the existence of a function majority(v1, …, vn-1) equals

v if the majority of vi equal v.
• If there are no traitors, the solution is BG(0):
1. The commander sends his instruction to every lieutenant.
2. Each lieutenant uses the value he receives from the

commander, or uses the value RETREAT if he receives no
value.

15

CS460 - Senior Design Project I (AY2004) 29

Byzantine generals problem
• If there are m traitors amongst the n generals such that

n≥3m+1, then the solution BG(m) is:
1. The commander sends his instruction to every lieutenant.
2. For each i, let vi be the value Lieutenant i receives from

the commander, or else be RETREAT if he receives no value.
Lieutenant i acts as the commander in Algorithm BG(n-1) to
send the value vi to each of the n-2 other lieutenants.

3. For each i, and each j≠i, let vj be the value Lieutenant i
received from Lieutenant j, in step (2) (using algorithm
BG(m-1), or else RETREAT if he received no such value.
Lieutenant i uses the value majority(v1, …, vn-1)

CS460 - Senior Design Project I (AY2004) 30

Byzantine generals problem
• To see how this algorithm works, consider the case when m=1,

n=4.

Commander

LieutenantLieutenantLieutenant

v
v v

v x

16

CS460 - Senior Design Project I (AY2004) 31

Byzantine generals problem

Commander

LieutenantLieutenantLieutenant

x
y z

x z

y y

x
z

CS460 - Senior Design Project I (AY2004) 32

Byzantine generals problem
• The Byzantine generals are replaced by processors in a

distributed environment. Every processor has a secret, binary
value that it wishes to broadcast to every other processor. In a
correct solution, all fault-free processors should form identical
vectors (consistency) whose elements corresponding to other
fault-free processors should be the secret values of those
processors (meaningfulness). Together, these two conditions
assure interactive consistency. The requirements do not specify
the value or vector entry for a faulty processor, as long as each
correct processor obtains the same value for it.

17

CS460 - Senior Design Project I (AY2004) 33

Byzantine generals problem
• To ensure that each non-faulty processor receives the same set

of values, we can state a simpler requirement that is equivalent:
every non-faulty node in the system uses the same value for a
node i for decision making.
– All non-faulty processors use the same value v(i) for a node

i.
– If the sending processor i is non-faulty, then every non-faulty

processor uses the value i sends.

CS460 - Senior Design Project I (AY2004) 34

Byzantine generals problem
• Clearly if this property is satisfied for all nodes, we can say that

the set of values at each non-faulty node is the same. Hence
the general problem of consensus is reduced to agreement by
nodes in system on the value of a particular node. This solution
can then be used to disseminate values of all the nodes in the
system.

• Solutions require assumptions be made about the
communication network.
– Any two processors have direct communication across the

network that is not affected by the failure of connected
processors, nor prone to failure itself, and has negligible
delay.

– The receiver of a message knows which processor sent the
message.

– The absence of a message can be detected.

18

CS460 - Senior Design Project I (AY2004) 35

Byzantine generals problem
• Different impossibility results are identified for different

assumptions.
– With asynchronous systems, deterministic Byzantine

agreement or consensus is impossible even if only one
processor crashes during the protocol. The use of a
randomised algorithm is a general strategy for handling
asynchrony: intuitively speaking, even if a message does not
arrive, a processor can still toss a coin and proceed based
on the outcome of the toss.

CS460 - Senior Design Project I (AY2004) 36

Byzantine generals problem
– Most solutions are for synchronous systems.

• With Byzantine faults, for unauthenticated protocols, it is
necessary that n=3t+1, where n is the number of
processors and t is the number of those that may be
faulty.

• With crash failures, solutions exist for t>n.
• With only fail-stop failures synchronous and randomised

asynchronous unauthenticated solutions exist iff t<n/2.

19

CS460 - Senior Design Project I (AY2004) 37

Byzantine generals problem
• A solution is to assume a system of n synchronous processors

communicating via a reliable network. Processing is divided
into synchronous rounds of message exchange. At each round
a processor may receive all messages sent to it in the previous
round, changes states, and send messages to all participants in
increasing order.

• At least t+1 rounds are needed for all deterministic solutions to
the Byzantine Generals Problem (no limit on message size).
The connectivity of the communication network must be at least
2t+1, and reducing the connectivity will most likely result in more
rounds required for the agreement.

CS460 - Senior Design Project I (AY2004) 38

Conclusions
• We have seen that faults in computer software can be:

– Benign – failure of your VCR to record your favourite show.
– Catastrophic – failure of the light rail system to avoid a

collision.
• Our willingness to “pay” for fault-tolerance depends on the

application.
• Fault-tolerance is achieved by:

– Writing correct programs.
– Checking safety conditions and dealing with any problem

when it arises.
– Having multiple redundant systems.

20

CS460 - Senior Design Project I (AY2004) 39

Conclusions
• We may use redundancy of:

– Information
– Hardware
– Software

(or a combination of all three) in order to deliver a mission-
critical fault-tolerant system.

