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Abstract

This course moves beyond the straightforward images generated by the
novice, demonstrating the more sophisticated and novel techniques possible
using the OpenGL library.

By explaining the concepts and demonstrating the techniques required to
generate images of greater realism and utility, the course helps students achieve
two goals: they gain a deeper insight into OpenGL functionality and com-
puter graphics concepts, while expanding their “toolbox” of useful OpenGL
techniques.
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1 Introduction

Since its first release in 1992, OpenGL has been rapidly adopted as the graphics API
of choice for real-time interactive 3D graphics applications. The OpenGL state ma-
chine is easy to understand, but its simplicity and orthogonality enable a multitude
of interesting effects. The goal of this course is to demonstrate how to generate
more satisfying images using OpenGL. There are three general areas of discussion:
generating aesthetically pleasing or realistic looking basic images, computing in-
teresting effects, and generating more sophisticated images.

We have assumed that the attendees have a strong working knowledge of
OpenGL. As much as possible we have tried to include interesting examples involv-
ing only those commands in the most recent version of OpenGL, version 1.1, but
we have not restricted ourselves to this version of OpenGL. OpenGL is an evolving
standard and we have taken the liberty of incorporating material that uses some mul-
tivendor extensions and some vendor specific extensions. The course notes include
reprints of selected papers describing rendering techniques relevant to OpenGL, but
may refer to other APIs such as OpenGL’s predecessor, Silicon Graphics’ IRIS GL.
For new material developed for the course notes we use terminology and notation
consistent with other OpenGL documentation.
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Segal, Michael Teschner, and Tim Wiegand for providing material for inclusion in
the reprints section.

Permission to reproduce [50] has been granted by Computer Graphics Forum.
Once again this year the IRIS Performer Team receives our gratitude for “cov-

ering” for two of us while these notes were being written.

1.2 Course Notes Web Site

We’ve created a webpage for this course in SGI’s OpenGL web site. It contains
an HTML version of the course notes and downloadable source code for the demo
programs mentioned in the text. The web address is:

http://www.sgi.com/Technology/OpenGL/advanced sig97.html

2 About OpenGL

Before getting into the intricacies of using OpenGL, we begin with a few comments
about the philosophy behind the OpenGL API and some of the caveats that come
with it.

OpenGL is a procedural rather than descriptive interface. In order to get a ren-
dering of a red sphere the programmer must specify the appropriate sequence of
commands to set up the camera view and modelling transformations, draw the ge-
ometry for a sphere with a red color. etc. Other systems such as VRML [9] are
descriptive; one simply specifies that a red sphere should be drawn at certain co-
ordinates. The disadvantage of using a procedural interface is that the application
must specify all of the operations in exacting detail and in the correct sequence to
get the desired result. The advantage of this approach is that it allows great flex-
ibility in the process of generating the image. The application is free to trade-off
rendering speed and image quality by changing the steps through which the image
is drawn. The easiest way to demonstrate the power of the procedural interface is
to note that a descriptive interface can be built on top of a procedural interface, but
not vice-versa. Think of OpenGL as a “graphics assembly language”: the pieces
of OpenGL functionality can be combined as building blocks to create innovative
techniques and produce new graphics capabilities.

A second aspect of OpenGL is that the specification is not pixel exact. This
means that two different OpenGL implementations are very unlikely to render ex-
actly the same image. This allows OpenGL to be implemented across a range of
hardware platforms. If the specification were too exact, it would limit the kinds of
hardware acceleration that could be used; limiting its usefulness as a standard. In
practice, the lack of exactness need not be a burden — unless you plan to build a
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rendering farm from a diverse set of machines.
The lack of pixel exactness shows up even within a single implementation, in

that different paths through the implementation may not generate the same set of
fragments, although the specification does mandate a set of invariance rules to guar-
antee repeatable behavior across a variety of circumstances. A concrete example
that one might encounter is an implementation that does not accelerate texture map-
ping operations, but accelerates all other operations. When texture mapping is en-
abled the fragment generation is performed on the host and as a consequence all
other steps that precede texturing likely also occur on the host. This may result in
either the use of different algorithms being invoked or arithmetic with different pre-
cision than that used in the hardware accelerator. In such a case, when texturing is
enabled, a slightly different set of pixels in the window may be written compared
to when texturing is disabled. For some of the algorithms presented in this course
such variability can cause problems, so it is important to understand a little about
the underlying details of the OpenGL implementation you are using.

3 Modelling

Rendering is only half the story. Great computer graphics starts with great images
and geometric models. This section describes some modelling does and don’ts, and
describes a high performance way of performing CSG operations.

3.1 Modelling Considerations

OpenGL is a renderer not a modeller. There are utility libraries such as the OpenGL
Utility Library (GLU) which can assist with modelling tasks, but for all practical
purposes is the application’s responsibility. Attention to modelling considerations
is important; the image quality is directly related to the quality of the modelling.
For example, undertessellated geometry produces poor silhouette edges. Other ar-
tifacts result from a combination of the model and OpenGL’s ordering scheme. For
example, interpolation of colors determined as a result of evaluation of a lighting
equation at the vertices can result in a less than pleasing specular highlight if the
geometry is not sufficiently sampled. We include a short list of modelling consid-
erations with which OpenGL programmers should be familiar:

1. Consider using triangles, triangle strips and triangle fans. Primitives such as
polygons and quads are usually decomposed by OpenGL into triangles be-
fore rasterization. OpenGL does not provide controls over how this decom-
position is done, so for more predictable results, the application should do
the tessellation directly. Application tessellation is also more efficient if the
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Figure 1. T-intersection

same model is to be drawn multiple times (e.g., multiple instances per frame,
as part of a multipass algorithm, or for multiple frames). The second release
of the GLU library (version 1.1) includes a very good general polygon tes-
sellator; it is highly recommended.

2. Avoid T-intersections (also called T-vertices). T-intersections occur when
one or more triangles share (or attempt to share) a partial edge with another
triangle (Figure 1).

In OpenGL there is no guarantee that a partial edge will share the same pix-
els since the two edges may be rasterized differently. This problem typi-
cally manifests itself during animations when the model is moved and cracks
along the edges appear and disappear. In order to avoid the problem, shared
edges should share the same vertex positions so that the edge equations are
the same.

Note that this requirement must be satisfied when seemingly separate mod-
els are sharing an edge. For example, an application may have modelled the
walls and ceiling of the interior of a room independently, but they do share
common edges where they meet. In order to avoid cracking when the room
is rendered from different viewpoints, the walls and ceilings should use the
same vertex coordinates for any triangles along the shared edges. This of-
ten requires adding edges and creating new triangles to “stitch” the edges of
abutting objects together seamlessly.

3. The T-intersection problem has consequences for view-dependent tessella-
tion. Imagine drawing an object in extreme perspective so that some part of
the object maps to a large part of the screen and an equally large part of the
object (in object coordinates) maps to a small portion of the screen. To min-
imize the rendering time for this object, applications tessellate the object to
varying degrees depending on the area of the screen that it covers. This en-
sures that time is not wasted drawing many triangles that cover only a few
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pixels on the screen. This is a difficult mechanism to implement correctly;
if the view of the object is changing the changes in tessellation from frame
to frame may result in noticeable motion artifacts. Often it is best to either
undertessellate and live with those artifacts or overtessellate and accept re-
duced performance. The GLU NURBS library is and example of a package
which implements view-dependent tessellation and provides substantial con-
trol over the sampling method and tolerances for the tessellation.

4. Another problem related to the T-intersection problem occurs with careless
specification of surface boundaries. If a surface is intended to be closed,
it should share the same vertex coordinates where the surface specification
starts and ends. A simple example of this would be drawing a sphere by sub-
dividing the interval [0; 2�] to generate the vertex coordinates The vertex at 0
must be the same as the one at 2�. Note that the OpenGL specification is very
strict in this regard as even the glMapGrid routine must evaluate exactly at
the boundaries to ensure that evaluated surfaces can be properly stitched to-
gether.

5. Another consideration is the quality of the attributes that are specified with
the vertex coordinates, in particular, the vertex (or face) normals and texture
coordinates. If these attributes are not accurate then shading techniques such
as environment mapping will exaggerate the errors resulting in unacceptable
artifacts.

6. The final suggestion is to be consistent about the orientation of polygons.
That is, ensure that all polygons on a surface are oriented in the same direc-
tion (clockwise or counterclockwise) when viewed from the outside. There
are at least two reasons for maintaining this consistency. First the OpenGL
face culling method can be used as an efficient form of hidden surface elim-
ination for convex surfaces and, second, several algorithms can exploit the
ability to selectively draw only the frontfacing or backfacing polygons of a
surface.

3.2 Decomposition and Tessellation

Tessellationrefers to the process of decomposing a complex surface such as a sphere
into simpler primitives such as triangles or quadrilaterals. Most OpenGL imple-
mentations are tuned to process triangle strips and triangle fans efficiently. Trian-
gles are desirable because they are planar, easy to rasterize, and can always be in-
terpolated unambiguously. When an implementation is optimized for processing

5



Programming with OpenGL: Advanced Rendering

B = c × d
A B

a

b

A = a × b

c

d

Figure 2. Quadrilateral decomposition

triangles, more complex primitives such as quad strips, quads, and polygons are
decomposed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is
a performance benefit in performing this decomposition a priori, either when the
database is created or at application initialization time, rather than each time the
primitive is issued. A second advantage of performing this decomposition under
the control of the application is that the decomposition can be done consistently
and independently of the OpenGL implementation. Since OpenGL doesn’t spec-
ify its decomposition algorithm, different implementations may decompose a given
quadrilateral along different diagonals. This can result in an image that is shaded
differently and has different silhouette edges.

Quadrilaterals are decomposed by finding the diagonal that creats two triangles
with the greatest difference in orientation. A good way to find this diagonal is to
compute the angles between the normals at opposingvertices, compute the dot prod-
uct, then choose the pair with the largest angle (smallest dot product) as shown in
Figure 2. The normals for a vertex can be computed by taking the cross products
of the the two vectors with origins at that vertex.

Tessellation of simple surfaces such as spheres and cylinders is not difficult.
Most implementations of the GLU library use a simple lattitude-longitude tessel-
lation for a sphere. While the algorithm is simple to implement, it has the disad-
vantage that the triangles produced from the tessellation have widely varying sizes.
These widely varying sizes can cause noticeable artifacts, particularly if the object
is lit and rotating.

A better algorithm generates triangles with sizes that are more consistent. Oc-
tahedral and Icosahedral tessellations work well and are not very difficult to imple-
ment. An octahedral tessellation approximates a sphere with an octahedron whose
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Figure 3. Octahedron with triangle subdivision

vertices are all on the unit sphere. Since the faces of the octahedron are triangles
they can easily be split into 4 triangles, as shown in Figure 3.

Each triangle is split by creating a new vertex in the middle of each edge and
adding three new edges. These vertices are scaled onto the unit sphere by divid-
ing them by their distance from the origin (normalizing them). This process can
be repeated as desired, recursively dividing all of the triangles generated in each
iteration.

The same algorithm can be applied using an icosahedron as the base object, re-
cursively dividing all 20 sides. In both cases the algorithms can be coded so that
triangle strips are generated instead of independent triangles, maximizing render-
ing performance.

3.3 Capping Clipped Solids with the Stencil Buffer

When dealing with solid objects it is often useful to clip the object against a plane
and observe the cross section. OpenGL’s user-defined clipping planes allow an ap-
plication to clip the scene by a plane. The stencil buffer provides an easy method
for adding a “cap” to objects that are intersected by the clipping plane. A capping
polygon is embedded in the clipping plane and the stencil buffer is used to trim the
polygon to the interior of the solid.

For more information on the techniques using the stencil buffer, see Section 14.
If some care is taken when constructing the object, solids that have a depth com-

plexity greater than 2 (concave or shelled objects) and less than the maximum value
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of the stencil buffer can be rendered. Object surface polygons must have their ver-
tices ordered so that they face away from the interior for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer
writes are disabled. The capping polygon is rendered into the depth buffer,
then depth buffer writes are disabled. The stencil operation is set to incre-
ment the stencil value where the depth test passes, and the model is drawn
with glCullFace(GL BACK). The stencil operation is then set to decrement
the stencil value where the depth test passes, and the model is drawn with
glCullFace(GL FRONT).

At this point, the stencil buffer is 1 wherever the clipping plane is enclosed by
the frontfacing and backfacing surfaces of the object. The depth buffer is cleared,
color buffer writes are enabled, and the polygon representing the clipping plane is
now drawn using whatever material properties are desired, with the stencil function
set to GL EQUAL and the reference value set to 1. This draws the color and depth
values of the cap into the framebuffer only where the stencil values equal 1.

Finally, stenciling is disabled, the OpenGL clipping plane is applied, and the
clipped object is drawn with color and depth enabled.

3.4 Constructive Solid Geometry with the Stencil Buffer

Before continuing, the it may help for the reader to be familiar with the concepts
presented in Section 14.

Constructive solid geometry (CSG) models are constructed through the inter-
section (\), union ([), and subtraction (�) of solid objects, some of which may
be CSG objects themselves[17]. The tree formed by the binary CSG operators and
their operands is known as the CSG tree. Figure 4 shows an example of a CSG tree
and the resulting model.

The representation used in CSG for solid objects varies, but we will consider a
solid to be a collection of polygons forming a closed volume. “Solid”, “primitive”,
and “object” are used here to mean the same thing.

CSG objects have traditionally been rendered through the use of ray-casting,
which is slow, or through the construction of a boundary representation (B-rep).

B-reps vary in construction, but are generally defined as a set of polygons that
form the surface of the result of the CSG tree. One method of generating a B-rep
is to take the polygons forming the surface of each primitive and trimming away
the polygons (or portions thereof) that don’t satisfy the CSG operations. A B-rep
models are typically generated once and then manipulated as a static model because
they are slow to generate.

Drawing a CSG model using stencil usually means drawing more polygons than
a B-rep would contain for the same model. Enabling stencil also may reduce perfor-

8



Programming with OpenGL: Advanced Rendering

CSG Tree The Resulting Solid

Figure 4. An Example Of Constructive Solid Geometry

mance. Nonetheless, some portions of a CSG tree may be interactively manipulated
using stencil if the remainder of the tree is cached as a B-rep.

The algorithm presented here is from a paper by Tim F. Wiegand describing a
GL-independent method for using stencil in a CSG modelling system for fast inter-
active updates. The technique can also process concave solids, the complexity of
which is limited by the number of stencil planes available. A reprint of Wiegand’s
paper is included in the Appendix.

The algorithm presented here assumes that the CSG tree is in “normal” form.
A tree is in normal form when all intersection and subtraction operators have a left
subtree which contains no union operators and a right subtree which is simply a
primitive (a set of polygons representing a single solid object). All union opera-
tors are pushed towards the root, and all intersection and subtraction operators are
pushed towards the leaves. For example, (((A\B)�C)[(((D\E)\G)�F ))[H
is in normal form; Figure 5 illustrates the structure of that tree and the characteris-
tics of a tree in normal form.

A CSG tree can be converted to normal form by repeatedly applying the fol-
lowing set of production rules to the tree and then its subtrees:

1. X � (Y [ Z) ! (X � Y )� Z

2. X \ (Y [ Z) ! (X \ Y ) [ (X \ Z)

3. X � (Y \ Z) ! (X � Y ) [ (X � Z)

4. X \ (Y \ Z) ! (X \ Y ) \ Z
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Figure 5. A CSG tree in normal form

5. X � (Y � Z) ! (X � Y ) [ (X \ Z)

6. X \ (Y � Z) ! (X \ Y )� Z

7. (X � Y ) \ Z ! (X \ Z)� Y

8. (X [ Y )� Z ! (X � Z) [ (Y � Z)

9. (X [ Y )\ Z ! (X \ Z) [ (Y \ Z)

X, Y, and Z here match both primitives or subtrees. Here’s the algorithm used
to apply the production rules to the CSG tree:

normalize(tree *t)
{

if(isPrimitive(t))
return;

do{
while(matchesRule(t)) /* Using rules given above */

applyFirstMatchingRule(t);
normalize(t->left);

}while( ! (isUnionOperation(t) ||
(isPrimitive(t->right) &&
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! isUnionOperation(T->left))));
normalize(t->right);

}

Normalization may increase the size of the tree and add primitives which do
not contribute to the final image. The bounding volume of each CSG subtree can
be used to prune the tree as it is normalized. Bounding volumes for the tree may be
calculated using the following algorithm:

findBounds(tree *t)
{

if(isPrimitive(t))
return;

findBounds(t->left);
findBounds(t->right);

switch(t->operation){
case union:

t->bounds = unionOfBounds(t->left->bounds,
t->right->bounds);

case intersection:
t->bounds = intersectionOfBounds(t->left->bounds,

t->right->bounds);
case subtraction:

t->bounds = t->left->bounds;
}

}

CSG subtrees rooted by the intersection or subtraction operators may be pruned
at each step in the normalization process using the following two rules:

1. if T is an intersection and not intersects(T->left->bounds,
T->right->bounds), delete T.

2. if T is a subtraction and not intersects(T->left->bounds,
T->right->bounds), replace T with T->left.

The normalized CSG tree is a binary tree, but it’s important to think of the tree
rather as a “sum of products” to understand the stencil CSG procedure.

Consider all the unionsas sums. Next, consider all the intersectionsand subtrac-
tions as products. (Subtraction is equivalent to intersection with the complement of
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Figure 6. Thinking of a CSG tree as a sum of products

the term to the right. For example,A�B = A\ �B.) Imagine all the unions flattened
out into a single union with multiple children; that union is the “sum”. The resulting
subtrees of that union are all composed of subtractions and intersections, the right
branch of those operations is always a single primitive, and the left branch is another
operation or a single primitive. You should read each child subtree of the imaginary
multiple union as a single expression containing all the intersection and subtraction
operations concatenated from the bottom up. These expressions are the “products”.
For example, you should think of ((A\B)� C)[ (((G\D)�E)\ F ) [H as
meaning (A\B � C)[ (G\D �E \ F ) [H . Figure 6 illustrates this process.

At this time redundant terms can be removed from each product. Where a term
subtracts itself (A�A), the entire product can be deleted. Where a term intersects
itself (A \A), that intersection operation can be replaced with the term itself.

All unions can be rendered simply by finding the visible surfaces of the left and
right subtrees and letting the depth test determine the visible surface. All products
can be rendered by drawing the visible surfaces of each primitive in the product and
trimming those surfaces with the volumes of the other primitives in the product. For
example, to renderA�B, the visible surfaces of A are trimmed by the complement
of the volume of B, and the visible surfaces of B are trimmed by the volume of A.

The visible surfaces of a product are the front facing surfaces of the operands
of intersections and the back facing surfaces of the right operands of subtraction.
For example, in (A� B \ C), the visible surfaces are the front facing surfaces of
A and C, and the back facing surfaces of B.

Concave solids are processed as sets of front or back facing surfaces. The “con-
vexity” of a solid is defined as the maximum number of pairs of front and back sur-
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Figure 7. Examples of n-convex solids

faces that can be drawn from the viewing direction. Figure 7 shows some examples
of the convexity of objects. The nth front surface of a k-convex primitive is denoted
Anf , and the nth back surface is Anb. Because a solid may vary in convexity when
viewed from different directions, accurately representing the convexity of a prim-
itive may be difficult and may also involve reevaluating the CSG tree at each new
view. Instead, the algorithm must be given the maximum possible convexity of a
primitive, and draws the nth visible surface by using a counter in the stencil planes.

The CSG tree must be further reduced to a “sum of partial products” by con-
verting each product to a union of products, each consisting of the product of the
visible surfaces of the target primitive with the remaining terms in the product.

For example, if A, B, and D are 1-convex and C is 2-convex:

(A� B \ C \D) !
(A0f � B \ C \D) [
(B0b \ A \ C \D) [
(C0f \ A�B \D) [
(C1f \ A�B \D) [
(D0f \ A \B \ C)

Because the target term in each product has been reduced to a single front or
back facing surface, the bounding volumes of that term will be a subset of the
bounding volume of the original complete primitive. Once the tree is converted to
partial products, the pruning process may be applied again with these subset vol-
umes.
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In each resulting child subtree representing a partial product, the leftmost term is
called the “target” surface, and the remaining terms on the right branches are called
“trimming” primitives.

The resulting sum of partial products reduces the rendering problem to render-
ing each partial product correctly before drawing the union of the results. Each par-
tial product is rendered by drawing the target surface of the partial product and then
“classifying” the pixels generated by that surface with the depth values generated
by each of the trimming primitives in the partial product. If pixels drawn by the
trimming primitives pass the depth test an even number of times, that pixel in the
target primitive is “out”, and discarded. If the count is odd, the target primitive pixel
is “in”’, and kept.

Because the algorithm saves depth buffer contents between each object, we op-
timize for depth saves and restores by drawing as many of target and trimming prim-
itives for each pass as we can fit in the stencil buffer.

The algorithm uses one stencil bit (Sp) as a toggle for trimming primitive depth
test passes (parity), n stencil bits for counting to the nth surface (Scount), where n is
the smallest number for which 2

n is larger than the maximum convexity of a current
object, and as many bits are available (Sa) to accumulate whether target pixels have
to be discarded. Because Scount will require the GL INCR operation, it must be
stored contiguously in the least-significant bits of the stencil buffer. Sp and Scount
are used in two separate steps, and so may share stencil bits.

For example, drawing 2 5-convex primitives would require 1 Sp bit, 3 Scount
bits, and 2 Sa bits. Because Sp and Scount are independent, the total number of
stencil bits required would be 5.

Once the tree has been converted to a sum of partial products, the individual
products are rendered. Products are grouped together so that as many partial prod-
ucts can be rendered between depth buffer saves and restores as the stencil buffer
has capacity.

For each group, writes to the color buffer are disabled, the contents of the depth
buffer are saved, and the depth buffer is cleared. Then, every target in the group
is classified against its trimming primitives. The depth buffer is then restored, and
every target in the group is rendered against the trimming mask. The depth buffer
save/restore can be optimized by saving and restoring only the region containing
the screen-projected bounding volumes of the target surfaces.

for each group
glReadPixels(...);
classify the group
glStencilMask(0); /* so DrawPixels won’t affect Stencil */
glDrawPixels(...);
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render the group

Classification consists of drawing each target primitive’s depth value and then
clearing those depth values where the target primitive is determined to be outside
the trimming primitives.

glClearDepth(far);
glClear(GL_DEPTH_BUFFER_BIT);
a = 0;
for each target surface in the group

for each partial product targeting that surface
render the depth values for the surface
for each trimming primitive in that partial product

trim the depth values against that primitive
set Sa to 1 where Sa = 0 and Z < Zfar;
a++;

The depth values for the surface are rendered by drawing the primitive contain-
ing the the target surface with color and stencil writes disabled. (Scount) is used to
mask out all but the target surface. In practice, most CSG primitives are convex, so
the algorithm is optimized for that case.

if(the target surface is front facing)
glCullFace(GL_BACK);

else
glCullFace(GL_FRONT);

if(the surface is 1-convex)
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(0);
draw the primitive containing the target surface

else
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(Scount);
glStencilFunc(GL_EQUAL, index of surface, Scount);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
draw the primitive containing the target surface
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
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Then each trimming primitive for that target surface is drawn in turn. Depth
testing is enabled and writes to the depth buffer are disabled. Stencil operations are
masked to Sp and the Sp bit in the stencil is cleared to 0. The stencil function and
operation are set so that Sp is toggled every time the depth test for a fragment from
the trimming primitive succeeds. After drawing the trimming primitive, if this bit
is 0 for uncomplemented primitives (or 1 for complemented primitives), the target
pixel is “out”, and must be marked “discard”, by enabling writes to the depth buffer
and storing the far depth value (Zf ) into the depth buffer everywhere that the Sp
indicates “discard”.

glDepthMask(0);
glColorMask(0, 0, 0, 0);
glStencilMask(mask for Sp);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
draw the trimming primitive
glDepthMask(1);

Once all the trimming primitives are rendered, the values in the depth buffer are
Zf for all target pixels classified as “out”. The Sa bit for that primitive is set to 1
everywhere that the depth value for a pixel is not equal to Zf , and 0 otherwise.

Each target primitive in the group is finally rendered into the frame buffer with
depth testing and depth writes enabled, the color buffer enabled, and the stencil
function and operation set to write depth and color only where the depth test suc-
ceeds and Sa is 1. Only the pixels inside the volumes of all the trimming primitives
are drawn.

glDepthMask(1);
glColorMask(1, 1, 1, 1);
a = 0;
for each target primitive in the group

glStencilMask(0);
glStencilFunc(GL_EQUAL, 1, Sa);
glCullFace(GL_BACK);
draw the target primitive
glStencilMask(Sa);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
a++;
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There are further techniques described in [50] for adding clipping planes (half-
spaces), including more normalization rules and pruning opportunities. This is es-
pecially important in the case of the near clipping plane in the viewing frustum.

A demo program showing complex CSG expressions rendered using the stencil
buffer is on the website.

Source code for dynamically loadable Inventor objects implement-
ing this technique is available at the Martin Center website at Cambridge,
http://www.arct.cam.ac.uk/mc/cadlab/inventor/.

4 Geometry and Transformations

OpenGL has a simple and powerful transformation model. Since the transforma-
tion machinery in OpenGL is exposed in the form of the modelview and projection
matrices, it’s possible to develop novel uses for the transformation pipeline. This
section describes some useful transformation techniques, and provides some addi-
tional insight into the OpenGL graphics pipeline.

4.1 Stereo Viewing

Stereo viewing is a common technique to increase visual realism or enhance user
interaction with 3D scenes. Two views of a scene are created, one for the left eye,
one for the right. Some sort of viewing hardware is used with the display, so each
eye only sees the view created for it. The apparent depth of objects is a function
of the difference in their positions from the left and right eye views. When done
properly, objects appear to have actual depth, especially with respect to each other.
When animating, the left and right back buffers are used, and must be updated each
frame.

OpenGL supports stereo viewing, with left and right versions of the front and
back buffers. In normal, non-stereo viewing, when not using both buffers, the de-
fault buffer is the left one for both front and back buffers. Since OpenGL is window
system independent, there are no interfaces in OpenGL for stereo glasses, or other
stereo viewing devices. This functionality is part of the OpenGL/Window system
interface library; the style of support varies widely.

In order to render a frame in stereo:

� The display must be configured to run in stereo mode.

� The left eye view for each frame must be generated in the left back buffer.

� The right eye view for each frame must be generated in the right back buffer.
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� The back buffers must be displayed properly, according to the needs of the
stereo viewing hardware.

Computing the left and right eye views is fairly straightforward. The distance
separating the two eyes, called the interocular distance, must be selected. Choose
this value to give the proper size of the viewer’s head relative to the scene being
viewed. Whether the scene is microscopic or galaxy-wide is irrelevant. What mat-
ters is the size of the imaginary viewer relative to the objects in the scene. This
distance should be correlated with the degree of perspective distortion present in
the scene to produce a realistic effect.

4.1.1 Fusion Distance

The other parameter is the distance from the eyes where the lines of sight for each
eye converge. This distance is called the fusion distance. At this distance objects
in the scene will appear to be on the front surface of the display (“in the glass”).
Objects farther than the fusion distance from the viewer will appear to be “behind
the glass” while objects in front will appear to float in front of the display. The latter
illusion is harder to maintain, since real objects visible to the viewer beyond the
edge of the display tend to destroy the illusion.

Instead of assigning units to it, think of the fusion distance as a dimensionless
quantity, relative to location of the front and back clipping planes. For example,
you may want to set the fusion distance to be halfway between the front and back
clipping planes. This way it is independent of the application’s coordinate system,
which makes it easier to position objects appropriately in the scene.

To model viewer attention realistically, the fusion distance should be adjusted
to match the object in the scene that the viewer is looking at. This requires know-
ing where the viewer is looking. If head and eye tracking equipment is being used
in the application finding the center of interest is straightforward. A more indirect
approach is to have the user consciously designate the object being viewed. Clever
psychology can sometimes substitute for eye tracking hardware. If the animated
scene is designed in such a way as to draw the viewer’s attention in a predictable
way, or if the scene is very sparse, intelligent guesses can be made as to the viewers
center of interest.

The view direction vector and the vector separating the left and right eye posi-
tion are perpendicular to each other. The two view points are located along a line
perpendicular to the direction of view and the “up” direction. The fusion distance
is measured along the view direction. The position of the viewer can be defined to
be at one of the eye points, or halfway between them. In either case, the left and
right eye locations are positioned relative to it.
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Figure 8. Stereo Viewing Geometry

If the viewer is taken to be halfway between the stereo eye positions, and as-
suming gluLookAt has been called to put the viewer position at the origin in eye
space, then the fusion distance is measured along the negative Z axis (like the near
and far clipping planes), and the two viewpoints are on either side of the origin along
the X axis, at (-IOD/2, 0, 0) and (IOD/2, 0, 0).

4.1.2 Computing the Transforms

The transformations needed for stereo viewing are simple rotations and translations.
Computationally, the stereo viewing transforms happen last, after the viewing trans-
form has been applied to put the viewer at the origin. Since the matrix order is the
reverse of the order of operations, the viewing matricies should be applied to the
modelview matrix stack first.

The order of matrix operations should be:

1. Transform from viewer position to left eye view.

2. Apply viewing operation to get to viewer position (gluLookAt or equiva-
lent).

3. Apply modeling operations.

4. Change buffers, repeat for right eye.

Assuming that the identity matrix is on the modelview stack:

glMatrixMode(GL_MODELVIEW);

19



Programming with OpenGL: Advanced Rendering

glLoadIdentity(); /* the default matrix */
glPushMatrix()
glDrawBuffer(GL_BACK_LEFT)
glTranslatef(-IOD/2.f, 0, 0)
glRotatef(-angle, 0.f, 1.f, 0.f)
<viewing transforms>
<modeling transforms>
draw()
glPopMatrix();
glPushMatrix()
glDrawBuffer(GL_BACK_RIGHT)
glTranslatef(IOD/2, 0., 0.)
glRotatef(angle, 0.f, 1.f, 0.f)
<viewing transforms>
<modeling transforms>
draw()
glPopMatrix()

Where angle is the inverse tangent of the ratio between the fusion distance and
half of the interocular distance. angle = arctan(

fusiondistance
IOD

2

) Each viewpoint is

rotated towards the centerline halfway between the two viewpoints.
Another approach to implementing stereo transforms is to change the viewing

tranform directly. Instead of adding an extra rotation and translation, use a separate
call to gluLookAt for each eye view. Move fusion distance along the viewing
direction from the viewer position, and use that point for the center of interest of
both eyes. Translate the eye position to the appropriate eye, then render the stereo
view for the corresponding buffer.

The difficulty with this technique is finding the left/right eye axis to translate
along from the viewer position to find the left and right eye viewpoints. Since your
now computing the left/right eye axis in object space, it is no longer constrained to
be the X axis. Find the left/right eye axis in object space by taking the cross product
of the direction of view and the up vector.

4.1.3 Rotate vs. Shear

Rotating the left and right eye view is is not the only way to generate the stereo im-
ages. The left and right eye views can be sheared instead. The left and eyes remain
oriented along the direction of view, but each eyes view is sheared along z so that
the two frustums converge at the fusion distance.
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Although shearing each eye’s view instead of rotating is less physically accu-
rate, sheared stereo views can be easier for viewers to achieve stereo fusion. This
is because the two eye views have the same orientation and lighting.

For objects that are far from the eye, the differences between the two approaches
are small.

4.2 Depth of Field

Normal viewing tranforms act like a perfect pinhole camera; everything visible is
in focus, regardless of how close or how far the objects are from the viewer. To in-
crease realism, a scene can be rendered to produce sharpness as a function of viewer
distance, more accurately simulating a camera with a finite depth of field.

Depth-of-field and stereo viewing are similar. In both cases, there is more than
one viewpoint, with all view directions converging at a fixed distance along the di-
rection of view. When computing depth of field tranforms, however, we only use
shear instead of rotation, and sample a number of viewpoints, not just two, along an
axis perpendicular to the view direction. The resulting images are blended together.

This process creates images whose the objects in front of and behind the fusion
distance shift position as a function of viewpoint. In the blended image, these ob-
jects appear blurry. The closer the object is to the fusion distance, the less it shifts,
and the sharper they appear.

The field of view can be expanded by increasing the ratio between the view-
point shift and fusion distance. This way objects have to be farther from the fusion
distance to shift significantly.

For details on rendering scenes featuring a limited field of view see Section 9.1.

4.3 The Z Coordinate and Perspective Projection

The Z coordinates are treated in the same fashion as the x and y coordinates. Af-
ter transformation, clipping and perspective division, they occupy the range -1.0
through 1.0. The glDepthRange mapping specifies a transformation for the z
coordinate similar to the viewport transformation used to map x and y to window
coordinates. The glDepthRange mapping is somewhat different from the view-
port mapping in that the hardware resolution of the depth buffer is hidden from the
application. The parameters to the glDepthRange call are in the range [0.0, 1.0].
The z or depth associated with a fragment represents the distance to the eye. By de-
fault the fragments nearest the eye (the ones at the near clip plane) are mapped to
0.0 and the fragments farthest from the eye (those at the far clip plane) are mapped
to 1.0. Fragments can be mapped to a subset of the depth buffer range by using
smaller values in the glDepthRange call. The mapping may be reversed so that
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fragments furthest from the eye are at 0.0 and fragments closest to the eye are at 1.0
simply by calling glDepthRange(1.0,0.0). While this reversal is possible,
it may not be practical for the implementation. Parts of the underlying architecture
may have been tuned for the forward mapping and may not produce results of the
same quality when the mapping is reversed.

To understand why there might be this disparity in the rendering quality, its
important to understand the characteristics of the window coordinate z coordinate.
The z value does specify the distance from the fragment to the plane of the eye. The
relationship between distance and z is linear in an orthographic projection, but not
in a perspective projection. In the case of a perspective projection, the amount of
the non-linearity is proportional to the ratio of far to near in the Frustum call (or zFar
to zNear in the gluPerspective call). Figure 9 plots the window coordinate z
value as a function of the eye-to-pixel distance for several ratios of far to near. The
non-linearity increases the resolution of the z-values when they are close to the near
clipping plane, increasing the resolving power of the depth buffer, but decreasing
the precision throughout the rest of the viewing frustum, thus decreasing the accu-
racy of the depth buffer in this part of the viewing volume. Empirically it has been
observed that ratios greater than 1000 have this undesired result.

The simplest solution is to improve the far to near ratio by moving the near clip-
ping plane away from the eye. The only negative effect of doing this is that objects
rendered close to the eye may be clipped away, but this is seldom a problem in typ-
ical applications. The position of the near clipping plane has no effect on the pro-
jection of the x and y coordinates and therefore has minimal effect on the image.

In addition to depth buffering, the z coordinate is also used for fog computa-
tions. Some implementations may perform the fog computation on a per-vertex ba-
sis using eye z and then interpolate the resulting colors whereas other implementa-
tions may perform the computation for each fragment. In this case, the implemen-
tation may use the window z to perform the fog computation. Implementations may
also choose to convert the computation into a cheaper table lookup operation which
can also cause difficulties with the non-linear nature of window z under perspective
projections. If the implementation uses a linearly indexed table, large far to near ra-
tios will leave few table entries for the large eye z values. This can cause noticeable
Mach bands in fogged scenes.

4.3.1 Depth Buffering

We have discussed some of the caveats of using depth buffering, but there are sev-
eral other aspects of OpenGL rasterization and depth buffering that are worth men-
tioning [2]. One big problem is that the rasterization process uses inexact arith-
metic so it is exceedingly difficult to handle primitives that are coplanar unless they
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Figure 9. The relationship of window z (depth) to eye z for different far/near ratios
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share the same plane equation. This problem is exacerbated by the finite precision
of depth buffer implementations. Many solutions have been proposed to handle this
class of problems, which involve coplanar primitives:

1. decaling

2. hidden line elimination

3. outlined polygons

4. shadows

Many of these problems have elegant solutions involving the stencil buffer, but
it is still worth describing alternative methods to get more insight into the uses of
the depth buffer.

The problem of decaling one coplanar polygon into another can be solved rather
simply by using the painter’s algorithm (i.e. drawing from back to front) combined
with color buffer and depth buffer masking, assuming the decal is contained entirely
within the underlying polygon. The steps are:

1. draw the underlying polygon with depth testing enabled but depth buffer up-
dates disabled.

2. draw the top layer polygon (decal) also with depth testing enabled and depth
buffer updates still disabled.

3. draw the underlying polygon one more time with depth testing and depth
buffer updates enabled, but color buffer updates disabled.

4. enable color buffer updates and continue on.

Outlining a polygon and drawing hidden lines are similar problems. If we have
an algorithm to outline polygons, hidden lines can be removed by outlining poly-
gons with one color and drawing the filled polygons with the background color. Ide-
ally a polygon could be outlined by simply connecting the vertices together with
line primitives. This seems similar to the decaling problem except that edges of
the polygon being outlined may be shared with other polygons and those polygons
may not be coplanar with the outlined polygon, so the decaling algorithm can not
be used, since it relies on the coplanar decal being fully contained within the base
polygon.

The solution most frequently suggested for this problem is to draw the outline
as a series of lines and translate the outline a small amount towards the eye. Al-
ternately, the polygon could be translated away from the eye instead. Besides not
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Figure 10. Polygon and Outline Slopes

being a particularly elegant solution, there is a problem in determining the amount
to translate the polygon (or outline). In fact, in the general case there is no constant
amount that can be expressed as a simple translation of the z object coordinate that
will work for all polygons in a scene.

Figure 10 shows two polygons (solid) with outlines (dashed) in the screen space
y-z plane. One of the primitive pairs has a 45-degree slope in the y-z plane and the
other has a very steep slope. During the rasterization process the depth value for
a given fragment may be derived from a sample point nearly an entire pixel away
from the edge of the polygon. Therefore the translation must be as large as the max-
imum absolute change in depth for any single pixel step on the face of the polygon.
The figure shows that the steeper the depth slope, the larger the required translation.
If an unduly large constant value is used to deal with steep depth slopes, then for
polygons which have a shallower slope there is an increased likelihood that another
neighboring polygon might end up interposed between the outline and the polygon.
So it seems that a translation proportional to the depth slope is necessary. However,
a translation proportional to slope is not sufficient for a polygon that has constant
depth (zero slope) since it would not be translated at all. Therefore a bias is also
needed. Many vendors have implemented the EXT polygon offset extension
that provides a scaled slope plus bias capability for solving outline problems such
as these and for other applications. A modified version of this polygon offset ex-
tension has been added to the core of OpenGL 1.1 as well.
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4.4 Image Tiling

When rendering a scene in OpenGL, the resolution of the image is normally limited
to the workstation screen size. For interactive applications this is usually sufficient,
but there may be times when a higher resolution image is needed. Examples include
color printing applications and computer graphics recorded for film. In these cases,
higher resolution images can be divided into tiles that fit on the workstation’s frame
buffer. The image is rendered tile by tile, with the results saved into off screen mem-
ory, or perhaps a file. The image can then be sent to a printer or film recorder, or
undergo further processing, such has downsampling to produce an antialiased im-
age.

One very straightforward way to tile an image is to manipulate theglFrustum
call’s arguments. The scene can be rendered repeatedly, one tile at a time, by chang-
ing the left, right, bottom and top arguments arguments of glFrustum for each
tile.

Computing the argument values is straightforward. Divide the original width
and height range by the number of tiles horizontally and vertically, and use those
values to parametrically find the left, right, top, and bottom values for each tile.

tile(i; j); i : 0 ! nTileshoriz ; j : 0! nTilesvert

righttiled(i) = leftorig +
rightorig � leftorig

nTileshoriz
� (i+ 1)

lefttiled(i) = leftorig +
rightorig � leftorig

nTileshoriz
� i

toptiled(j) = bottomorig +
toporig � bottomorig

nTilesvert
� (j + 1)

bottomtiled(j) = bottomorig +
toporig � bottomorig

nTilesvert
� j

In the equations above, each value of i and j corresponds to a tile in the scene.
If the original scene is divided into nTileshoriz by nTilesvert tiles, then iterating
through the combinations of i and j generate the left, right top, and bottom values
for glFrustum to create the tile.

Since glglFrustum has a shearing component in the matrix, the tiles stitch
together seamlessly to form the scene. Unfortunately, this technique would have to
be modified for use with gluPerspective or glOrtho. There is a better ap-
proach, however. Instead of modifying the perspective transform call directly, ap-
ply tranforms to the results. The area of normalized device coordinate (NDC) space
corresponding to the tile of interest is translated and scaled so it fills the NDC cube.
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Working in NDC space instead of eye space makes finding the tiling tranforms eas-
ier, and is independent of the type of projective transform.

Even though it’s easy to visualize the operations happening in NDC space, con-
ceptually, you can “push” the transforms back into eye space, and the technique
maps into the glFrustum approach described above.

Tor the transform operations to happen after the projection transform, the
OpenGL calls must happen before it. Here is the sequence of operattions:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glScalef(xScale, yScale);
glTranslatef(xOffset, yOffset, 0.f);
setProjection();

The scale factors xScale and yScale scale the tile of interest to fill the the entire
scene:

xScale =
sceneWidth

tileWidth

yScale =
sceneHeight

tileHeight

The offsets xOffset and yOffset are used to offset the tile so it is centered about
the Z axis. In this example, the tiles are specified by their lower left corner relative
to their position in the scene, but the translation needs to move the center of the tile
into the origin of the X-Y plane in NDC space:

xOffset =
�2 � left

sceneWidth
+ (1� 1

nTileshoriz
)

yOffset =
�2 � bottom
sceneHeight

+ (1� 1

nTilesvert
)

As before nTileshoriz is the number of tiles that span the scene horizontally,
while nTileshoriz is the number of tiles that span the scene vertically.

Some care should be taken when computing left, bottom, tileWidth and
tileHeight values. It’s important that each tile is abutted properly with it’s neigh-
bors. Ensure this by guarding against round-off errors. Some code that properly
computes these values is given below:
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/* tileWidth and tileHeight are GLfloats */
GLint bottom, top;
GLint left, right;
GLint width, height;
for(j = 0; j < num_vertical_tiles; j++) {

for(i = 0; i < num_horizontal_tiles; i++) {
left = i * tileWidth;
right = (i + 1) * tileWidth;
bottom = j * tileHeight;
top = (j + 1) * tileHeight;
width = right - left;
height = top - bottom;
/* compute xScale, yScale, xOffset, yOffset */

}
}

Note that the parameter values are computed so that left+ tileWidth is guar-
anteed to be equal to right and equal to left of the next tile over, even if tileWidth

has a fractional component? If the frustum technique is used, similar precautions
should be taken with the left, right, bottom, and top parameters to glFrustum.

4.5 Moving the Current Raster Position

Using the glRasterPos command, the raster position will be invalid if the speci-
fied position was culled. Since glDrawPixels andglCopyPixels operations
applied when the raster position is invalid do not draw anything, it may seem that the
lower left corner of a pixel rectangle must be inside the clip rectangle. This problem
may be overcome by using the glBitmap command. The glBitmap command
takes arguments xoff and yoff which specify an increment to be added to the current
raster position. Assuming the raster position is valid, it may be moved outside the
clipping rectangle by a glBitmap command. glBitmap is often used with a 0
size rectangle to move the raster position.

5 Texture Mapping

Texture mapping is one of the main techniques to improve the appearance of ob-
jects shaded with OpenGL’s simple lighting model. Texturing is typically used to
provide color detail for intricate surfaces., e.g, woodgrain, by modifying the sur-
face color. Environment mapping is a view dependent texture mapping technique
that modifies the specular and diffuse reflection, i.e. the environment is reflected in
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the object. More generally texturing can be thought of as a method of perturbing
parameters to the shading equation such as the surface normal (bump mapping), or
even the coordinates of the point being shaded (displacement mapping). OpenGL
1.1 readily supports the first two techniques (surface color manipulation and envi-
ronment mapping). Texture mapping can also solve some rendering problems in
less obvious ways. This section reviews some of the details of OpenGL texturing
support, outline some considerations when using texturing and suggest some inter-
esting algorithms using texturing.

5.1 Review

OpenGL supports texture images which are 1D or 2D and have dimensions that are
a power of two. Some implementations have been extended to support 3D and 4D
textures. Texture coordinates are assigned to the vertices of all primitives (includ-
ing pixel images). The texture coordinates are part of a three dimensional homoge-
neous coordinate system (s,t,r,q). When a primitive is rasterized a texture coordi-
nate is computed for each pixel fragment. The texture coordinate is used to look up
a texel value from the currently enabled texture map. The coordinates of the texture
map range from [0..1]. OpenGL can treat coordinate values outside the range [0,1]
in one of two ways: clamp or repeat. In the case of clamp, the coordinates are sim-
ply clamped to [0,1] causing the edge values of the texture to be stretched across
the remaining parts of the polygon. In the case of repeat the integer part of the co-
ordinate is discarded resulting in a texture tile that repeats across the surface. The
texel value that results from the lookup can be used to modify the original surface
color value in one of several ways, the simplest being to replace the surface color
with texel color, either by modulating a white polygon or simply replacing the color
value. Simple replacement was added as an extension by some vendors to OpenGL
1.0 and is now part of OpenGL 1.1.

5.1.1 Filtering

OpenGL also provides a number of filtering methods to compute the texel value.
There are separate filters for magnification (many pixel fragment values map to one
texel value) and minification (many texel values map to one pixel fragment). The
simplest of the filters is point sampling, in which the texel value nearest the tex-
ture coordinates is selected. Point sampling seldom gives satisfactory results, so
most applications choose some filter which does interpolation. For magnification,
OpenGL 1.1 only supports linear interpolation between four texel values. Some
vendors have also added support for bicubic filtering in which the a weighted sum
of 4x4 array of texels is used (Filter4 is a more appropriate name for it since it is
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only performing cubic filtering when used as a magnification filter). For minifica-
tion, OpenGL 1.1 supports various types of mipmapping [51], with the most useful
(and computationally expensive) being trilinear mipmapping (4 samples taken from
each of the nearest two mipmap levels and then interpolating the two sets of sam-
ples). OpenGL does not provide any built-in commands for generating mipmaps,
but the GLU provides some simple routines for generating mipmaps using a simple
box filter.

5.1.2 Texture Environment

The process by which the final fragment color value is derived is called the texture
environment function (glTexEnv) Several methods exist for computing the final
color, each capable of producing a particular effect. One of the most commonly
used is the modulate function. For all practical purposes the modulate function mul-
tiplies or modulates the original fragment color with the texel color. Typically, ap-
plications generate white polygons, light them, and then use this lit value to mod-
ulate the texture image to effectively produce a lit, textured surface. Unfortunately
when the lit polygon includes a specular highlight, the resulting modulated texture
will not look correct since the specular highlight simply changes the brightness of
the texture at that point rather than the desired effect of adding in some specular
illumination. Some vendors have tried to address this problem with extensions to
perform specular lighting after texturing. We will discuss some other techniques
that can be used to address this problem later on.

The decal environment function performs simple alpha-blending between the
fragment color and an RGBA texture; for RGB textures it simply replaces the frag-
ment color. Decal mode is undefined for luminance (L) and luminance alpha (LA)
textures. The blend environment function uses the texture value to control the mix
of the incoming fragment color and a constant texture environment color. OpenGL
1.1 adds a replace texture environment which substitutes the texel color for the in-
coming fragment color. This effect can be achieved using the modulate environ-
ment, but replace has a lower computational burden.

Another useful (and sometimes misunderstood) feature of OpenGL is the tex-
ture border. OpenGL supports either a constant texture border color or a border that
is a portion of the edge of the texture image. The key to understanding texture bor-
ders is understanding how textures are sampled when the texture coordinate values
are near the edges of the [0,1] range and the texture wrap mode is set to GL CLAMP.
For point sampled filters, the computation is quite simple: the border is never sam-
pled. However, when the texture filter is linear and the texture coordinate reaches
the extremes (0.0 or 1.0), however, the resulting texel value is a 50% mix of the
border color and the outer texel of the texture image at that edge.
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Figure 11. Texture Tiling

This is most useful when attempting to use a single high resolution texture im-
age which is too large for the OpenGL implementation to support as a single texture
map. For this case, the texture can be broken up into multiple tiles, each with a 1
pixel wide border from the neighboring tiles. The texture tiles can then be loaded
and used for rendering in several passes. For example, if a 1K by 1K texture is
broken up into 4 512 by 512 images, the 4 images would correspond to the texture
coordinate ranges (0-0.5,0-0.5), (0.5,1.0,0-0.5), (0-0.5,0.5,1.0) and (.5-1.0,.5-1.0).
As each tile is loaded, only the portions of the geometry that correspond to the ap-
propriate texture coordinate ranges for a given tile should be drawn. If we had a
single triangle whose texture coordinates were (.1,.1), (.1,.7), and (.8,.8) we would
clip the triangle against the 4 tile regions and draw only the portion of the triangle
that intersects with that region as shown in Figure 11. At the same time, the original
texture coordinates need to be adjusted to correspond to the scaled and translated
texture space represented by the tile. This transformation can be easily performed
by loading the appropriate scale and translation onto the texture matrix stack.

Unfortunately, OpenGL doesn’t provide much assistance for performing the
clipping operation. If the input primitives are quads and they are appropriately
aligned in object space with the texture, then the clipping operation is trivial; oth-
erwise, it is substantially more work. One method to assist with the clipping would
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involve using stenciling to control which textured fragments are kept. Then we are
left with the problem of setting the stencil bits appropriately. The easiest way to do
this is to produce alpha values that are proportional to the texture coordinate values
and use glAlphaFunc to reject alpha values that we do not wish to keep. Un-
fortunately, we can’t easily map a multidimensional texture coordinate value (e.g.
s,t) to an alpha value by simply interpolating the original vertex alpha values, so it
would be best to use a multidimensional texture itself which has some portion of
the texture with zero alpha and some portion with it equal to one. The texture co-
ordinates are then scaled so that the textured polygon map to texels with an alpha
of 1.0 for pixels to be retained and 0.0 for pixels to be rejected.

5.2 MIPmap Generation

Having explored the possibilityof tiling low resolution textures to achieve the effect
of high resolution textures, we can next examine methods for generating better tex-
turing results without resorting to tiling. Again, OpenGL supports a modest collec-
tion of filtering algorithms, the highest quality of the minification algorithms being
GL LINEAR MIPMAP LINEAR. OpenGL does not specify a method for generat-
ing the individual mipmap levels (LODs). Each level can be loaded individually,
so it is possible, but probably not desirable, to use a different filtering algorithm to
generate each mipmap level.

The GLU library provides a very simple interface (gluBuild2DMipmaps)
for generating all of the 2D levels required. The algorithm currently employed by
most implementations is a box filter. There are a number of advantages to using the
box filter; it is simple, efficient, and can be repeatedly applied to the current level
to generate the next level without introducing filtering errors. However, the box
filter has a number of limitations that can be quite noticeable with certain textures.
For example, if a texture contains very narrow features (e.g., lines), then aliasing
artifacts may be very pronounced.

The best choice of filter functions for generating mipmap levels is somewhat de-
pendent on the manner in which the texture will be used and it is also somewhat sub-
jective. Some possibilities include using a linear filter (sum of 4 pixels with weights
[1/8,3/8,3/8,1/8]) or a cubic filter (weighted sum of 8 pixels). Mitchell and Netravali
[30] propose a family of cubic filters for general image reconstruction which can be
used for mipmap generation. The advantage of the cubic filter over the box is that
it can have negative side lobes (weights) which help maintain sharpness while re-
ducing the image. This can help reduce some of the blurring effect of filtering with
mipmaps.

When attempting to use a filtering algorithm other than the one supplied by the
GLU library, it is important to keep a couple of things in mind. The highest res-
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olution image of the mipmap (LOD 0) should always be used as the input image
source for each level to be generated. For the box filter, the correct result is gen-
erated when the preceding level is used as the input image for generating the next
level, but this is not true for other filter functions. Each time a new level is gener-
ated, the filter needs to be scaled to twice the width of the previous version of the
filter. A second consideration is that in order to maintain a strict factor of two re-
duction, filters with widths wider than 2 need to sample outside the boundaries of
the image. This is commonly handled by using the value for the nearest edge pixel
when sampling outside the image. However, a more correct algorithm can be se-
lected depending on whether the image is to be used in a texture in which a repeat
or clamp wrap mode is to be used. In the case of repeat, requests for pixels outside
the image should wrap around to the appropriate pixel counted from the opposite
edge, effectively repeating the image.

MIPmaps may be generated using the host processor or using the OpenGL
pipeline to perform some of the filtering operations. For example, the GL LINEAR
minification filter can be used to draw an image of exactly half the width and height
of an image which has been loaded into texture memory, by drawing a quad with the
appropriate transformation (i.e., the quad projects to a rectangle one fourth the area
of the original image). This effectively filters the image with a box filter. The result-
ing image can then be read from the color buffer back to host memory for later use
as LOD 1. This process can be repeated using the newly generated mipmap level
to produce the next level and so on until the coarsest level has been generated.

The above scheme seems a little cumbersome since each generated mipmap
level needs to be read back to the host and then loaded into texture memory be-
fore it can be used to create the next level. The glCopyTexImage(c)apability,
added in OpenGL 1.1, allows an image in the color buffer to be copied directly to
texture memory.

This process can still be slightly difficult in OpenGL 1.0 as it only allows a sin-
gle texture of a given dimension (1D, 2D) to exist at any one time, making it dif-
ficult to build up the mipmap texture while using the non-mipmapped texture for
drawing. This problem is solved in OpenGL 1.1 with texture objects which allow
multiple texture definitions to coexist at the same time. However, it would be much
simpler if we could use the most recent level loaded as part of the mipmap as the
current texture for drawing. OpenGL 1.1 only allows complete textures to be used
for texturing, meaning that all mipmap levels need to be defined. Some vendors
have added yet another extension which can deal with this problem (though that
was not the original intent behind the extension). This third extension, the texture
LOD extension, limits the selection of mipmap image arrays to a subset of the ar-
rays that would normally be considered; that is, it allows an application to specify
a contiguous subset of the mipmap levels to be used for texturing. If the subset is
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complete then the texture can be used for drawing. Therefore we can use this ex-
tension to limit the mipmap images to the level most recently created and use this
to create the next smaller level. The other capability of the LOD extension is the
ability to clamp the LOD to a specified floating point range so that the entire filter-
ing operation can be restricted. This extension will be discussed in more detail later
on.

The above method outlines an algorithm for generating mipmap levels using the
existing texture filters. There are other mechanisms within the OpenGL pipeline
that can be combined to do the filtering. Convolution can be implemented using
the accumulation buffer (this will be discussed in more detail in the section on the
accumulation buffer). A texture image can be drawn using a point sampling filter
(GL NEAREST) and the result added to the accumulation buffer with the appropri-
ate weighting. Different pixels (texels) from an NxN pattern can be selected from
the texture by drawing a quad that projects to a region 1/N x 1/N of the original
texture width and height with a slight offset in the s and t coordinates to control
the nearest sampling. Each time a textured quad is rendered to the color buffer it
is accumulated with the appropriate weight in the accumulation buffer. Combining
point sampled texturing with the accumulation buffer allows the implementation of
nearly arbitrary filter kernels. Sampling outside the image, however, still remains a
difficulty for wide filter kernels. If the outside samples are generated by wrapping
to the opposite edge, then the GL REPEAT wrap mode can be used.

5.3 View Dependent Filtering

OpenGL specifies an isotropic filter for texture minification. This means that the
amount of filtering done along the s and t axes of the texture is the same, and is the
maximum of the filtering needed along each of the two axes individually. This can
lead to excessive blurring when a texture is viewed at an angle. If it is known that a
texture will always be viewed at a given angle or range of angles, it can be created
in a way that reduces overfiltering.

Suppose a textured square is rendered as shown in the left of Figure 12. The
texture is shown in the right. Consider the fragment that is shaded dark. Its ideal
footprint is shown in the diagram of the texture as the dark inner region. But since
the minification filter is isotropic, the actual footprint is forced to a square that en-
closes the dark region. A mipmap level will be chosen in which this square footprint
is properly filtered for the fragment; in other words, a mipmap level will be selected
in which the size of this square is closest to the size of the fragment. That mipmap is
not level zero but level 1 or higher. Hence, at that fragment more filtering is needed
along t than along s, but the same amount of filtering is done in both.

To avoid this problem, we do the extra filtering along t ourselves when we cre-
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Fragment Level 0 Level 1

Figure 12. Footprint in full height texture

Fragment Level 0

Figure 13. Footprint in half height texture
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ate the texture, and make the texture have the same width but only half the height.
See Figure 13. The footprint now has an aspect ratio that is more square, so the en-
closing square is not much larger, and is closer to the size to the fragment. Level
0 will be used instead of a higher level. Another way to think about this is that by
using a texture that is shorter along t, we reduce the amount of minification that is
required along t.

5.4 Fine Tuning

In addition to issues concerning the maximum texture resolution and the methods
used for generating texture images there are also some pragmatic details with us-
ing texturing. Many OpenGL implementations hardware accelerate texture map-
ping and have finite storage for texture maps being used. Many implementations
will virtualize this resource so that an arbitrarily large set of texture maps can be
supported within an application, but as the resource becomes oversubscribed per-
formance will degrade. In applications that need to use multiple texture maps there
is a tension between the available storage resources and the desire for improved im-
age quality.

This simply means that it is unlikely that every texture map can have an arbitrar-
ily high resolution and still fit within the storage constraints; therefore, applications
need to anticipate how textures will be used in scenes to determine the appropriate
resolution to use. Note that texture maps need not be square; if a texture is typically
used with an object that is projected to a non-square aspect ratio then the aspect ratio
of the texture can be scaled appropriately to make more efficient use of the available
storage.

5.5 Paging Textures

Imagine trying to draw an object which is covered by a portion of an arbitrary large
2D texture. This type of problem typically occurs when rendering terrain or at-
tempting to pan over very large images. If the texture is arbitrarily large it will not
entirely fit into texture memory unless it is dramatically reduced in size. Rather
than suffer the degradation in image quality by using the smaller texture, it might
be possible to only use the subregion of the texture that is currently visible. This is
somewhat similar to the texture tiling problem discussed earlier, but rather than se-
quence through all of the tiles for each frame only the set of tiles necessary to draw
the image need to be used [41].

There are two different approaches that could be used to address the problem.
The first is to subdivide the texture into fixed sized tiles and selectively draw the
portion of the geometry that intersects each tile as that tile is loaded. As discussed
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previously, this is difficult for GL LINEAR filters since the locations where the ge-
ometry crosses tile boundaries need to be resampled properly. The problem could
be addressed by clipping the geometry so that the texture coordinates are kept within
the [0.0, 1.0] range and then use borders to handle the edges, or a single large texture
consisting of all of the tiles could be used and the clipping step could be avoided.

This latter solution is not very practical with OpenGL 1.0 since the entire texture
needs to be reloaded each time a new tile needs to be added, but it is addressed by the
incremental loading capability added to OpenGL 1.1 and added to several OpenGL
1.0 implementations as an extension. ThisglTexSubImage routine allows a sub-
region within an existing texture image to be updated. This makes it simple to load
new tiles into areas that are no longer needed to draw the image. The ability to up-
date portions of the texture doesn’t completely solve the problem. Consider the case
of a two dimensional image roam, illustrated in Figure 14, in which the view is mov-
ing to the right. As the view pans to the right, new texture tiles must be added to
the right edge of the current portion of the texture and old tiles could be discarded
from the left edge.

Tiles discarded on the right side of the image create holes where new tiles could
be loaded into the texture, but there is a problem with the texture coordinates. Tiles
loaded at the left end will correspond to low values of the t texture coordinate, but
the geometry may be drawn with a single command or perhaps using automatic tex-
ture coordinate generation expecting to index those tiles with higher values of the
t coordinate. The solution to the problem is to use the repeat texture mode and let
the texture coordinates for the geometry extend past 1.0 The texture memory simply
wraps back onto itself in a toroidal topology. The origin of the texture coordinates
for the geometry must be adjusted as the leading and trailing edges of the tiles cycle
through texture memory. The translation of the origin can be done using the texture
matrix.

The algorithm works for both mipmap and non-mipmapped textures but for the
former, tiles corresponding to each level of detail must be loaded together.

The ability to load subregions within a texture has other uses besides these pag-
ing applications. Without this capability textures must be loaded in their entirety
and their widths and heights must be powers of two. In the case of video data, the
images are typically not powers of two so a texture of the nearest larger power of
two can be created and only the relevant subregion needs to be loaded. When draw-
ing geometry, the texture coordinates are simply constrained to the fraction of the
texture which is occupied with valid data. MIPmapping can not easily be used with
non-power-of-two image data since the coarser levels will contain image data from
the invalid region of the texture.
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Figure 14. 2D Image Roam

5.6 Transparency Mapping and Trimming with Alpha

The alpha component in textures can be used to solve a number of interesting prob-
lems. Intricate shapes such as an image of a tree can be stored in texture memory
with the alpha component acting as a matte (1.0 where there the image is opaque,
0. where it is transparent, and a fractional value along the edges). When the texture
is applied to geometry, blending can be used to composite the image into the color
buffer or the alpha test can be used to discard pixels with a zero alpha component
using the GL EQUALS test. The advantage of using the alpha test over blending is
that blending typically degrades the performance of fragment processing. With al-
pha testing fragments with zero alpha are rejected before they get to the color buffer.
A disadvantage of alpha testing is that the edges will not be blended into the scene
so the edges will not be properly antialiased.

The alpha component of a texture can be used in other ways, for example, to
cut holes in polygons or to trim surfaces. An image of the trim region is stored in a
texture map and when it is applied to the surface, alpha testing or blending can be
used to reject the trimmed region. This method can be useful for trimming complex
surfaces in scientific visualization applications.
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5.7 Billboards

It is often desirable to replace intricate geometry with simpler texture mapped ge-
ometry to increase realism and performance. Billboarding is a technique in which
complex objects such as trees are drawn with simple planar texture mapped geom-
etry and the geometry is transformed to face the viewer. The transformation typi-
cally consists of a rotation to orient the object towards the viewer and a translation
to place the object in the correct position . For the case of the tree, an object with
roughly cylindrical symmetry, an axial rotation is used to rotate the geometry for
the tree, typically a quadrilateral, about the axis running parallel to the tree trunk.

For the simple case of the viewer looking down the negative z-axis and the up
vector equal to the positive y-axis, the angle of rotation can be determined by com-
puting the eye vector from the model view matrix M

~Veye = M�1

0
BB@

0

0

�1

0

1
CCA

and the rotation � about the y axis is computed as

cos � = ~Veye � ~Vfront
sin � = ~Veye � ~Vright

where

~Vfront = (0; 0; 1)

~Vright = (1; 0; 0)

Once � has been computed a rotation matrix R can be constructed for the rota-
tion about the y-axis (~Vup) and combined with the model view matrix as MR and
used to transform the billboard geometry.

To handle the more general case of an arbitrary billboard rotation axis, an in-
termediate alignment rotationA of the billboard axis into the ~Vup axis is computed
as

~axis = ~Vup � ~Vbillboard

cos � = ~Vup � ~Vbillboard
sin � = k ~axisk

and the matrix transformation is replaced with MAR. Note that the preceding cal-
culations assume that the projection matrix contains no rotational component.
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Figure 15. Billboard with cylindrical symmetry
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In addition to objects which are cylindrically symmetric, it is also useful to com-
pute transformations for spherically symmetric objects such as smoke, clouds and
bushes. Spherical symmetry allows billboards to rotate up and down as well as
left and right, whereas cylindrical behavior only allows rotation to the left or right.
Cylindrical behavior is suited to objects such as trees which should not bend back-
ward as the viewer’s altitude increases.

Objects which are spherically symmetric are rotated about a point to face the
view and thus provide more freedom in computing the rotations. An additional
alignment constraint can be used to resolve this freedom. For example, an align-
ment constraint which keeps the object oriented in a consistent fashion, such as up-
right. This constraint can be enforced in object coordinates when the objective is
to maintain scene realism, perhaps to maintain the orientation of plume of smoke
consistently with other objects in a scene. The constraint can also be enforced in
eye coordinates which can be used to maintain alignment of an object relative to
the screen, for example, keeping annotations such as text aligned horizontally on
the screen.

The computations for the spherically symmetric case are a minor extension of
the computations for the arbitrarily aligned cylindrical case. First an alignment
transformation, A, is computed to rotate the alignment axis onto the up vector fol-
lowed by a rotation about the up vector to align the face of the billboard with the
eye vector. A is computed as

~axis = ~Vup � ~Valignment

cos � = ~Vup � ~Valignment

sin � = k ~axisk

where ~Valignment is the billboard alignment axis with the component in the direction
of the eye direction vector removed

~Valignment =
~Vbillboard � (~Veye � ~Vbillboard)~Veye

A rotation about the up vector is then computed as for the cylindrical case.

5.8 Rendering Text

A novel use for texturing is rendering antialiased text [20]. Characters are stored in
a 2D texture map as for the tree image described above. When a character is to be
rendered, a polygon of the desired size is texture mapped with the character image.
Since the texture image is filtered as part of the texture mapping process, the quality
of the rendered character can be quite good. Text strings can be drawn efficiently
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by storing an entire character set within a single texture. Rendering a string then
becomes rendering a set of quads with the vertex texture coordinates determined
by the position of each character in the texture image. Another advantage of this
method is that strings of characters may be arbitrarily oriented and positioned in
three dimensions by orienting and positioning the polygons.

The competing methods for drawing text in OpenGL include bitmaps, vector
fonts, and outline fonts rendered as polygons. The texture method is typically faster
than bitmaps and comparable to vector and outline fonts. A disadvantage of the tex-
ture method is that the texture filtering may make the text appear somewhat blurry.
This can be alleviated by taking more care when generating the texture maps (e.g.
sharpening them). If mipmaps are constructed with multiple characters stored in the
same texture map, care must be taken to ensure that map levels are clamped to the
level where the image of a character has been reduced to 1 pixel on a side. Charac-
ters should also be spaced far enough apart that the color from one character does
not contribute to that of another when filtering the images to produce the levels of
detail.

5.9 Projective Textures

Projective textures [44] use texture coordinates which are computed as the result of
a projection. The result is that the texture image can be subjected to a separate in-
dependent projection from the viewing projection. This technique may be used to
simulate effects such as slide projector or spotlight illumination, to generate shad-
ows, and to reproject a photograph of an object back onto the geometry of the ob-
ject. Several of these techniques are described in more detail in later sections of
these notes.

OpenGL generalizes the two component texture coordinate (s,t) to a four com-
ponent homogeneous texture coordinate (s,t,r,q). The q coordinate is analogous to
the w component in the vertex coordinates. The r coordinate is used for three di-
mensional texturing in implementations that support that extension and is iterated in
manner similar to s and t. The addition of the q coordinate adds very little extra work
to the usual texture mapping process. Rather than iterating (s,t,r) and dividing by
1/w at each pixel, the division becomes a division by q/w. Thus, in implementations
that perform perspective correction there is no extra rasterization burden associated
with processing q.

5.10 Environment Mapping

OpenGL directly supports environment mapping using spherical environment
maps. A sphere map is a single texture of a perfectly reflecting sphere in the envi-
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ronment where the viewer is infinitely far from the sphere. The environment behind
the viewer (a hemisphere) is mapped to a circle in the center of the map. The hemi-
sphere in front of the viewer is mapped to a ring surrounding the circle. Sphere maps
can be generated using a camera with an extremely wide-angle (or fish eye) lens.
Sphere map approximations can also be generated from a six-sided (or cube) envi-
ronment map by using texture mapping to project the six cube faces onto a sphere.

OpenGL provides a texture generation function (GL SPHERE MAP) which
maps a vertex normal to a point on the sphere map. Applications can use this capa-
bility to do simple reflection mapping (shade totally reflective surfaces) or use the
framework to do more elaborate shading such as Phong lighting [45]. We discuss
this algorithm in a later section.

5.11 Image Warping and Dewarping

Image warping or dewarping may be implemented using texture mapping by defin-
ing a correspondence between a uniform polygonal mesh and a warped mesh. The
points of the warped mesh are assigned the corresponding texture coordinates of
the uniform mesh and the mesh is texture mapped with the original image. Using
this technique, simple transformations such as zoom, rotation or shearing can be
efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortion in satellite imagery.

5.12 3D Textures

Three dimensional textures are a logical extension of 2D textures. In 3D textures,
texels become unit cubes in texel space. They are packed into a rectangular paral-
lelpiped, each dimension contrained to be a power of two. This texture map occu-
pies a volume, rather than a rectangular region, and is accessed using three texture
coordinates, S, T, and R. As with 2D textures, texture coordinates range from zero
to 1 in each dimension. Filtering is controlled in the same fashion as 2D textures,
using texture parameters and texture environment.

5.12.1 Using 3D Textures

In OpenGL, 3D textures have much in common with 2D and 1D textures.
Texture parameters and texture environment calls are the same, using the
GL TEXTURE 3D EXT target in place of GL TEXTURE 2D or GL TEXTURE 1D.

Internal and External Formats and Types are the same, although a particular
OpenGL implementation may limit the 3D texture formats.

3D textures need to be accessed with S, T, and R texture coordinates instead
of just S and T. The additional texture coordinate complexity, combined with the
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common uses for 3D textures, means texture coordinate generation is used more
commonly for 3D textures than for 2D and 1D.

3D texture maps take up a large amount of texture memory, and are expensive
to change dynamically. This can affect multipass algorithms that require multiple
passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it
does for 2D and 1D textures. A 3D texture volume can be translated, rotated, scaled,
or have other transforms applied to it. Applying a transformation to the texture ma-
trix is a convenient and high performance way to manipulate a 3D texture when it
is too expensive to alter the texel values directly.

3D Textures vs. MIPmaps A clear distinction should be made between 3D tex-
tures and MIPmapped 2D textures. 3D textures can be thought of as a solid block
of texture, requiring a third texture coordinate R, to access any given texel. A 2D
MIPmap is a series of 2D texture maps, each filtered to a different resolution. Tex-
els from the appropriate level(s) are chosen and filtered, based on the relationship
between texel and pixel size on the primitive being textured.

Like 2D textures, 3D texture maps can be MIPmapped. Instead of resampling
a 2D layer, the entire texture volume is filtered down to an eighth of its volume
by averaging eight adjacent texels on one level down to a single texel on the next.
MIPMapping serves the same purpose in both 2D and 3D texture maps; it provides
a means of accurately filtering when the projected texel size is small relative to the
pixels being rendered.

3D texture mipmapping is not widely supported, mostly because it is unneces-
sary for the most common use of 3D textures, volume visualization. Nevertheless,
some systems support it, and it can be used for rendering solids as discussed below.

5.12.2 3D Texture Portability

3D Textures aren’t currently a core feature in OpenGL, but can be accessed as an ex-
tension. It is an EXT extension, indicating more than one vendor supports it. Even
when 3D texture maps are supported, the application writer must be careful to con-
sider the level of support present in the application. Texture map size may be lim-
ited, and 3D MIPmapping is often not supported. Available internal and external
formats and types may be restricted. All of these restrictions can be queried at run
time, and with care, portable code can be produced.

Consider writing your 3D texture applications so that they revert to a 2D tex-
turing mode if 3D textures aren’t supported. See the volume visualization section
for an example of a 3D texture algorithm that will work, with lower quality, using
2D textures.
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5.12.3 3D Textures to Render Solid Materials

A direct 3D texture application is rendering solid objects composed of heteroge-
neous material. An example is rendering a statue made of marble or wood. The
object itself is composed of polygons or NURBS surfaces bounding the solid. Com-
bined with proper texgen values, rendering the surface using a 3D texture of the ma-
terial makes the object appear cut out of the material. With 2D textures objects often
appear to have the material laminated on the surface. The difference can be striking
when there are obvious 3D coherencies in the material, combined with sharp angles
in the object’s surface.

Rendering a solid with 3D texture is straightforward:

Create the 3D texture The texture data for the material is organized as a three
dimensional array. Often the material is generated procedurally. As with
2D textures, proper filtering and sampling of the data must be done to
avoid aliasing. A MIPmapped 3D texture will increase realism of the ob-
ject. OpenGL doesn’t support a gluBuild3DMipmap command, so the
mipmaps need to created by the application. Be sure to check to see if the
size of the texture you want to create is supported by the system, and there
is sufficient texture memory available by calling glTexImage3DEXT with
GL PROXY TEXTURE 3D EXT to find a supported size. You can also call
glGet with GL MAX 3D TEXTURE SIZE EXT to find the maximum al-
lowed size of any dimension in a 3D texture for your implementation of
OpenGL, though the result may be more conservative than the result of a
PROXY query.

Create Texture Coordinates For a solid surface, using glTexGen to create the
texture coordinates is the easiest approach. Define planes for S, T, and R in
eye space. Adjusting the scale has more effect on texture quality than the
position and orientation of the planes, since scaling affects how the texture is
sampled.

Enable Texturing Use glEnable(GL TEXTURE 3D EXT) to enable 3D tex-
ture mapping. Be sure to set the texture parameters and texture environment
appropriately. Check to see what restrictions your implementation puts on
these values.

Render the Object Once configured, rendering with 3D texture is no different
than other texturing.
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Figure 16. 3D Textures as 2D Textures varying with R

5.12.4 3D Textures as Multidimensional Functions

Instead of thinking of a 3D texture as a 3D volume of data, it can be thought of as
a 2D texture map that varies as a function of the R coordinate value. Since the 3D
texture filters in three dimensions, changing the R value smoothly blends from one
2D texture image to the next.

An obvious application is animated 2D textures. A 3D texture can animate a
sequence of images by using the R value as time. Since the images are interpolated,
temporal aliasing is reduced.

Another application is generalized billboards. A normal billboard is a 2D tex-
ture applied to a polygon that always faces the viewer. Billboards of objects such
as trees behave poorly when the viewer views the object from above. A 3D texture
billboard can change the textured image as a function of viewer elevation angle,
blending a sequence of images between side view and top view, depending on the
viewer’s position.

5.13 Procedural Texture Generation

Procedurally generated textures are a diverse topic; we concentrate on those based
on filtered noise functions . They are commonly used to simulate effects from phe-
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nomena such as fire, smoke, clouds, and marble formation. These textures are de-
scribed in detail in [13], which provides the basis for much of this section.

5.13.1 Filtered Noise Functions

A filtered noise function is simply a function created by filtering impulses of random
amplitude over the domain. There are a variety of ways to distribute the impulses
spatially and to filter those impulses; these methods determine the character of the
function and, in turn, the character of the procedural texture created from the func-
tion. Regardless of the method chosen, a filtered noise function should have certain
properties [13], some of which are:

� It is a repeatable pseudorandom function of its inputs.

� It has a known range, typically -1 to 1.

� It is band-limited, with a maximum frequency of about 1 per domain unit.

Given such a function, we can build a more interesting function by making dilated
versions of the original such that each one has a frequency of 2, 4, 8, etc. These
are called the octaves of the original function. The octaves are then composited
together with the original noise function using some set of weights. The result is a
band-limited function which gives the impression of controlled randomness in each
frequency band.

One way of distributing noise impulses is to space them uniformly along the
coordinate axes, as in a lattice. In value noise , the function itself interpolates the
values at the lattice points, while in gradient noise the gradient of the function in-
terpolates the values at the lattice points [13]. Gradient noise is similar to the noise
function implemented in the RenderMan shading language.

Lattice noises can exhibit axis-aligned artifacts. Lewis [29] describes sparse
convolution , a way to avoid such artifacts by distributing the impulses using a
stochastic process, and van Wijk [47] describes a similar technique called spot
noise.

Although the noise functions described in [13] are generally 3D, we first discuss
how to generate a 2D noise function, because it is more straightforward to construct
in a 2D framebuffer and because some simple interesting effects can be created with
it.

5.13.2 Generating Noise Functions

Filtered noise functions are typically implemented as continuous functions that can
be sampled at an arbitrary domain value. However, for some applications a set of
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uniformly spaced samples of the function may suffice. In these cases, a discrete
version of the function can be created in the framebuffer using OpenGL. In the fol-
lowing, we do not distinguish between the terms noise function and discrete noise
function .

A simple way to create lattice noise is to create a texture with random values for
the texels, and then to draw a textured rectangle with a bilinear texture filter at an
appropriate magnification. However, bilinear interpolation produces poor results,
especially when creating the lower octaves, where values are interpolated across a
large area. Some OpenGL implementations support bicubic texture filtering, which
may produce results of acceptable quality. However, a particular implementation of
bicubic filtering may have limited subtexel precision, causing noticeable banding
at the lower octaves. Both bilinear and bicubic filters also have the limitation that
they produce only value noise; gradient noise is not possible. We suggest another
approach.

5.13.3 High Resolution Filtering

The accumulation buffer can be used to convolve a high resolution filter with a rel-
atively small image under magnification. That is what we need to make the differ-
ent octaves; the octave representing the lowest frequency band will be created from
a very small input image under large magnification. Suppose we want to create a
512x512 output image by convolving a 64x64 filter with a 4x4 input image. Our
filter takes a 2x2 array of samples from the input image at a time, but is discretized
into 64x64 values in order to generate an output image of the desired size. The in-
put image is shown on the left in Figure 17 with each texel numbered. The output
image is shown on the left in Figure 18. Note that each texel of the input image
will make a contribution to a 64x64 region of the output image. Consider these re-
gions for texels 5, 7, 13, and 15 of the input image; they are adjacent to each other
and have no overlap, as shown by the dotted lines on the left in Figure 18. Hence,
these four texels can be evaluated in the same pass without interfering with each
other. Making use of this fact, we redistribute the texels of the input image into
four 2x2 textures as shown in the right of Figure 17. We also create a 64x64 texture
that contains the filter function; this texture will be used to modulate the contribu-
tion of the input texel over a 64x64 region of the color buffer. The steps to evaluate
the texels in Texture D are:

1. Using the filter texture, draw four filter functions into the alpha planes with
the appropriate x and y offset, as shown on the right in Figure 18

2. Enable alpha blending and set the source blend factor toGL DST ALPHA and
the destination blend factor to GL ZERO.
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Figure 17. Input Image

3. Set the texture magnification filter to GL NEAREST.

4. Draw a rectangle to the dotted region with Texture D, noting the offset of 64
pixels in both x and y.

5. Accumulate the result into the accumulation buffer.

Repeat the above procedure for Textures A, B, and C with the appropriate x and y
offsets, and return the contents of the accumulation buffer to the color buffer.

A wider filter requires more passes of the above procedure, and also requires
that the original texture be divided into more small textures. For example, if we
had chosen a filter that covers a 4x4 array of input samples instead of 2x2, we would
have to make 16 passes instead of 4, and we would have to distribute the texels into
16 1x1 textures. Increasing the size of either the output image or the input image,
however, has no effect on the number of passes.

5.13.4 Spectral Synthesis

Now that we can create a single frequency noise function using the framebuffer,
we need to create the different octaves and to composite them into one texture. For
each octave:

1. Scale the texture matrix by a power of 2 in both s and t.

2. Translate the texture matrix by a random offset in both s and t.
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Figure 18. Output Image

3. Set the texture wrap mode to GL REPEAT for s and t.

4. Draw a textured rectangle.

5. Accumulate the color buffer contents.

The random translation is an attempt to minimize the amount of overlap between
each octave’s texels; without it, every octave would use texels from the same cor-
ner of the input image. The accumulation is typically done with a scale factor that
controls the weight we want to give each octave.

5.13.5 Other Noise Functions

Gradient noise can be created using the same method described above, but with
a different filter. The technique described above can also create noise that is not
aligned on a lattice. To create sparse convolution noise [29] or spot noise [47], in-
stead of drawing the entire point-sampled texture at once, draw one texel and one
copy of the filter at a time for each random location.

5.13.6 Turbulence

To create an illusion of turbulent flow, first-derivative discontinuitiesare introduced
into the noise function by taking the absolute value of the function. Although
OpenGL does not include an absolute value operator for framebuffer contents, the
same effect can be achieved by the following:
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1. glAccum(GL LOAD,1.0);

2. glAccum(GL ADD,-0.5);

3. glAccum(GL MULT,2.0);

4. glAccum(GL RETURN,1.0);

5. Save the image in the color buffer to a texture, main memory, or other color
buffer.

6. glAccum(GL RETURN,-1.0);

7. Draw the saved image from Step 4 using GL ONE as both the source blend
factor and the destination blend factor.

The calls with GL ADD and GL MULT map the values in the accumulation buffer
from the range [0,1] to [-1,1]; this is needed because values retrieved from the color
buffer into the accumulation buffer are positive. Since values from the accumu-
lation buffer are clamped to [0,1] when returned, the first GL RETURN clamps all
negative values to 0 and returns the positive values intact. The second GL RETURN
clamps the positive values to 0, and negates and returns the negative values. The
color buffer needs to be saved after the first GL RETURN because the second
GL RETURN overwrites the color buffer; OpenGL does not define blending for ac-
cumulation buffer operations.

5.13.7 Example: Image Warping

A common use of a 2D noise texture is to distort the texture coordinates while draw-
ing a 2D image, thus warping the image. A noise function is created in the frame-
buffer as described above, read back to the host, and used as texture coordinates (or
offsets to texture coordinates) to render the image. Since color values in OpenGL
are normalized to the range 0.0 to 1.0, if one is careful the image returned to the
host may be used without much conversion; assuming that the modelview and tex-
ture matrixes are set up to accept values in this range, the returned data may be used
directly for rendering.

Another similar use of a 2D noise texture is to distort the reflection of an image.
In OpenGL, reflections on a flat surface can be done by reflecting a scene across the
surface. The results can be copied from the framebuffer to texture memory, and in
turn drawn with distorted texture coordinates. The shape and form of the distortion
can be controlled by modulating the contents of the framebuffer after the noise tex-
ture is drawn but before it is copied to texture memory. This can produce interesting
effects such as water ripples.

51



Programming with OpenGL: Advanced Rendering

5.13.8 Generating 3D Noise

Using the techniques described above for generating a 2D noise function, we can
generating a 3D noise function by making 2D slices and filtering them. A 2D slice
spans the s and t axes of the lattice, and corresponds to a slice of the lattice at a fixed
r.

Suppose we want to make a 64x64x64 noise function with a frequency of 1 per
domain unit, using the same filtering (but one that now takes 2x2x2 input samples)
as in the 2D example above. We first create 2 slices, one for r=0.0 and one for r=1.0.
Then we create the 62 slices in between 0 and 1 by interpolating the two slices. This
interpolation can take place in the color buffer using blending, or it can take place in
the accumulation buffer. Functions with higher frequencies are created in a similar
way. Widening the filter dramatically increases the number of passes; going from
a 2x2x2 filter to 4x4x4 requires 16 times as many passes.

To synthesize a function with different frequencies, we create a 3D noise func-
tion for each frequency, and composite the different frequencies using a set of
weights, just as we do in the 2D case. It is clear that a large amount of memory is re-
quired to store the different 3D noise functions. These operations may be reordered
so that less total memory is required, perhaps at the expense of more interpolation
passes.

5.13.9 Generating 2D Noise to Simulate 3D Noise

We have described a method for creating 2D noise functions. In the case of lattice
noise, these 2D functions correspond to a 2D slice of the lattice. There are cases
where we want to model a 3D noise function and where such a 2D function is inad-
equate. For example, to draw a vase that looks like it was carved from a solid block
of marble, we cannot use a lattice 2D noise function.

However, we can create a 2D noise function that approximates the appearance
of a true 3D noise function, using spot noise [47]. We take into account the object
space coordinates of the geometry, and generate only spots that are close enough
to the geometry to make a contribution to the 3D noise at those points. The diffi-
culty is how to render the spot in such a way that at each fragment the value of the
spot is determined by the object space distance from the center of the spot to that
fragment. Depending on the complexity of the geometry, we may be able to make
an acceptable approximation to the correct spot value by distorting the spot texture.
One possible way to improve the approximation is to compensate for a nonuniform
mapping of the noise texture to the geometry. Van Wijk describes how he does this
by nonuniformly scaling a spot. Approximating the correct spot value is most im-
portant when generating the lower octaves, where the spots are largest and errors
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are most noticeable.

5.13.10 Trade-offs Between 3D and 2D Techniques

A 3D texture can be used with arbitrary geometry without much additional work
if your OpenGL implementation supports 3D textures. However, generating a 3D
noise texture requires a large amount of memory and a large number of passes, es-
pecially if you use a filter that convolves a large number of input values at a time.
A 2D texture as we just described doesn’t require nearly as many passes to create,
but it does require knowledge of the geometry and additional computation in order
to properly shape the spot.

6 Blending

OpenGL provides a rich set of blending operations which can be used to implement
transparency, compositing, painting, etc. Rasterized fragments are linearly com-
bined with pixels in the selected color buffers, clamped to 1.0 and written back to
the color buffers. The glBlendFunc command is used to select the source and
destination blend factors. The most frequently used factors are GL ZERO, GL ONE,
GL SRC ALPHA and GL ONE MINUS SRC ALPHA. OpenGL 1.1 specifies addi-
tive blending, but vendors have added extensions to allow other blending equations
such as subtraction and reverse subtraction.

Most OpenGL implementations use fixed point representations for color
throughout the fragment processing path. The color component resolution is typi-
cally 8 or 12 bits. Resolution problems typically show up when attempting to blend
many images into the color buffer, for example in some volume rendering tech-
niques or multilayer composites. Some of these problems can be alleviated using
the accumulation buffer instead, but the accumulation buffer does not provide the
same richness of methods for building up results.

OpenGL does not require that implementations support a destination alpha
buffer (storage for alpha). For many applications this is not a limitation, but there is
a class of multipass operations where maintaining the current computed alpha value
is necessary.

6.1 Compositing

The OpenGL blending operation does not directly implement the compositing op-
erations described by Porter and Duff [38]. The difference is that in their composit-
ing operations the colors are premultiplied by the alpha value and the resulting fac-
tors used to scale the colors are simplified when this scaling has been done. It has
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been proposed that OpenGL be extended to include the ability to premultiply the
source color values by alpha to better match the Porter and Duff operations. In
the meantime, it’s certainly possible to achieve the same effect by computing the
premultiplied values in the color buffer itself. For example, if there is an image in
the color buffer, a new image can be generated which multiplies each color com-
ponent by its alpha value and leaves the alpha value unchanged by performing a
glCopyPixels operation with blending enabled and the blending function set to
(GL SRC ALPHA,GL ZERO). To ensure that the original alpha value is left intact,
use the glColorMask command to disable updates to the alpha component dur-
ing the copy operation.

6.2 Advanced Blending

OpenGL 1.1 blending only allows simple additive combinations of the source and
destination color components. Two ways in which the blending operations have
been extended by vendors include the ability to blend with a constant color and the
ability to use other blending equations. The blend color extension adds a constant
RGBA color state variable which can be used as a blending factor in the blend equa-
tion. This capability can be very useful for implementing blends between two im-
ages without needing to specify the individual source and destination alpha compo-
nents on a per pixel basis.

The blend equation extension provides the framework for specifying alternate
blending equations, for example subtractive rather than additive. In OpenGL 1.1,
the accumulation buffer is the only mechanism which allows pixel values to be
subtracted, but there is no easy method to include a per-pixel scaling factor such
as alpha, so its easy to imagine a number of uses for a subtractive blending equa-
tion. Other equations which have been implemented include min and max functions
which can be useful in image processing algorithms (e.g., for computing maximum
intensity projections).

6.3 Painting

Two dimensional painting applications can make interesting use of texturing and
blending. An arbitrary image can be used as a paint brush, using blending to accu-
mulate the contribution over time. The image (or paint brush) source can be geom-
etry or a pixel image. A texture mapped quad under an orthographic projection can
be used in the same way as a pixel image and often more efficiently (when texture
mapping is hardware accelerated).

An interesting way to implement the painting process is to precompute the ef-
fect of painting the entire image with the brush and then use blending to selectively
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expose the painted area as the brush passes by the area. This can be implemented
efficiently with texturing by using the fully painted image as a texture map, blend-
ing the image of it mapped on the brush with the current image stored in the color
buffer. The brush is some simple geometric shape and the (s,t) texture coordinates
track the (x,y) coordinates as they move across the image. The main advantage of
this techniques is that elaborate paint/brush combinations can be efficiently com-
puted across the entire image all at once rather than performing localized computa-
tions in the area covered by the brush.

6.4 Blending with the Accumulation Buffer

The accumulation buffer is designed for integrating multiple images. Instead of
simply replacing pixel values with incoming pixel fragments, the fragments are
scaled, then added to the existing pixel value. In order to maintain accuracy over
a number of blending operations, the accumulation buffer has a higher number of
bits per color component than a typical color buffer.

The accumulation buffer can be cleared like any other buffer. You can
use glClearAccum to set the red, green, blue, and alpha components
of its clear color. Clear the accumulation buffer by bitwise or’ing in the
GL ACCUM BUFFER BIT value to the parameter of the glClear command.

You can’t render directly into the accumulation buffer. Instead you render into
a selected color buffer, then use glAccum to accumulate that image into the accu-
mulation buffer. The glAccum command reads from the currently selected read
buffer. You can set the buffer you want it to read from using the glReadBuffer
command.

The glAccum command takes two arguments, op and value. The possible set-
tings for op are described in Table reftab:accumop.

Since you must render to another buffer before accumulating, a typical approach
to accumulating images is to render images to the back buffer some number of
times, accumulating each image into the accumulation buffer. When the desired
number of images have been accumulated, the contents of the accumulation buffer
are copied into the back buffer, and the buffers are swapped. This way, only the
final, accumulated image is displayed.

Here is an example procedure for accumulating n images:

1. Call glDrawBuffer(GL BACK) to render to the back buffer only

2. Call glReadBuffer(GL BACK) so that the accumulation buffer will read
from the back buffer.
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Op Value Action

GL ACCUM read from selected buffer, scale by value, then add into ac-
cumulation buffer

GL LOAD read from selected buffer, scale by value, then use image
to replace contents of accumulation buffer

GL RETURN scale image by value, then copy into buffers selected for
writing

GL ADD add value to R, G, B, and A components of every pixel in
accumulation buffer

GL MULT clamp value to range -1 to 1, then scale R, G, B, and A com-
ponents of every pixel in accumulation buffer.

Table 1: glAccum op values

Note that the first two steps are only necessary if the application has changed
the selected draw and read buffers. If the visual is double buffered, these settings
are the default.

3. Clear the back buffer with glClear, then render the first image

4. Call glAccum(GL LOAD, 1.f/n); this allows you to avoid a separate
step to clear the accumulation buffer.

5. Alter the parameters of your image, and re-render it

6. Call glAccum(GL ACCUM,1.f/n) to add the second image into the first.

7. Repeat the previous two steps n - 2 more times...

8. Call glAccum(GL RETURN, 1.f) to copy the completed image into the
back buffer

9. Call glutSwapBuffers if your using GLUT, or whatever’s appropriate to
swap the front and back buffers.

The accumulation buffer provides a way to do “multiple exposures” in a scene,
while maintaining good color resolution. There are a number of image effects that
can be done using the accumulation buffer to improve the realism of a rendered im-
age [21, 33]. They include antialiasing, motion blur, soft shadows, and depth of
field. To create these effects, the image is rendered multiple times, making small,
incremental changes to the scene position (or selected objects within the scene), and
accumulating the results.

56



Programming with OpenGL: Advanced Rendering

Figure 19. Rasterization of a wide point.

7 Antialiasing

Aliasing artifacts appear when rasterizing primitives because primitives are approx-
imated by a series of pixels that lie on an integer grid. Aliasing is especially bad
when rendering diagonal lines (or edges of polygons that are on the diagonal) and
wide points. Figure 19 shows how a wide point covers more of some pixel squares
than others.

Antialiasing is a technique that reduces aliasing artifacts (or jaggies) by modify-
ing the intensity of a primitive’s fragment based on how much the primitive overlaps
that pixel fragment. When performing antialiasing, OpenGL calculates a coverage
value for each pixel fragment based on the how much the primitive overlaps that
pixel.

7.1 Antialiasing Points and Lines

To antialias points or lines, you need to enable antialiasing by calling glEnable
and passing in GL POINT SMOOTH or GL LINE SMOOTH, as appropriate. You
can also provide a quality hint by calling glHint. The hint parameter can
be GL FASTEST to indicate that the most efficient option should be cho-
sen, GL NICEST to indicate the highest quality option should be chosen, or
GL DONT CARE to indicate no preference.

When antialiasing is enabled, OpenGL computes the fraction of each pixel that
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is covered by the point or line. The setting of the GL LINE SMOOTH and the
GL POINT SMOOTH hints determine how accurate the calculation is when render-
ing lines and points, respectively. When the hint is set toGL NICEST, a larger filter
function may be applied causing more fragments to be generated and rendering to
slow down.

If you are using RGBA rendering, OpenGL will set the alpha value accord-
ing to the pixel coverage. You need to enable blending so that the incoming
pixel fragment will be combined with the value already in the framebuffer, de-
pending on the alpha value. You will probably want to set the blending factors
to GL SRC ALPHA (source) and GL ONE MINUS SRC ALPHA (destination). You
can also use GL ONE for the destination factor to make lines a little brighter where
they intersect.

Antialiasing in color index mode is trickier because you have to load the color
map correctly to get primitive edges to blend with the background color. When an-
tialiasing is enabled, the last four bits of the color index indicate the coverage value.
Thus, you need to load sixteen contiguous colormap locations with a color ramp
ranging from the background color to the object’s color. This technique only works
well when drawing wireframe images, where the lines and points typically need to
be blended with a constant background. If the lines and/or points need to be blended
with background polygons or images, RGBA rendering should be used.

You need to be careful when rendering antialiased lines and points with depth
buffered primitives. You should draw the depth buffered primitives first and then
draw the points and lines with the depth test still enabled but with depth buffer up-
dates disabled. This way the points and lines will be correctly depth buffered against
the rest of the geometry. This is a similar algorithm to that used for drawing a mix-
ture of opaque and translucent surfaces with depth buffering. If antialiased lines are
drawn with the normal depth buffering algorithm a halo artifact may be visible at the
intersections of lines. This halo is a result of the antialiased lines being drawn sev-
eral pixels wide with the pixels along the edges of the line having attenuated alpha
values which can also occlude pixels with larger depth values (i.e., parts of other
lines). When drawing antialiased lines it is often necessary to adjust the gamma of
the monitor to get the best results.

7.2 Polygon Antialiasing

Antialiasing the edges of filled polygons is similar to antialiasing points and lines.
However, antialiasing polygons in color index mode isn’t practical since object in-
tersections are more prevalent and you really need to use OpenGL blending to get
decent results.

To enable polygon antialiasing call glEnable with GL POLYGON SMOOTH.
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This causes pixels on the edges of the polygon to be assigned fractional alpha
values based on their coverage. Also, if you want, you can supply a value for
GL POLYGON SMOOTH HINT.

In order to get the polygons blended correctly when they overlap, you need to
sort the polygons in front to back order. Before rendering, disable depth testing, en-
able blending and set the blending factors to GL SRC ALPHA SATURATE (source)
and GL ONE (destination). The final color will be the sum of the destination color
and the scaled source color; the scale factor is the smaller of either the incoming
source alpha value or one minus the destination alpha value. This means that for a
pixel with a large alpha value, successive incoming pixels have little effect on the
final color because one minus the destination alpha is almost zero.

Since the accumulated coverage is stored in the color buffer, destination alpha
is required for this algorithm to work. Thus you must request a visual or pixel for-
mat with destination alpha. OpenGL does not require implementations to support
a destination alpha buffer so visual selection may fail.

7.3 Multisampling

Multisampling is an antialiasing method that provides high quality results. It is
available as an OpenGL extension from at least one vendor. In this technique addi-
tional subpixel storage is maintained as part of the color, depth and stencil buffers.
Instead of using alpha for coverage, coverage masks are computed to help main-
tain sub-pixel coverage information for all pixels. Current implementations sup-
port four, eight, and sixteen samples per pixel. The method allows for full scene
antialiasing at a modest performance penalty but a more substantial storage penalty
(since sub-pixel samples of color, depth, and stencil need to be maintained for every
pixel). This technique does not entirely replace the methods described above, but
is complementary. Antialiased lines and points using alpha coverage can be mixed
with multisampling as well as the accumulation buffer antialiasing method.

7.4 Antialiasing With Textures

You can also antialias points and lines using the filtering provided by texturing. For
example, to draw antialiased points, create a texture image containing a filled circle
with a smooth (antialiased) boundary. Then apply the texture to the point making
sure that the center of the texture is aligned with the point’s coordinates and using
the texture environment GL MODULATE. This method has the advantage that any
point shape may be accommodated simply by varying the texture image.

A similar technique can be used to draw antialiased line segments of any width.
The texture image is a filtered circle as described above. Instead of a line segment, a
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texture mapped rectangle, whose width is the desired line width, is drawn centered
on and aligned with the line segment. If line segments with round ends are desired,
these can be added by drawing an additional textured rectangle on each end of the
line segment.

You can also use alpha textures to accomplish antialiasing. Simply create an
image of a circle where the alpha values are one in the center and go to zero as
you move from the center out to an edge. The alpha texel values would then be
used to blend the point or rectangle fragments with the pixel values already in the
framebuffer.

7.5 Antialiasing with Accumulation Buffer

Accumulation buffers can be used to antialias a scene without having to depth sort
the primitives before rendering. A supersampling technique is used, where the en-
tire scene is offset by small, subpixel amounts in screen space, and accumulated.
The jittering can be accomplished by modifying the transforms used to represent
the scene.

One straightforward jittering method is to modify the projection matrix, adding
small translations in x and y. Care must be taken to compute the translations so
that they shift the scene the appropriate amount in window coordinate space. For-
tunately, computing these offsets is straightforward. To compute a jitter offset in
terms of pixels, divide the jitter amount by the dimension of the object coordinate
scene, then multiply by the appropriate viewport dimension. The example code
fragment below shows how to calculate a jitter value for an orthographic projec-
tion; the results are applied to a translate call to modify the modelview matrix:

void ortho_jitter(GLfloat xoff, GLfloat yoff)
{
GLint viewport[4];
GLfloat ortho[16];
GLfloat scalex, scaley;

glGetIntegerv(GL_VIEWPORT, viewport);
/* this assumes that only a glOrtho() call has been
applied to the projection matrix */
glGetFloatv(GL_PROJECTION_MATRIX, ortho);

scalex = (2.f/ortho[0])/viewport[2];
scaley = (2.f/ortho[5])/viewport[3];
glTranslatef(xoff * scalex, yoff * scaley, 0.f);
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}

If the projection matrix wasn’t created by callingglOrtho or gluOrtho2D,
then you will need to use the viewing volume extents (right, left, top, bottom) to
compute scalex and scaley as follows:

GLfloat right, left, top, bottom;

scalex = ((right-left)/viewport[2];
scaley = ((top-bottom)/viewport[3];

The code is very similar for jittering a perspective projection. In this example,
we jitter the frustum itself:

void frustum_jitter(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff)
{
GLfloat scalex, scaley;
GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport);
scalex = (right - left)/viewport[2];
scaley = (top - bottom)/viewport[3];

glFrustum(left - xoff * scalex,
right - xoff * scalex,
top - yoff * scaley,
bottom - yoff * scaley,
near, far);
}

The jittering values you choose should fall in an irregular pattern; this reduces
aliasing artifacts by making them “noisy”. Selected subpixel jitter values, organized
by the number of samples needed, are taken from the OpenGL Programming Guide,
and are shown in Table 2.

Using the accumulation buffer, you can easily trade off quality and speed. For
higher quality images, simply increase the number of scenes that are accumulated.
Although it is simple to antialias the scene using the accumulation buffer, it is much
more computationally intensive and probably slower than the polygon antialiasing
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Count Values
2 0.25, 0.75, 0.75, 0.25
3 0.5033922635, 0.8317967229, 0.7806016275, 0.2504380877,

0.2261828938, 0.4131553612

4 0.375, 0.25, 0.125, 0.75, 0.875, 0.25, 0.625, 0.75

5 0.5, 0.5, 0.3, 0.1, 0.7, 0.9, 0.9, 0.3, 0.1, 0.7

6 0.4646464646, 0.4646464646, 0.1313131313, 0.7979797979,
0.5353535353, 0.8686868686, 0.8686868686, 0.5353535353,
0.7979797979, 0.1313131313, 0.2020202020, 0.2020202020

8 0.5625, 0.4375, 0.0625, 0.9375, 0.3125, 0.6875, 0.6875, 0.8125,
0.8125, 0.1875, 0.9375, 0.5625, 0.4375, 0.0625, 0.1875, 0.3125

9 0.5, 0.5, 0.1666666666, 0.9444444444, 0.5, 0.1666666666,
0.5, 0.8333333333, 0.1666666666, 0.2777777777,
0.8333333333, 0.3888888888, 0.1666666666, 0.6111111111,
0.8333333333, 0.7222222222, 0.8333333333, 0.0555555555

12 0.4166666666, 0.625, 0.9166666666, 0.875, 0.25, 0.375,
0.4166666666, 0.125, 0.75, 0.125, 0.0833333333, 0.125, 0.75, 0.625,
0.25, 0.875, 0.5833333333, 0.375, 0.9166666666, 0.375,
0.0833333333, 0.625, 0.583333333, 0.875

16 0.375, 0.4375, 0.625, 0.0625, 0.875, 0.1875, 0.125, 0.0625,
0.375, 0.6875, 0.875, 0.4375, 0.625, 0.5625, 0.375, 0.9375,
0.625, 0.3125, 0.125, 0.5625, 0.125, 0.8125, 0.375, 0.1875,
0.875, 0.9375, 0.875, 0.6875, 0.125, 0.3125, 0.625, 0.8125

Table 2: Sample Jittering Values
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method described above. Also, OpenGL does not require implementations to sup-
port an accumulation buffer, so you may not be able to select a visual or pixel format
with an accumulation buffer.

8 Lighting

This section discusses varies ways of improving and refining the lighting of your
scenes using OpenGL.

8.1 Phong Shading

8.1.1 Phong Highlights with Texture

One of the problems with the OpenGL lighting model is that specular reflectance is
computed before textures are applied in the normal pipeline sequence. To achieve
more realistic looking results, specular highlights should be computed and added to
image after the texture has been applied. This can be accomplished by breaking the
shading process into two passes. In the first pass diffuse reflectance is computed for
each surface and then modulated by the texture colors to be applied to the surface
and the result written to the color buffer. In the second pass the specular highlight is
computed for each polygon and added to the image in the framebuffer using a blend-
ing function which sums 100% of the source fragment and 100destination pixels.
For this particular example we will use an infinite light and a local viewer. The steps
to produce the image are as follows:

1. Define the material with appropriate diffuse and ambient reflectance and zero
for the specular reflectance coefficients.

2. Define and enable lights.

3. Define and enable texture to be combined with diffuse lighting.

4. Define modulate texture environment.

5. Draw lit, textured object into the color buffer with the vertex colors set to 1.0.

6. Define new material with appropriate specular and shininess and zero for dif-
fuse and ambient reflectance.

7. Disable texturing, enable blending, set the blend function to GL ONE,
GL ONE.

8. Draw the specular-lit, non-textured geometry.
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9. Disable blending.

This implements the basic algorithm, but the Gouraud shaded specular high-
light still leaves something to be desired. We can improve on the specular high-
light by using environment mapping to generate a higher quality highlight. We
generate a sphere map consisting only of a Phong highlight [37] and then use the
GL SPHERE MAP texture coordinate generation mode to generate texture coordi-
nates which index this map. For each polygon in the object, the reflection vector
is computed at each vertex. Since the coordinates of the vector are interpolated
across the polygon and used to lookup the highlight, a much more accurate sam-
pling of the highlight is achieved compared to interpolation of the highlight value
itself. The sphere map image for the texture map of the highlight can be computed
by rendering a highly tessellated sphere lit with only a specular highlight using the
regular OpenGL pipeline. Since the light position is effectively encoded in the tex-
ture map, the texture map needs to be recomputed whenever the light position is
changed.

The nine step method outlined above needs minor modifications to incorporate
the new lighting method:

6. disable lighting.

7. load the sphere map texture, enable the sphere map texgen function.

8. enable blending, set the blend function to GL ONE, GL ONE.

9. draw the unlit, textured geometry with vertex colors set to 1.0.

10. disable texgen, disable blending.

With a little work the technique can be extended to handle multiple light
sources.

8.1.2 Spotlight Effects using Projective Textures

The projective texture technique described earlier can be used to generate a number
of interesting illumination effects. One of the possible effects is spotlight illumina-
tion. The OpenGL lighting model already includes a spotlight illumination model,
providing control over the cutoff angle (spread of the cone), the exponent (concen-
tration across the cone), direction of the spotlight, and attenuation as a function of
distance. The OpenGL model typically suffers from undersampling of the light.
Since the lighting model is only evaluated at the vertices and the results are linearly
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interpolated, if the geometry being illuminated is not sufficiently tessellated incor-
rect illumination contributions are computed. This typically manifests itself by a
dull appearance across the illuminated area or irregular or poorly defined edges at
the perimeter of the illuminated area. Since the projective method samples the illu-
mination at each pixel the undersampling problem is eliminated.

Similar to the Phong highlight method, a suitable texture map must be gener-
ated. The texture is an intensity map of a cross-section of the spotlight’s beam. The
same type of exponent parameter used in the OpenGL model can be incorporated or
a different model entirely can be used. If 3D textures are available the attenuation
due to distance can be approximated using a 3D texture in which the intensity of
the cross-section is attenuated along the r-dimension. When geometry is rendered
with the spotlight projection, the r coordinate of the fragment is proportional to the
distance from the light source.

In order to determine the transformation needed for the texture coordinates, it
is easiest to think about the case of the eye and the light source being at the same
point. In this instance the texture coordinates should correspond to the eye coordi-
nates of the geometry being drawn. The simplest method to compute the coordi-
nates (other than explicitly computing them and sending them to the pipeline from
the application) is to use an GL EYE LINEAR texture generation function with an
GL EYE PLANE equation. The planes simply correspond to the vertex coordinate
planes (e.g. the s coordinate is the distance of the vertex coordinate from the y-z
plane, etc.). Since eye coordinates are in the range [-1.0, 1.0] and the texture co-
ordinates need to be in the range [0.0, 1.0], a scale and translate of .5 is applied to
s and t using the texture matrix. A perspective spotlight projection transformation
can be computed using gluPerspective and combined into the texture trans-
formation matrix. The transformation for the general case when the eye and light
source are not in the same position can be computed by incorporating into the tex-
ture matrix the inverse of the transformations used to move the light source away
from the eye position.

With the texture map available, the method for rendering the scene with the
spotlight illumination is as follows:

1. Initialize the depth buffer.

2. Clear the color buffer to a constant value which represents the scene ambient
illumination.

3. Draw the scene with depth buffering enabled and color buffer writes disabled.

4. Load and enable the spotlight texture, set the texture environment to
GL MODULATE.
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5. Enable the texgen functions, load the texture matrix.

6. Enable blending and set the blend function to GL ONE, GL ONE.

7. Disable depth buffer updates and set the depth function to GL EQUAL.

8. Draw the scene with the vertex colors set to 1.0.

9. Disable the spotlight texture, texgen and texture transformation.

10. Set the blend function to GL DST COLOR.

11. Draw the scene with normal illumination.

There are three passes in the algorithm. At the end of the first pass the ambient
illumination has been established in the color buffer and the depth buffer contains
the resolved depth values for the scene. In the second pass the illumination from the
spotlight is accumulated in the color buffer. By using the GL EQUAL depth func-
tion, only visible surfaces contribute to the accumulated illumination. In the final
pass the scene is drawn with the colors modulated by the illumination accumulated
in the first two passes to arrive at the final illumination values.

The algorithm does not restrict the use of texture on objects, since the spotlight
texture is only used in the second pass and only the scene geometry is needed in
this pass. The second pass can be repeated multiple time with different spotlight
textures and projections to accumulate the contributions of multiple light sources.

There are a couple of considerations that also should be mentioned. Texture
projection along the negative line-of-sight of the texture (back projection) can con-
tribute undesired illumination. This can be eliminated by positioning a clip plane
at the near plane of the line-of-site. OpenGL does not guarantee pixel exactness
when various modes are enabled or disabled. This can manifest itself in undesir-
able ways during multipass algorithms. For example, enabling texture coordinate
generation may cause fragments with different depth values to be generated com-
pared to the case when texture coordinate generation is not enabled. This problem
can be overcome by re-establishing the depth buffer values between the second and
third pass. This is done by redrawing the scene with color buffer updates disabled
and the depth buffering configured the same as for the first pass.

It is also possible that the entire scene can be rendered in a single pass. If none
of the objects in the scene are textured, the complete image could be rendered in a
single pass assuming the ambient illumination can be summed with spotlight illu-
mination in a single pass. Some vendors have added an additive texture environ-
ment function as an extension which would make this operation feasible. A cruder
method that works in OpenGL 1.1 involves illuminating the scene using normal
OpenGL lighting with the spotlight texture modulating this illumination.
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8.1.3 Phong shading by Adaptive Tessellation

Phong highlights can also be approached with a modeling technique. The surface
can be adaptively tessellated until the difference between ( ~H � ~N)

n terms on triangle
vertices drops below a predetermined value. The advantage of this technique is that
it can be done as a separate pre-processing step. The disadvantage is that it increases
the complexity of the modeled object. This can be costly if:

� The model will have to be clipped by a large number of user-defined clipping
planes

� The model will have tiled textures applied to it.

� The performance of the application/system is already triangle limited.

8.2 Light Maps

A light map is a texture map applied to a material to simulate the effect of a local
light source. Like specular highlights, it can be used to improve the appearance of
local light sources without resorting to excessive tessellation of the objects in the
scene. A excellent example of an application using lightmaps is the interactive PC
game Quake(tm). This game uses light maps to simulate the effects of local light
sources, both stationary and moving, to great effect.

Using lightmaps usually requires a multipass algorithm, unless the objects be-
ing mapped are untextured. A texture simulating the light’s effect on the object is
created, then applied to one or more objects in the scene. Appropriate texture coor-
dinates are generated, and texture transformations can be used to position the light,
and create moving or changing light effects. Multiple light sources can be gener-
ated with a combination of more complex texture maps and/or more passes to the
algorithm.

Light maps are often luminance textures, which are applied to the object using
GL MODULATE as the value forGL TEXTURE ENV MODE. Colored lights can also
be simulated by using an RGB texture.

Light maps can often produce satisfactory lighting effects at lower resolutions
than normal textures. It is often not necessary to produce MIPmaps; choosing
GL LINEAR for the minification and magnification filters is often sufficient. Of
course, the minimum quality of the lighting effect is a function of the intended ap-
plication.
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8.2.1 2D Texture Light Maps

A 2D light map is a texture map applied to the surfaces of a scene, modulating the
intensity of the surfaces to simulate the effects of a local light. If the surface is al-
ready textured, then applying the light map becomes a multipass operation, modu-
lating the intensity of a surface detail texture.

A 2D light map can be generated analytically, creating a bright spot in lumi-
nance or color values that drops off appropriately with increasing distance from the
light center. As with other lighting equations, a quadratic drop off, modified with
linear and constant terms can be used to simulate a variety of lights, depending on
the area of the emitting source.

Since generating new textures takes time and consumes valuable texture mem-
ory, it is a good strategy to create a few canonical light maps, based on intensity
drop-off characteristics and color, then use them for a number of different lights
by transforming the texture coordinates. If the light source is isotropic, then simple
translations and scales can be used to position the light appropriately on the surface,
while scales can be used to adjust the size of the lighting effect, simulating different
sizes of lights and distance from the lighted surface.

In order to apply a light map to a surface properly, the position of the light in the
scene must be projected onto each surface of interest. This position shows where
the bright spot will be. The perpendicular distance of the light from the surface can
be used to adjust the bright spot size and brightness. One approach is to generate
texture coordinates, orienting the generating planes with each surface of interest,
then translating and scaling the texture matrix to position the light on the surface.
This process is repeated for every surface affected by the light.

In order to repeat this process for multiple lights (without resorting to a multi-
light lightmap) or to light textured surfaces, the lighting must be done as a series of
passes. This can be done two ways. The more straightforward way is to blend the
entire scene. The other way is to blend together the surface texture and light maps
to create a texture for each surface. This texture will represent the contributions of
the surface texture and all lightmaps affecting its surface. The merged texture is
then applied to the surface. Although more involved, the second method produces
a higher quality result.

For each surface:

1. Transform the surface so that it is perpendicular to the direction of view (max-
imize its visible surface). Scale the image so that its area in pixels matches
the desired size of the final texture.

2. Render the transformed surface into the frame buffer (this can be done in the
back buffer). If it is textured, render it with the surface texture.
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3. Re-render the surface, using the appropriate light map. Adjust the
GL EYE PLANE equations and the texture transform to position the light cor-
rectly on the surface. Use the appropriate blend function.

4. Repeat the previous step with each light visible to the surface.

5. Copy the image into a texture using glCopyTexImage2D.

6. When you’ve created textures for all lit surfaces, render the scene using the
new textures.

Since switching between textures must be done quickly, and lightmap textures
tend to be small, use texture objects to switch between different light maps and sur-
face textures to improve performance.

With either approach, the blending is a modulation of the colors of the exist-
ing texture. This can be done by rendering with the blend function (GL ZERO,
GL SRC COLOR). If the light map is composed of luminance values than the in-
dividual destination color components will be scaled equally, if the light map rep-
resents a colored light, then the color components of the destination will be scaled
by the red, green, and blue components of the light map texel values.

Note that each modulation pass attenuates the surface color. The results will
become increasingly dim. If surfaces require a large number of lights, the dynamic
range of light maps can be compressed to avoid excessive darkening. Instead of
ranging from 1.0 (full light) to 0.0 (no light), They can range from 1.0 (full light) to
0.5 or 0.75 (no light). The no light value can be adjusted as a function of the number
of lights in the scene.

Here are the steps for using 2D Light Maps:

1. Create the 2D light data. “Canonical lights” can be defined at the center of
the texture, with the intensity dropping off in a realistic fashion towards the
edges. In order to avoid artifacts, make sure the intensity of the light field is
the same at all the edges of the texture volume.

2. Define a 2D texture, using GL REPEAT for the wrap values in S, T, and R.
Minification and magnification should be GL LINEAR to make the changes
in intensity smoother. For performance reasons, make this texture a texture
object.

3. Render the scene without the lightmap, using surface textures as appropriate.

4. For each light in the scene:

(a) For each surface in the scene:
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i. Cull surfaces that can’t “see” the current light.

ii. Find the plane of the surface.

iii. Align the GL EYE PLANE for GL S and GL T with the surface
plane.

iv. Scale and translate the texture coordinates to position and size the
light on the surface.

v. Render the surface using the appropriate blend function and
lightmap texture.

An alternative to simple light maps is to use projective textures to draw light
sources. This is a good approach when doing spotlight effects. It’s not as useful for
isotropic light sources, since you’ll have to tile your projections to make the light
shine in all directions. See the projective texture description 8.1.1 and 5.8 for more
details.

8.2.2 3D Texture Light Maps

3D Textures can also be used as light maps. One or more light sources are repre-
sented in 3D data, then the 3D texture is applied to the entire scene. The main ad-
vantage of using 3D textures for light maps is that it’s easy to calculate the proper
texture coordinates. The textured light source can be positioned globally with the
appropriate texture transformations then the scene is rendered, using glTexGen
to generate the proper S, T, and R coordinates.

The light source can be moved by changing the texture matrix. The resolution
of the light field is dependent on the texture resolution.

A useful approach is to define a canonical light field in 3D texture data, then
use it to represent multiple lights at different positions and sizes by applying texture
translations and scales to shift and resize the light. Multiple lights can be simulated
by accumulating the results of each light source on the scene.

To ensure that the light source can be shifted easily, set GL TEXTURE WRAP S,
GL TEXTURE WRAP T, and GL TEXTURE WRAP R EXT to GL REPEAT. Then
the light can be shifted to any location in the scene. Be sure that the texel values
in the light map are the same at all boundaries of the texture; otherwise you’ll be
able to see the edges of the texture as vertical and horizontal “shadows” in the scene.

Although it is uncommon, some types of light fields would be very hard to do
without 3D textures. A complex light source, whose brightness and range varies as
a function of distance from the light source could be best done with a 3D texture.
An example might be a “disco ball” effect where a light source has beams emanat-
ing out from the center, with some beams shining farther than others. A complex
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light source could be made more impressive by combining light maps with volume
visualization techniques. For example the light beams could be made visible in fog.

The light source itself can be a simple piece of geometry textured with the rest
of the scene. Since it is at the source of the textured light, it will be textured brightly.

For better realism, good lighting effects should be combined with the shadow-
ing techniques described in Section 9.4.

Procedure:

1. Create the 3D light data. A “canonical light” can be defined at the center of
the texture volume, with the intensity dropping off in a realistic fashion to-
wards the edges. In order to avoid artifacts, make sure the intensity of the
light field is the same at all the edges of the texture volume.

2. Define a 3D texture, using GL REPEAT for the wrap values in S, T, and R.
Minification and magnification should be GL LINEAR to make the changes
in intensity smoother.

3. Render the scene without the lightmap, using surface textures as appropriate.

4. Define planes in eye space so that glTexGen will cause the texture to span
the visible scene.

5. If you have textured surfaces, adding a lightmap becomes a multipass tech-
nique. Use the appropriate blending function to modulate the surface color.

6. Render the image with the light map, and texgen enabled. Use the appropriate
texture transform to position and scale the light source correctly.

7. Repeat steps 1-2 and 4-6 for each light source.

There are disadvantages to using 3D light maps:

� 3D textures are not widely supported yet, so your application will not be as
portable.

� 3D textures use a lot of texture memory. 2D textures are more efficient for
light maps.

8.3 Bump Mapping with Textures

Bump mapping [6], like texture mapping, is a technique to add more realism to syn-
thetic images without adding a lot of geometry. Texture mapping adds realism by
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attaching images to geometric surfaces. Bump mapping adds per-pixel surface re-
lief shading, increasing the apparent complexity of the surface.

Surfaces that should have a patterned roughness are good candidates for bump
mapping. Examples include oranges, strawberries, stucco, wood, etc.

A bump map is an array of values that represent an object’s height variations on
a small scale. A custom renderer is used to map these height values into changes in
the local surface normal. These perturbed normals are combined with the surface
normal, and the results are used to evaluate the lighting equation at each pixel.

The technique described here uses texture maps to generate bump mapping ef-
fects without requiring a custom renderer [1] [36]. This multipass algorithm is an
extension and refinement of texture embossing [42].

The first derivative of the height values of the bump map can found by the fol-
lowing process:

1. Render the image as a texture.

2. Shift the texture coordinates at the vertices.

3. Re-render the image as a texture, subtracting from the first image.

Consider a one dimensional bump map for simplicity. The map only varies as a
function of S. Assuming that the height values of the bump map can be represented
as a height function f(s), then the three step process above would be like doing the
following: f(s) � f(s + shift). If the shift was by one texel in S, you’d have
f(s)�f(s+ 1

w
), where w is the width of the texture in texels. This is a different form

of f(s)�f(s+1)
1 which is just the basic derivative formula. So shiftingand subtracting

results in the first derivative of f(s), f 0(s).
In the two dimensional case, the height function is f(s; t), and shifting and sub-

tracting creates a directional derivative of f(s; t). This technique is used to create
embossed images.

With more precise shifting of the texture coordinates, we can get general bump
mapping from this technique.

8.3.1 Tangent Space

In order to accurately shift, the light source direction ~Lmust be rotated into tangent
space. Tangent space has 3 perpendicular axis, T, B and N. T, the tangent vector, is
parallel to the direction of increasing S or T on a parametric surface. N, the normal
vector, is perpendicular to the local surface. B, the binormal, is perpendicular to
both N and T, and like T, also lies on the surface. They can be thought of as forming
a coordinate system that is attached to surface, keeping the T and B vectors pointing
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Figure 20. Tangent Space Defined at Polygon Vertices

along the tangent of the surface, and N pointing away. If the surface is curved, the
tangent space orientation changes at every point on the surface.

In order to create a tangent space for a surface, it must be mapped parametri-
cally. But since this technique requires applying a 2D texture map to the surface, the
object must already be parametrically mapped in S and T. If the surface is already
mapped with a surface detail texture, the S and T coordinates of that mapping can
be reused. If it is a NURBS surface, the S and T values of that mapping can be used.
The only requirement for bump mapping to work is that the parametric mapping be
consistent on the polygon. Of course, to avoid “cracking” between polygons, the
mapping should be consistent across the entire surface.

The light source must be rotated into tangent space at each vertex of the poly-
gon. To find the tangent space vectors at a vertex, use the vertex normal for N, find
the tangent axis by finding the vector direction of increasing S in the object’s coor-
dinate system (the direction of the texture’s S axis in the object’s space). You could
use the texture’s T axis as the tangent axis instead if it is more convenient. Find B
by computing the cross product of N and T. The normalized values of these vectors
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can be used to create a rotation matrix:2
6664
Tx Ty Tz 0

Bx By Bz 0

Nx Ny Nz 0

0 0 0 1

3
7775

This matrix rotates the T vector, defined in object space, into the X axis of tan-
gent space, the B vector into the Y axis, and the normal vector into the Z axis. It
rotates a vector from object space into tangent space. If the T, B and N vectors are
defined in eye space, then it converts from eye space to tangent space. For all non-
planar surfaces, this matrix will differ at each vertex of the polygon.

Now you can apply this matrix to the light direction vector ~L, transforming it
into tangent space at each vertex. Use the transformed X and Y components of the
light vector to shift the texture coordinates at the vertex.

The resulting image, after shifting and subtracting is part of ~N � ~L, computed in
tangent space at every texel. In order to get the complete dot product, you need to
add in the rotated Z component of the light vector. This is done as a separate pass,
blending the results with the previous image, but adding, not subtracting this time.
It turns out that this third component is the same as adding in the Gouraud shaded
version of the polygon to the textured one.

So the steps for diffuse bump mapping are:

1. Render the polygon with the bump map textured on it. Since the bump map
modifies the polygoncolor, you can get the diffuse color you want by coloring
the polygon with kd.

2. Find N̂ , T̂ and B̂ at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the light vector L̂ into tangent space.

5. Use the rotated X and Y components of L̂ to shift the S and T texture coor-
dinates at each polygon vertex.

6. Re-render the bump map textured polygon using the shifted texture coordi-
nates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture.

9. Add this image to result.
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Figure 21. Shifting Bump Mapping to Create Normal Components

In order to improve accuracy, this process can be done using the accumulation
buffer. The bump mapped objects in the scene are rendered with the bump map, re-
rendered with the shifted bump map and accumulated with a negative weight, then
re-rendered again using Gouraud shading and no bump map texture, accumulated
normally.

The process can be extended to find bump mapped specular highlights. The pro-
cess is repeated, this time using the halfway vector ( ~H) instead of the light vector.

The halfway vector is computed by averaging the light and viewer vectors L̂+V̂
2

.
Here are the steps for finding specular bump mapping:

1. Render the polygon with the bump map textured on it.

2. Find N̂ , T̂ and B̂ at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the halfway vector Ĥ into tangent space.

5. Use the rotated X and Y components of Ĥ to shift the S and T texture coor-
dinates at each polygon vertex.
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6. Re-render the bump map textured polygon using the shifted texture coordi-
nates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture, this time use
Ĥ instead of L̂. Use a polygon whose color is equal to the specular color you
want, ks.

9. Now you have (Ĥ � N̂) , but you want (Ĥ � N̂)
n

To raise the result to a
power, you can load power function values into the texture color table, us-
ing glColorTableSGI with GL TEXTURE COLOR TABLE SGI as its
target, then enabling GL TEXTURE COLOR TABLE SGI. With the color
lookup table loaded and enabled, when you texture and blend the specular
contribution to the result, the texture filtering will raise the specular dot prod-
uct to the proper power. If you don’t have this extension, then you can process
the texel values on the host, or limit yourself to non-bump mapped specular
hightlights.

10. Add this image to result.

Combine the two images together to get both contributions in the image.

8.3.2 Going for higher quality

The previous technique renders the entire scene multiple times. If very high quality
is important, the texture itself can be processed separately, then applied to the scene
as a final step. The previous technique yields lower quality results where the texture
is less perpendicular to the line of sight in the image, due to the object geometry. If
the texture is processed before being applied to the image, we avoid this problem.

To process the texture separately, the vertices of the object must be mapped to
a square grid. The rest of the steps are the same, because the relationship between
light source and the vertex normals hasn’t changed. When the new texture map has
been created, copy it back into texture memory, and use it to render the object.

8.4 Blending

If you choose not to use the accumulation buffer, acceptable results can be obtained
by blending. Because of the subtraction step, you’ll have to remap the color values
to avoid negative results. Since the image values range from 0 to 1, the range of
values after subtraction can be -1 (0 - 1) to 1 (1 - 0).
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Scale and bias the bump map values to remap the results to the 0 to 1 range.
Once you’ve made all three passes, it is safe to remap the values back to their origi-
nal 0 to 1 range. This scaling and biasing, combined with less bits of color precision,
makes this method inferior to using the accumulation buffer.

8.4.1 Why does this work?

By shifting and subtracting the bump map, you’re finding the directional derivative
of the bump map’s height function.

By rotating the light vector into tangent space, then using the X and Y com-
ponents for the shift values, you’re finding the component of the perturbed normal
vector aligned with the light. In tangent space, the unperturbed normal is a unit
vector along the Z axis. When the shifted values are non-zero, they represent the
magnitude of the component of the perturbed normal in the direction of the light
source. Since the perturbed normal component is parallel to the light source vec-
tor (in tangent space), the dot product of this component with the light reduces to
a scale operation, which is what a texture map with the texture environment set to
modulate does.

Since the perturbed normal is relative to the smooth surface normal, we take
the smoothed normal contribution into account when we add in the Gouraud shaded
polygon.

There is an assumption that the perturbed normal is not much different from the
smoothed surface unit normal, so that the length of the perturbed normal is not much
different from one. If this assumption wasn’t true, we’d have to create and modulate
in an extra texture that would renormalize the perturbed normal. This can be done,
at the cost of an extra texturing pass, if more accuracy is needed.

8.4.2 Limitations

Although this technique does correctly bump map the surface efficiently, there are
limitations to its accuracy.

Bump map Sampling The bump map height function is not continuous, but is
sampled into the texture. The resolution of the texture affects how faithfully
the bump map is represented. Increasing the size of the bump map texture
can improve the sampling of the high frequency height components.

Texture Resolution The shifting and subtraction steps produce the directional
derivative. Since this is a forward differencing technique, the highest fre-
quency component of the bump map increases as the shift is made smaller. As
the shift is made smaller, more demands are made of the texture coordinate
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precision. The shift can become smaller than the texture filtering implemen-
tation can handle, leading to noise and aliases effects. A good starting point
is to size the shift components so their vector magnitude is a single texel.

Surface Curvature The tangent coordinate axes are different at each point on
a curved surface. This technique approximates this by finding the tangent
space transforms at each vertex. Texture mapping interpolates the different
shift values from each vertex across the polygon. For polygons with very dif-
ferent vertex normals, this approximation can break down. A solution would
be to subdivide the polygons until their vertex normals are parallel to within
some error limit.

Maximum Bump map Slope The bump map normals used in this technique are
good approximations if the bump map slope is small. If there are steep tan-
gents in the bump map, the assumption that the perturbed normal is length
one becomes inaccurate, and the hightlights appear too bright. This can be
corrected by creating a fourth pass, using a modulating texture derived from
the original bump map. Each value of the texel is one over the length of the

perturbed normal: 1=
q
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8.5 Choosing Material Properties

OpenGL provides a full lighting model to help produce realistic objects. The library
provides no guidance, however, on finding the proper lighting material parameters
to simulate specific materials. This section categorizes common materials, provides
some guidance for choosing representative material properties, and provides a table
of material properties for common materials.

8.5.1 Modeling Material Type

Material properties are modelled with the following OpenGL parameters:

GL AMBIENT How ambient light reflects from the material surface. This is an
RGBA color vector. The magnitude of each component indicates how much
the light of that component is being reflected.

GL DIFFUSE How diffuse reflection from light sources reflect from the material
surface. This is an RGBA color vector. The magnitude of each component
indicates how much the light of that component is being reflected.
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GL SPECULAR How specular reflection from a light source reflects from the ma-
terial. This is an RGBA color vector. The magnitude of each component in-
dicates how much the light of that component is being reflected.

GL EMISSION How much of what color is being emitted from this object. This
is an RGBA color vector. The magnitude of each component indicates how
much light of that component is glowing from the material. Since this param-
eter is only useful for glowing objects, we’ll ignore it in this section.

GL SHININESS How mirror-like the specular reflection is from this material.
This is a single integer. The larger the number, the more rapidly the specular
reflection drops off as the viewing angle diverges from the reflection vector.

For lighting purposes, materials can be described by the type of material, and
the smoothness of its surface. Material type is simulated by the relationship be-
tween color components of the GL AMBIENT, GL DIFFUSE and GL SPECULAR
parameters. Surface smoothness is simulated by the overall magnitude of the
GL AMBIENT, GL DIFFUSE and GL SPECULAR parameters, and the value of
GL SHININESS. As the magnitude of these components get closer to one, and the
GL SHININESS value increases, the material appears to have a smoother surface.

For lighting purposes, material type can be divided into four categories: di-
electrics, metals, composites, and other materials.

Dielectrics These are the most common category. These are non-conductive ma-
terials, which don’t have free electrons. The result is that dieletrics have low reflec-
tivity, and have a reflectivity that is independent of light color. Because they don’t
interact with the light much, dieletrics tend to be transparent. The ambient, diffuse
and specular colors tend to be the same.

Powdered dieletrics tend to look white because of the high surface area between
the dielectric and the surrounding air. Because of this high surface area, they also
tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As a result, metals are
opaque and tend to be very reflective, and their ambient, diffuse, and specular col-
ors tend to be the same. How the free electrons are excited by light at different
wavelengths determines the color of the metal. Materials like steel and nickel have
nearly the same response over all visible wavelengths, resulting in a grayish reflec-
tion. Copper and gold, on the other hand, reflect long wavelengths more strongly
than short ones, giving them their reddish and yellowish colors.

The color of light reflected from metals is also a function of incident and exiting
light directions. This can’t be modeled accurately with the OpenGL lighting model,
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compromising the metallic look of objects. However, a modified form of environ-
ment mapping (such as the OpenGL sphere mapping) can be used to approximate
the proper visual effect.

Composite Materials Common composites, like plastic and paint, are composed
of a dielectric binder with metal pigments suspended in them. As a result, they com-
bine the reflective properties of metals and dieletrics. Their specular reflection is
dielectric, their diffuse reflection is like metal.

Other Materials Other materials that don’t fit into the above categories are ma-
terials such as thin films, and other exotics.

8.5.2 Modeling Material Smoothness

As mentioned before, the apparent smoothness of a material is a function of how
strongly it reflects and the size of the specular highlight. This is affected by the over-
all magnitude of theGL AMBIENT, GL DIFFUSE andGL SPECULAR parameters,
and the value of GL SHININESS. Here are some heuristics that describe useful re-
lationships between the magnitudes of these parameters:

1. The spectral color of theGL AMBIENT andGL DIFFUSE parameters should
be the same.

2. The magnitudes of GL DIFFUSE and GL SPECULAR should sum to a value
close to one. This helps prevent color value overflow.

3. The value of GL SHININESS should increase as the magnitude of
GL SPECULAR approaches one.

No promise is made that these relationships, or the values in Table 3 will pro-
vide a perfect imitation of a given material. The empirical model used by OpenGL
emphasizes performance, not physical exactness.

For an excellent description of material properties, see [23] for more informa-
tion.
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Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS
Brass 0.329412 0.780392 0.992157 27.8974

0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0

Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0

Polished 0.25 0.4 0.774597 76.8
Bronze 0.148 0.2368 0.458561

0.06475 0.1036 0.200621
1.0 1.0 1.0

Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
1.0 1.0 1.0

Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0

Polished 0.2295 0.5508 0.580594 51.2
Copper 0.08825 0.2118 0.223257

0.0275 0.066 0.0695701
1.0 1.0 1.0

Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0

Polished 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991

0.0645 0.0903 0.208006
1.0 1.0 1.0

Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Table 3: Parameters for common materials
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Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS
Silver 0.19225 0.50754 0.508273 51.2

0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
1.0 1.0 1.0

Polished 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911

0.23125 0.2775 0.773911
1.0 1.0 1.0

Emerald 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55

Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95

Obsidian 0.05375 0.18275 0.332741 38.4
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82

Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922

Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55

Turquoise 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8

Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50

0.0 0.01 0.50
1.0 1.0 1.0

Black 0.02 0.01 0.4 10
Rubber 0.02 0.01 0.4

0.02 0.01 0.4
1.0 1.0 1.0
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9 Scene Realism

9.1 Motion Blur

This is probably one of the easiest effects to implement. Simply re-render a scene
multiple times, incrementing the position and/or orientation of an object in the
scene. The object will appear blurred, suggesting motion. This effect can be incor-
porated in the frames of an animation sequence to improve its realism, especially
when simulating high-speed motion.

The apparent speed of the object can be increased by dimming its blurred path.
This can be done by accumulating the scene without the moving object, setting the
value parameter to be larger than 1/n. Then re-render the scene with the moving
object, setting the value parameter to something smaller than 1/n. For example, to
make a blurred object appear 1/2 as bright, accumulated over 10 scenes, do the fol-
lowing:

1. Render the scene without the moving object, using
glAccum(GL LOAD,.5f)

2. Accumulate the scene 10 more times, with the moving object, using
glAccum(GL ACCUM,.05f)

Choose the values to ensure that the non-moving parts of the scene retain the
same overall brightness.

It’s also possible to use different values for each accumulation step. This tech-
nique could be used to make an object appear to be accelerating or decelerating. As
before, ensure that the overall scene brightness remains constant.

If you are using motion blur as part of a real-time animated sequence, and your
value is constant, you can improve the latency of each frame after the first n dra-
matically. Instead of accumulating n scenes, then discarding the image and starting
again, you can subtract out the first scene of the sequence, add in the new one, and
display the result. In effect, you’re keeping a “running total” of the accumulated
images.

The first image of the sequence can be “subtracted out” by rendering that image,
then accumulating it with glAccum(GL ACCUM, -1.f/n). As a result, each
frame only incurs the latency of drawing two scenes; adding in the newest one, and
subtracting out the oldest.

9.2 Depth of Field

OpenGL’s perspective projections simulate a pinhole camera; everything in the
scene is in perfect focus. Real lenses have a finite area, which causes only objects
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Figure 22. Jittered Eye Points

within a limited range of distances to be in focus. Objects closer or farther from the
camera are progressively more blurred.

The accumulation buffer can be used to create depth of field effects by jittering
the eye point and the direction of view. These two parameters change in concert,
so that one plane in the frustum doesn’t change. This distance from the eyepoint is
thus in focus, while distances nearer and farther become more and more blurred.

To create depth of field blurring, the perspective transform changes described
in the antialiasing section are expanded somewhat. This code modifies the frustum
as before, but adds in an additional offset. This offset is also used to change the
modelview matrix; the two acting together change the eyepoint and the direction of
view:

void frustum_depthoffield(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff,
GLdouble focus)

{
glFrustum(left - xoff * near/focus,

right - xoff * near/focus,
top - yoff * near/focus,
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bottom - yoff * near/focus,
near, far);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-xoff, -yoff);

}

The variables xoff and yoff now jitter the eyepoint, not the entire scene. The
focus variable describes the distance from the eye where objects will be in perfect
focus. Think of the eyepoint jittering as sampling the surface of a lens. The larger
the lens, the greater the range of jitter values, and the more pronounced the blurring.
The more samples taken, the more accurate a sampling of the lens. You can use the
jitter values given in the scene antialiasing section.

This function assumes that the current matrix is the projection matrix. It sets the
frustum, then sets the modelview matrix to the identity, and loads it with a transla-
tion. The usual modelview transformations could then be applied to the modified
modelview matrix stack. The translate would become the last logical transform to
be applied.

9.3 Reflections and Refractions

In both rendering and interactive computer graphics, substantial effort has been de-
voted to the modeling of reflected and refracted light. This is not surprising– almost
all the light perceived in the world is reflected. In this section, we will describe sev-
eral ways to create the effects of reflection and refraction using OpenGL. We will
begin with a very brief review of the relevant physics and give pointers to more
detailed descriptions.

From elementary physics, we know that the angle of reflection of a ray is equal
to the angle of incidence of the ray (Figure 23). This property is known as the Law
of Reflection.[10]. The reflected ray lies in the plane defined by the incident ray and
the surface normal.

Refraction is defined as the “change in the direction of travel as light passes
from one medium to another.”[10]. This change in direction is caused by the dif-
ference in the speed of light traveling through the two mediums. The refractivity of
a material is characterized by the index of refraction of the material, or the ratio of
the speed of light in the material to the speed of light in a vacuum.[10].

The direction of a light ray after it passes from one medium to another is com-
puted from the direction of the incident ray, the normal of the surface at the inter-
section of the incident ray, and the indices of refraction of the two materials. The
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Figure 23. Reflection and refraction. The image
on the top shows transmission from a medium with
a lower to a higher index of refraction; the image
on the bottom shows transmission from higher to
lower.

86



Programming with OpenGL: Advanced Rendering

Critical
Angle

Figure 24. Total Internal Reflection
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behavior is shown in Figure 23. The first medium through which the ray passes
has an index of refraction n1 and the second has an index of refraction n2. The an-
gle of incidence �1 is the angle between the incident ray and the surface normal.
The refracted ray forms the angle �2 with the normal. The incident and refracted
rays are coplanar. The relationship between the angle of incidence and the angle of
refraction is stated as Snell’s Law[10]:

n1 cos�1 = n2 cos�2 (1)

If n1 > n2 (light is passing from a more refractive material to a less refractive
material), past some critical angle the incident ray will be bent so far that it will not
cross the boundary. This phenomenon is known as total internal reflection and is
illustrated in Figure 24.[10]

When a ray hits a surface, some light is reflected off the surface and some is
transmitted. The weighting of the transmitted and reflected light is determined by
the Fresnel equations.

More details about reflection and refraction can be gleaned from most college
physics books. For more details on the reflection and transmission of light from a
computer graphics perspective, the reader may consult one of several general com-
puter graphics books or books on radiosity or ray tracing. The following books may
prove helpful:

� Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Syn-
thesis. Harcourt Brace & Company, 1993.

� Andrew S. Glassner. Principles of Digital Image Synthesis. Mogran Kauf-
man Publishers, Inc., 1995.

� Roy Hall. Illumination and Color in Computer Generated Imagery.
Springer-Verlag, 1989.

9.3.1 Planar Reflectors

In this section, we will discuss the modeling of planar reflective surfaces. Two
techniques are discussed: a technique which uses the stencil buffer to draw the re-
flected geometry in the proper location and a technique which uses texture mapping
to make an image of the reflected geometry which is then texture mapped onto the
reflective polygon. Both techniques construct the scene in two (or more) passes.

Planar Reflections and Refractions using the Stencil Buffer The effects of
specular reflection can be approximated by a two-pass technique using the stencil
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Figure 26. Mirror reflection of the scene
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buffer. During the first pass, we render the reflected image of the scene. During the
second pass, we render the non-reflected view of the scene, using the stencil buffer
to prevent the reflected image from being drawn over.

As an example, consider a model of a room with a mirror on one wall. We com-
pute the plane containing the mirror and define an eyepoint from which we wish to
render the scene. During the first pass, we place the eyepoint at the desired location
(using a gluLookAt command or something similar). Next, we draw the scene as
it looks reflected through the plane containing the mirror. This can be envisioned in
two ways, shown in Figures 25 and 26. In the first illustration, we reflect the view-
point. In the second illustration, we reflect the scene. The ways of considering the
problem are equivalent. We present both here since reflecting the viewpoint will
tie into the next section, but many people seem to find reflecting the scene more
intuitive. The sequence of steps for the first pass is as follows:

1. Initialize the modelview and projection matrices to the identity
(glLoadIdentity).

2. Set up a projection matrix using the glFrustum command.

3. Set up the “real” eyepoint at the desired position using a
gluLookAt(c)ommand (or something similar).

4. Reflect the viewing frustum (or the scene) through the plane containing the
reflector by computing a reflection matrix and combining it with the current
modelview or projection matrices using the glMultMatrix command.

5. Draw the scene.

6. Move the eyepoint back to its “real” position.

Objects drawn in the first pass look as they would when seen in the mirror, ex-
cept that we ignore the fact that the mirror may not fill the entire field of view. That
is to say, we imagine that the entire plane containing the mirror is reflective, but in
reality the mirror does not cover the entire plane. Parts of the scene may be drawn
which will not be visible. For example, the lowest box in the scene in Figure 26 is
drawn, but its reflection is not visible in the mirror. We’ll fix this in the second pass.

When we render from the reflected eyepoint, points on the plane through which
we reflect maintain the same position in eyespace as when we render from the origi-
nal eyepoint. For example, corners of the reflective polygon are in the same location
when viewed from the reflected eyepoint as from the original viewpoint. This may
seem more believable if one imagines that we are reflecting the scene, instead of
the eyepoint.

One implementation problem during the first pass is that we should not draw
the mirror or it will obscure our reflected image. This problem may be solved by
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backface culling, or by having the graphics application recognize the mirror (and
objects in the same plane as the mirror).

We may wish to produce a magnified or minified reflection by moving the re-
flected viewpoint backwards or forwards along its line of sight. If the position is
the same distance as the eye point from the mirror then an image of the same scale
will result.

We start the second pass by setting the eyepoint up at the “real” location. Next,
we draw the mirror polygon. We wish to mask out portions of the reflected scene
which we drew in the first pass, but which should not be visible. This is accom-
plished using the stencil buffer. First, we clear the stencil and depth buffers. Next,
we draw the mirror polygon into the stencil buffer and depth buffers, setting the
stencil value to 1. We may or may not wish to render the mirror polygon to the color
buffers at this point. If we do, the mirror must not be opaque or it will completely
obscure our reflected scene. We can give the appearance of a dirty, not purely re-
flective, mirror by drawing it using one of the transparency techniques discussed
in Section 10. After drawing the mirror, we configure the stencil test to pass where
ever the stencil buffer value is not equal to 1. We then clear the color buffers, which
erases all parts of the reflected scene except those in the mirror polygon. After the
clear, we disable the stencil test and draw the scene. The list of steps for the second
pass is:

1. Clear the stencil and depth buffers (glClear(GL COLOR BUFFER BIT
| GL DEPTH BUFFER BIT)).

2. Configure the stencil buffer such that a 1will be stored at each pixel touched
by a polygon:

glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glStencilFunc(GL_ALWAYS, 1, 1);
glEnable(GL_STENCIL_TEST);

3. Disable drawing into the color buffers (glColorMask(0, 0, 0, 0)).

4. Draw the mirror polygon.

5. Reconfigure the stencil test:

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_NOTEQUAL);

6. Draw the scene.

7. Disable the stencil test (glDisable(GL STENCIL TEST)).

The frame is now complete.
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Planar Reflections using Texture Mapping A technique similar to the stencil
buffer technique uses texture mapping. The first pass is identical to the first pass
of the previous technique: we draw the reflected scene. After drawing the scene,
we copy the image into a texture (using the glCopyTexImage2D command).
During the second pass, this texture is mapped onto the reflective polygon. The
sequence of steps for the second pass is as follows:

1. Position the viewer at the “real” eyepoint.

2. Draw the non-reflective objects in the scene.

3. Bind the texture containing the reflected image.

4. Draw the reflective object with the appropriate texture coordinates.

The texture coordinates at the vertices of the reflective object must be in the same
location as the vertices of the reflective object in the texture. These coordinates may
be computed by figuring the projection of the corners of the object into the view-
ing plane used to compute the reflection map (the command gluProject may
prove helpful). Alternately, the texture matrix can be loaded with the composite
modelview and projection matrices and postmultiplied by a scale of 1 divided by
the size in pixels of the region used to compute the texture. The texture coordinates
would then be the model coordinates of the vertices.

The texture mapping technique may be more efficient on some systems. Also,
we may be able to use a reflection texture during several frames (see below).

Interreflections Either the stencil technique or the texture mapping technique
may be used to model scenes with interreflections. Each algorithm uses additional
passes for each “bounce” that the light takes, stopping when the reflected image
added by the pass is too small to be significant.

Using the stencil technique, we draw the reflected image with the most
“bounces” from the viewpoint first. We compute the viewpoint for this pass by re-
peatedly reflecting the viewpoint through the reflective polygons. On each pass, we
draw the scene, move the viewpoint to the next position, and draw the scene using
the stencil buffer to mask the reflective polygons from the previous passes.

Using the texture technique, we first create textures for each of the reflective
objects. We then initialize the textures to some known value (choice of this value
will be discussed below). Next, we iterate over the primitives, drawing the scene
for each one and copying the results to the primitive’s reflection map as described
above. We repeat this process until we determine that the additional passes are not
having a significant effect.

The choice of the initial reflection map values can have an effect on the number
of passes required. The initial reflection value will generally appear as a smaller part
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of the picture on each of the passes. We stop the iteration when the initial reflection
is small enough that the viewer will not notice that it is not correct. By setting the
initial reflection to something reasonable, we can achieve this state earlier. A good
initial guess is to set the map to the average color of the scene. In a multiframe ap-
plication with moving objects or a moving viewpoint, we could leave the reflection
map with the contents from the previous frame. This use of previous results is one
of the advantages of the texture mapping technique.

9.3.2 Sphere Mapping

Sphere mapping is an implementation of environment mapping. Environment map-
ping is a computer graphics technique which uses a two-dimensional image (or im-
ages) containing the incident illumination from every direction at a given point.
When rendering, the light from the point is computed as a function of the outgo-
ing direction and the environment map. The outgoing direction is used to choose
one or more incoming directions, or points in the environment map, which are used
to compute the outgoing color.[35] In general, only one environment map point is
used for each outgoing ray, resulting in a perfect specular reflection.

In rendering, we often use a single environment map for an entire object by as-
suming that the single environment map is a reasonable approximation of the envi-
ronment map which would be computed at each point on the object. This approx-
imation is correct if the object is a sphere and the viewer and other objects in the
scene are infinitely far away. The approximation becomes less correct if the ob-
ject has interreflections (i.e., it’s not convex) and if the viewer and other objects are
not at infinity. In interactive polygonal rendering, we make the additional assump-
tion that the indices into the environment map may be computed at each vertex and
linearly interpolated over each polygon. In spite of these simplifying assumptions,
results in practice are generally quite good.

While rendering, we compute the outgoing direction as a function of the eye-
point and the normal at the surface. We can use environment maps to represent any
effect that depends only upon the viewing direction and the surface normal. These
effects include specular and directional diffuse reflection, refraction, and Phong
lighting. We will discuss several of these effects in the context of OpenGL’s sphere
mapping capability.

Sphere mapping is a type of environment mapping in which the irradiance im-
age is equivalent to that which would be seen in a perfectly reflective hemisphere
when viewed using an orthographic projection.[35] This concept is illustrated in
Figure 27. The sphere map is computed in the viewing plane. The width and height
of the plane are equal to the diameter of the sphere. Rays fired using the ortho-
graphic projection are shown in blue (dark gray). In the center of the sphere, the
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Figure 27. Creating a sphere map

ray reflects back to the viewer. Along the edges of the sphere, the rays are tangent
and go behind the sphere.

Note that since the sphere map computes the irradiance at a single point, the
sphere is infinitely small. Since the projection is orthographic, this implies that each
texel in the image is also infinitely small. In effect, we take the limit as the size of the
sphere (and the size of each texel) approaches 0. All of the rays along the outside of
the sphere will map to the same point directly behind the sphere in the environment.

Using a Sphere Map OpenGL provides a mechanism to generate s and t texture
coordinates at vertices based on the current normal and the direction to the eyepoint.
The generated coordinates are then used to index a sphere map image which has
been bound as a texture.

We denote the vector from the eye point to the vertex as u, normalized to u0.
Since the computation is performed in eye coordinates, the eye is located at the ori-
gin and u is equal to the location of the vertex. The current normal n is transformed
to eye coordinates, becoming n0. The reflected vector r can be computed as:

r = 2(n0 � u0)n0 � u0 (2)

We define:
m = 2

q
r2x + r2y + (rz + 1)2 (3)

Then the texture coordinates are calculated as:

s =
rx

m
+

1

2
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Figure 28. Sphere map coordinate generation

t =
ry

m
+

1

2

This computation happens internally to OpenGL in the texture coordinate genera-
tion step.

To use sphere mapping in OpenGL, the following steps are performed:

1. Bind the texture containing the sphere map

2. Set sphere mapping texture coordinate generation(glTexGen(GL S,
GL TEXTURE GEN MODE, GL SPHERE MAP)) and glTexGen(GL T,
GL TEXTURE GEN MODE, GL SPHERE MAP))

3. Enable texture coordinate generation (glEnable(TEXTURE GEN S) and
glEnable(TEXTURE GEN T))

4. Draw the object, providing correct normals on a per-face or per-vertex basis

Generating a Sphere Map for Specular Reflection Several techniques exist to
generate a specular sphere map. Two physical approaches are worth mentioning.
In the first approach, the user literally takes a picture of a reflective sphere. Figure
29 was generated in this fashion. This technique is problematic in that the camera is
visible in the reflection map. In the second approach, a fisheye lens approximates
the sphere mapping. The problem with this technique is that no fisheye lens can
provide the 360� field of view required for a correct result.
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Figure 29. Reflection map created
using a reflective sphere

A sphere map can also be generated programmatically. We consider the circle
of the environment map within the square texture to be a unit circle. For each point
(s; t) in the unit circle, we can compute a point p on the sphere:

px = s

py = t

pz =
q
1:0� p2x � p2y

Since we are dealing with a unit sphere, the normal at p is equal to p. Given the
vector e toward the eyepoint, we can compute the reflected vector r:

r = n � (n � e) � 2� e (4)

In OpenGL, we assuming that the eyepoint is looking down the negative z axis, so
e = (0; 0; 1). Equation 4 reduces to:

rx = nx � nz � 2
ry = ny � nz � 2

rz = nz � nz � 2� 1

The assumption that the e = (0; 0; 1) means that OpenGL’s sphere mapping is ac-
tually not view-independent. The implications of this assumption will be discussed
below with the other limitations of the sphere mapping technique.
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The rays are intersected with the environment to determine the irradiance. A
simple implementation of the algorithm is shown in the following pseudocode:

void gen_sphere_map(GLsizei width, GLsizei height, GLfloat pos[3],
GLfloat (*tex)[3])

{
GLfloat ray[3], color[3], p[3];
GLfloat s,t;
int i, j;

for (j = 0; j < height; j++) {
t = 2.0 * ((float)j / (float)(height-1) - .5);
for (i = 0; i < width; i++) {

s = 2.0 * ((float)i / (float)(width - 1) - .5);

if (s*s + t*t > 1.0) continue;

/* compute the point on the sphere (aka the normal) */
p[0] = s;
p[1] = t;
p[2] = sqrt(1.0 - s*s - t*t);

/* compute reflected ray */
ray[0] = p[0] * p[2] * 2;
ray[2] = p[1] * p[2] * 2;
ray[3] = p[2] * p[2] * 2 - 1;
fire_ray(pos, ray, tex[j*width + i]);

}
}

}

Note that we could easily optimize our routine such that the bounds oni in the inner
for loop were intelligently set based on j.

We have encapsulated the most interesting part of the computation inside the
fire ray routine. fire ray performs the ray/environment intersection given
the starting point and the direction of the ray. Using the ray, it computes the color
and puts the results into its third parameter (which is the appropriate location in the
texture map).

A naive implementation such as the one above will lead to sampling artifacts. In
reality, a texel in the image projects to a volume which should be intersected with the
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environment. To filter, we should choose several rays in this volume and combine
the results.

The intersection and color computation can be done in several ways. We may
use a model of the scene and a ray tracing package. Alternately, we can represent
the scene as six images which form the faces of a cube centered around the point for
which the sphere map is being created. The images represent what a camera with a
90

� field of view and a focal point at the center of the square would see in the given
direction. The six images may be generated with OpenGL or a rendering package,
or can be captured with a camera. Figure 30 shows six images which were acquired
using a camera. Once the six images have been acquired, the rays from the point are
intersected with the cube to provide the sphere map texel values. Figure 31 shows
the map generated from the cube faces in Figure 30.

An alternate implementation uses OpenGL’s texture mapping capabilities to
create the sphere map. The algorithm takes as input the six cube faces. It then draws
a tessellated hemisphere six times, mapping one of the faces into its correct location
during each pass. The image of the sphere becomes the sphere map. Texture coor-
dinates and the texture matrix combine to map the proper texels onto the sphere.
At the vertices on the tessellated sphere, the values are correct. The interpolation
between the vertices is not correct, but is generally a good approximation.

The texture mapping accelerated technique to generate sphere maps and the
CPU technique described above are implemented in an example program found on
the course web site.

Multipass Techniques and Interreflections Scenes containing two reflective
objects may be rendered using sphere maps created via a multipass algorithm. We
begin by creating an initial sphere map for each of the reflective objects in the scene.
Choice of initial values was discussed in detail in Section 26. Then we iterate over
the objects, recreating the sphere maps with the current sphere maps of the other
objects applied. The following pseudocode illustrates how this algorithm might be
implemented:

do {
for (each reflective object obj with center c) {
initialize the viewpoint to look along the axis (0, 0, -1)
translate the viewpoint to c
render the view of the scene (except for obj)
save rendered image as cube1
rotate the viewer to look along (0, 0, 1)
render the view of the scene
save rendered image as cube2
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Figure 30. Image cube faces captured at a cafe in Palo Alto, CA
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Figure 31. Sphere map generated from image cube faces in Figure 30
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rotate the viewer to look along (0, -1, 0)
render the view of the scene
save rendered image as cube3
rotate the viewer to look along (0, 1, 0)
render the view of the scene
save rendered image as cube4
rotate the viewer to look along (-1, 0, 0)
render the view of the scene
save rendered image as cube5
rotate the viewer to look along (1, 0, 0)
render the view of the scene
save rendered image as cube6
using the cube images, update the sphere map of obj

}
} while (sphere map has not converged)

Note that during the rendering of the scene, other reflective objects must have their
most recent sphere maps applied. Detection of convergence can be tricky. The sim-
plest technique is to iterate a certain number of times and assume the results will be
good. More sophisticated approaches can look at the change in the sphere maps for
a given pass, or compute the maximum possible change given the projected area
of the reflective objects. Once the sphere maps have been created we can draw the
scene from any viewpoint. If none of the objects are moving, the sphere maps for
each object can be created at program startup.

Other Sphere Mapping Techniques Sphere mapping may be used to approxi-
mate effects other the specular reflection. Any effect which is dependent only on
the surface normal can be approximated, including Phong shading and refractive
effects. We use our sphere map to store the outgoing color and intensity as a func-
tion of the normal. When computing our specular sphere map, this color was de-
termined by firing a ray which had been reflected about the normal. To compute a
different type of sphere map, we determine the color using a different method. For
example, to create a Phong lighting map we can take the dot product of the normal
direction and the direction to the light source.

Limitations of Sphere Mapping Although sphere mapping is generally convinc-
ing, it is not generally correct. Most of the artifacts come from the fact that the
sphere map is generated at a single point and then applied over a large number of
points. Objects with interreflections cannot be handled correctly. If reflected ob-
jects are close to the reflective object, their reflections should appear differently
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when viewed from different points on the reflector. Using sphere maps, this will
not happen. Sphere mapping results are only correct if we assume that all the re-
flective objects are infinitely far from the reflective object.

Fixing the eye point along the vector (0; 0; 1)also leads to incorrect results. The
same normal in eyespace will always map to the same location in the sphere map. A
normal which points directly at the eyepoint maps to the center of the sphere map.
A normal which points directly away from the user maps to the circle around the
sphere map. Two important advantages of this simplification are that it significantly
reduces the cost of computing r and that it ensures that the parts of the sphere map
which have the best filtering are mapped to the primitives which face the user. In
general, primitives which face the user will cover large areas in screen space and
will be the focus of the user’s attention.

Interpolation of the texture coordinates also leads to artifacts. Texture coordi-
nates are computed at the vertices and linearly interpolated across the polygon. Un-
fortunately, the sphere map is not in a linear space, so this interpolation is not cor-
rect. Additionally, the linear interpolation will not take into account the fact that
the points at the edge of the circle all map to the same location. Coordinates may
be interpolated within the circle of the sphere map when they should be interpolated
across the boundary.

9.4 Creating Shadows

Shadows are an important way to add realism to a scene. There are a number of
trade-offs possible when rendering a scene with shadows. Just as with lighting,
there are increasing levels of realism possible, paid for with decreasing levels of
rendering performance.

Shadows are composed of two parts, the umbra and the penumbra. The umbra
is the area of a shadowed object that isn’t visible from any part of the light source.
The penumbra is the area of a shadowed object that can receive some, but not all of
the light. A point source light would have no penumbra, since no part of a shadowed
object can receive part of the light.

Penumbras form a transition region between the umbra and the lighted parts of
the object; they vary as function of the geometry of the light source and the shad-
owing object. Since shadows tend to have high contrast edges, They are more un-
forgiving with respect to aliasing artifacts and other rendering errors.

Although OpenGL doesn’t support shadows directly, there are a number of
ways to implement them with the library. They vary in difficulty to implement, and
quality of results. The quality varies as a function of two parameters. The complex-
ity of the shadowing object, and the complexity of the scene that is being shadowed.
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9.4.1 Projection Shadows

An easy-to-implement type of shadow can be created using projection transforms
[46]. An object is simply projected onto a plane, then rendered as a separate prim-
itive. Computing the shadow involves applying a orthographic or perspective pro-
jection matrix to the modelview transform, then rendering the projected object in
the desired shadow color.

Here is the sequence needed to render an object that has a shadow cast from a
directional light on the z axis down onto the x, y plane:

1. Render the scene, including the shadowing object in the usual way.

2. Set the modelview matrix to identity, then call glScalef(1.f, 0.f,
1.f).

3. Make the rest of the transformation calls necessary to position and orient the
shadowing object.

4. Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it
into the object’s shadow. This simple example can be expanded by applying ad-
ditional transforms before the glScalef call to position the shadow onto the ap-
propriate flat object. Applying this shadow is similar to decaling a polygon with an-
other co-planar one. Depth buffering aliasing must be taken into account. To avoid
depth aliasing problems, the shadow can be slightly offset from the base polygon
using polygon offset, the depth test can be disabled, or the stencil buffer can be used
to ensure correct shadow decaling. The best approach is probably depth buffering
with polygon offset. This way the depth buffering will minimize the amount of clip-
ping you’ll have to do to the shadow.

The direction of the light source can be altered by applying a shear transform af-
ter the glScalef call. This technique is not limited to directional light sources. A
point source can be represented by adding a perspective transform to the sequence.

Although you can construct an arbitrary shadow from a sequence of transforms,
it might be easier to just construct a projection matrix directly. The function below
takes an arbitrary plane, defined as a plane equation in Ax + By + Cz + D = 0 form,
and a light position in homogeneous coordinates. If the light is directional, the w
value should be 0. The function concatenates the shadow matrix onto the top ele-
ment of the current matrix stack.
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static void
myShadowMatrix(float ground[4], float light[4])
{

float dot;
float shadowMat[4][4];

dot = ground[0] * light[0] +
ground[1] * light[1] +
ground[2] * light[2] +
ground[3] * light[3];

shadowMat[0][0] = dot - light[0] * ground[0];
shadowMat[1][0] = 0.0 - light[0] * ground[1];
shadowMat[2][0] = 0.0 - light[0] * ground[2];
shadowMat[3][0] = 0.0 - light[0] * ground[3];

shadowMat[0][1] = 0.0 - light[1] * ground[0];
shadowMat[1][1] = dot - light[1] * ground[1];
shadowMat[2][1] = 0.0 - light[1] * ground[2];
shadowMat[3][1] = 0.0 - light[1] * ground[3];

shadowMat[0][2] = 0.0 - light[2] * ground[0];
shadowMat[1][2] = 0.0 - light[2] * ground[1];
shadowMat[2][2] = dot - light[2] * ground[2];
shadowMat[3][2] = 0.0 - light[2] * ground[3];

shadowMat[0][3] = 0.0 - light[3] * ground[0];
shadowMat[1][3] = 0.0 - light[3] * ground[1];
shadowMat[2][3] = 0.0 - light[3] * ground[2];
shadowMat[3][3] = dot - light[3] * ground[3];

glMultMatrixf((const GLfloat*)shadowMat);
}

Projection Shadow Trade-offs This method of shadow volume is limited in a
number of ways. First, it’s very difficult to use this method to shadow onto anything
other than flat surfaces. Although you could project onto a polygonal surface, by
carefully casting the shadow onto the plane of each polygon face, you would then
have to clip the result to the polygon’s boundaries. Sometimes depth buffering can
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do the clipping for you; casting a shadow to the corner of a room composed of just
a few perpendicular polygons is feasible with this method.

The other problem with projection shadows is controlling the shadow’s color.
Since the shadow is a squashed version of the shadowing object, not the polygon
being shadowed, there are limits to how well you can control the shadow’s color.
Since the normals have been squashed by the projection operation, trying to prop-
erly light the shadow is impossible. A shadowed polygon with an interpolated color
won’t shadow correctly either, since the shadow is a copy of the shadowing object.

9.4.2 Shadow Volumes

This technique treats the shadows cast by objects as polygonal volumes. The stencil
buffer is used to find the intersection between the polygons in the scene and the
shadow volume [26].

The shadow volume is constructed from rays cast from the light source, inter-
secting the vertices of the shadowing object, then continuing outside the scene. De-
fined in this way, the shadow volumes are semi-infinite pyramids, but the same re-
sults can be obtained by truncating the base of the shadow volume beyond any ob-
ject that might be shadowed by it. This gives you a polygonal surface, whose inte-
rior volume contains shadowed objects or parts of shadowed objects. The polygons
of the shadow volume are defined so that their front faces point out from the shadow
volume itself.

The stencil buffer is used to compute which parts of the objects in the scene
are in the shadow volume. It uses a non-zero winding rule technique. For every
pixel in the scene, the stencil value is incremented as it crosses a shadow boundary
going into the shadow volume, and decrements as it crosses a boundary going out.
The stencil operations are set so this increment and decrement only happens when
the depth test passes. As a result, pixels in the scene with non-zero stencil values
identify the parts of an object in shadow.

Since the shadow volume shape is determined by the vertices of the shadowing
object, it’s possible to construct a complex shadow volume shape. Since the stencil
operations will not wrap past zero, it’s important to structure the algorithm so that
the stencil values are never decremented past zero, or information will be lost. This
problem can be avoided by rendering all the polygons that will increment the stencil
count first; i.e. the front facing ones, then rendering the back facing ones.

Another issue with counting is the position of the eye with respect to the shadow
volume. If the eye is inside a shadow volume, the count of objects outside the
shadow volume will be -1, not zero. This problem is discussed in more detail in
the shadow volume trade-offs section. The algorithm takes this case into account
by initializing the stencil buffer to 1 if the eye is inside the shadow volume.
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Figure 32. Shadow Volume

Here’s the algorithm for a single shadow and light source:

1. The color buffer and depth buffer are enabled for writing, and depth testing
is enabled.

2. Set attributes for drawing in shadow. Turn off the light source.

3. Render the entire scene.

4. Compute the polygons enclosing the shadow volume.

5. Disable the color and depth buffer for writing, but leave the depth test en-
abled.

6. Clear the stencil buffer to 0 if the eye is outside the shadow volume, or 1 if
inside.

7. Set the stencil function to always pass.

8. Set the stencil operations to increment if the depth test passes.

9. Turn on back face culling.

10. Render the shadow volume polygons.

11. Set the stencil operations to decrement if the depth test passes.
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12. Turn on front face culling.

13. Render the shadow volume polygons.

14. Set the stencil function to test for equality to 0.

15. Set the stencil operations to do nothing.

16. Turn on the light source.

17. Render the entire scene.

When the entire scene is rendered the second time, only pixels that have a sten-
cil value equal to zero are updated. Since the stencil values were only changed
when the depth test passes, this value represents how many times the pixel’s projec-
tion passed into the shadow volume minus the number of times it passed out of the
shadow volume before striking the closest object in the scene (after that the depth
test will fail). If the shadow boundary was crossed an even number of times, the
pixel projection hit an object that was outside the shadow volume. The pixels out-
side the shadow volume can therefore “see” the light, which is why it is turned on
for the second rendering pass.

For a complicated shadowing object, it make sense to find its silhouette ver-
tices, and use only these for calculating the shadow volume. These vertices can be
found by looking for any polygon edges that either (1) surround a shadowing ob-
ject composed of a single polygon, or (2) is shared by two polygons, one which
is facing towards the light source, one which is facing away. You can determine
which direction the polygons are facing by taking a dot product of the polygon’s
facet normal with the direction of the light source, or by a combination of selection
and front/back face culling

Multiple Light Sources The algorithm can be easily extended to handle multi-
ple light sources. For each light source, repeat the second pass of the algorithm,
clearing the stencil buffer to “zero”, computing the shadow volume polygons, and
rendering them to update the stencil buffer. Instead of replacing the pixel values
of the unshadowed scenes, choose the appropriate blending function and add that
light’s contribution to the scene for each light. If more color accuracy is desired,
use the accumulation buffer.

The accumulation buffer can also be used with this algorithm to create soft shad-
ows. Jitter the light source position and repeat the steps described above for multi-
ple light sources.
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Shadow Volume Trade-offs Shadow volumes can be very efficient if the shad-
owing object is simple. Difficulties occur when the shadowing object is a complex
shape, making it difficult to compute a shadow volume. Ideally, the shadow volume
should be generated from the vertices along the silhouette of the object, as seen from
the light. This isn’t a trivial problem for complex shadowing objects.

Since the stencil count for objects in shadow depends on whether the eyepoint
is in the shadow or not, making the algorithm independent of eye position is more
difficult. One solution is to intersect the shadow volume with the view frustum, and
use the result as the shadow volume. This can be a non-trivial CSG operation.

In certain pathological cases, the shape of the shadow volume may cause a sten-
cil value underflow even if you render the front facing shadow polygons first. To
avoid this problem, you can choose a “zero” value in the middle of the stencil val-
ues representable range. For an 8 bit stencil buffer, you could choose 128 as the
“zero” value. The algorithm would be modified to initialize and test for this value
instead of zero. The “zero” should be initialized to “zero” + 1 if the eye is inside
the shadow volume.

Shadow volumes will test your polygon renderer’s handling of adjacent poly-
gons. If there are any rendering problems, such as “double hits”, the stencil count
can get messed up, leading to grossly incorrect shadows.

9.4.3 Shadow Maps

Shadow maps use the depth buffer and projective texture mapping to create a screen
space method for shadowing objects [39, 44]. Its performance is not directly depen-
dent on the complexity of the shadowing object.

The scene is transformed so that the eyepoint is at the light source. The objects
in the scene are rendered, updating the depth buffer. The depth buffer is read back,
then written into a texture map. This texture is mapped onto the primitives in the
original scene, as viewed from the eyepoint, using the texture transformation ma-
trix, and eye space texture coordinate generation. The value of the texture’s texel
value, the texture’s “intensity”, is compared against the texture coordinate’s r value
at each pixel. This comparison is used to determine whether the pixel is shadowed
from the light source. If the r value of the texture coordinate is greater than texel
value, the object was in shadow. If not, it was lit by the light in question.

This procedure works because the depth buffer records the distances from the
light to every object in the scene, creating a shadow map. The smaller the value, the
closer the object is to the light. The transform and texture coordinate generation is
chosen so that x, y, and z locations of objects in the scene map to the s and t coordi-
nates of the proper texels in the shadow texture map, and to r values corresponding
to the distance from the light source. Note that the r values and texel values must
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be scaled so that comparisons between them are meaningful.
Both values measure the distance from an object to the light. The texel value

is the distance between the light and the first object encountered along that texel’s
path. If the r distance is greater than the texel value, this means that there is an object
closer to the light than this one. Otherwise, there is nothing closer to the light than
this object, so it is illuminated by the light source. Think of it as a depth test done
from the light’s point of view.

Shadow maps can almost be done with the OpenGL 1.1 implementation.
What’s missing is the ability to compare the texture’s r component against the cor-
responding texel value. There is an OpenGL extension, SGIX shadow, that per-
forms the comparison. As each texel is compared, the results set the fragment’s
alpha value to 0 or 1. The extension can be described as using the shadow texture/r
value test to mask out shadowed areas using alpha values.

Shadow Map Trade-offs Shadow maps have an advantage, being an image space
technique, that they can be used to shadow any object that can be rendered. You
don’t have to find the silhouette edge of the shadowing object, or clip the object
being shadowed. This is similar to the argument made for depth buffering vs. an
object-based hidden surface removal technique, such as depth sort.

The same image space drawbacks are also true. Since the shadow map is point
sampled, then mapped onto objects from an entirely different point of view, alias-
ing artifacts are a problem. When the texture is mapped, the shape of the origi-
nal shadow texel doesn’t necessarily map cleanly to the pixel. Two major types
of artifacts result from these problems; aliased shadow edges, and self-shadowing
“shadow acne” effects.

These effects can’t be fixed by simply averaging shadow map texel values.
These values encode distances. They must be compared against r values, and gen-
erate a boolean result. Averaging the texel values would result in distance values
that are simply incorrect. What needs to be blended are the boolean results of the r
and texel comparison. The SGIX shadow extension does this, blending four ad-
jacent comparison results to produce an alpha value. Other techniques can be used
to suppress aliasing artifacts:

1. Increase shadow map/texture spatial resolution. Silicon Graphics supports
off-screen buffers on some systems, called a p-buffer, whose resolution is not
tied to the window size. It can be used to create a higher resolution shadow
map.

2. Jitter the shadow texture by modifying the projection in the texture transfor-
mation matrix. The r/texel comparisons can then be averaged to smooth out
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shadow edges.

3. Modify the texture projection matrix so that the r values are biased by a small
amount. Making the r values a little smaller is equivalent to moving the ob-
jects a little closer to the light. This prevents sampling errors from causing a
curved surface to shadow itself. This r biasing can also be done with polygon
offset.

One more problem with shadow maps should be noted. It is difficult to use the
shadow map technique to cast shadows from a light surrounded by objects. This is
because the shadow map is created by rendering the entire scene from the light’s
point of view. It’s not always possible to come up with a transform to do this, de-
pending on the geometric relationship between the light and the objects in the scene.

9.4.4 Soft Shadows by Jittering Lights

Most shadow techniques create a very “hard” shadow edge; surfaces in shadow, and
surfaces being lit are separated by a sharp, distinct boundary, with a large change in
surface brightness. This is an accurate representation for distant point light sources,
but is unrealistic for many real-world lighting environments.

An accumulation buffer can let you render softer shadows, with a more gradual
transition from lit to unlit areas. These soft shadows are a more realistic represen-
tation of area light sources, which create shadows consisting of an umbra (where
none of the light is visible) and penumbra (where part of the light is visible).

Soft shadows are created by rendering the shadowed scene multiple times, and
accumulating into the accumulation buffer. Each scene differs in that the position of
the light source has been moved slightly. The light source is moved around within
the volume where the physical light being modelled would be emitting energy. To
reduce aliasing artifacts, it’s best to move the light in an irregular pattern.

Shadows from multiple, separate light sources can also be accumulated. This
allows the creation of scenes containing shadows with non-trivial patterns of light
and dark, resulting from the light contributions of all the lights in the scene.

9.4.5 Soft Shadows Using Textures

Heckbert and Herf describe an alternative technique for rendering soft shadows by
creating a texture for each partially shadowed polygon in the scene [24]. This tex-
ture represents the effect of the scene’s lights on the polygon.

For each shadowed polygon, an image is rendered which represents the contri-
bution of each light source for each shadowed polygon, and that image is used as a
texture in the final scene containing the shadowed polygon. Shadowing polygons
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are projected onto the shadowed polygon from the direction of the sample point on
the light source. The accumulation buffer is used to average the results of that pro-
jection for several points (typically 16) on the polygon representing the light source.

The algorithm finds a single quadrilateral that tightly bounds the shadowed
polygon in the plane of that polygon. The quad and the sample point on the light
source are used to create a viewing frustum that projects intervening polygons onto
the shadowed polygon. Multiple shadow textures per polygon are avoided because
each “lighting” frustum shares the base quadrilateral, and so the shadowing results
can all be accumulated into the same texture.

A pass is made for each sample point on each light source. The color buffer is
cleared to the color of the light, and then the projected polygons are drawn with the
ambient color of the scene. The resulting image is then added into the accumulation
buffer. The final accumulation buffer result is copied into texture memory and is
applied during the final scene as the polygon’s texture.

Care must be taken to choose an image resolution for the shadow texture that
looks acceptable on the final polygon. Depth testing and texturing can be disabled
to improve performance during the projection pass. It may be necessary to save
the accumulation buffer at intervals and average the results if the contribution of a
shadow pass exceeds the resolution of the accumulation buffer.

A paper describing this technique in detail and other information on shadow
generation algorithms is available at Heckbert and Herf’s website [25].

10 Transparency

Transparent objects are common in everyday life and the addition of them can add
significant realism to generated scenes. In this section, we will describe several
techniques used to render transparent objects in OpenGL.

10.1 Screen-Door Transparency

One of the simpler transparency techniques is known as screen-door transparency.
Screen-door transparency uses a bit mask to cause certain pixels not be rasterized.
The percentage of bits in the bitmask which are 1 is equivalent to the transparency
of the object.[14].

In OpenGL, screen-door transparency is implemented using polygon stippling.
The command glPolygonStipple defines a 32x32 polygon stipple pattern.
When stippling is enabled (using glEnable(GL POLYGON STIPPLE) ) the
low-order x and y bits of the screen coordinates of each fragment are used to in-
dex into the stipple pattern. If the corresponding bit of the stipple pattern is 0, the
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fragment is rejected. If the bit is 1, rasterization continues.
Since the lookup into the stipple pattern takes place in screen space, a different

pattern must be used for objects which overlap, even if the transparency of the ob-
jects is the same. Were the same stipple pattern to be used, the same pixels in the
frame buffer would be drawn for each object. Of the transparent objects, only the
last (or the closest, if depth buffering were enabled) would be visible.

The biggest advantage of screen-door transparency is that the objects do not
need to be sorted. Also, rasterization may be faster on some systems using the
screen-door technique than using other techniques such as alpha blending. Since
the screen-door technique operates on a per-fragment basis, the results will not look
as smooth as if another technique had been used.

10.2 Alpha Blending

To draw semi-transparent geometry, the most common technique is to use alpha
blending. In this technique, the alpha value for each fragment drawn reflects the
transparency of that object. Each fragment is combined with the values in the frame
buffer using the blending equation

Cout = Csrc �Asrc + (1� Asrc) � Cdst (5)

Here, Cout is the output color which will be written to the frame buffer. Csrc

and Asrc are the source color and alpha, which come from the fragment.
Cdst is the destination color, which is the color value currently in the frame
buffer at the location. This equation is specified using the OpenGL command
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA). Blending
is then enabled with glEnable(GL BLEND).

A common mistake when implementing alpha blending is to assume that it re-
quires a frame buffer with an alpha channel. Note that the alpha values in the frame
buffer (GL DST ALPHA) are not actually used, so no alpha buffer is required.

For the alpha blending technique to work correctly, the transparent primitives
must be drawn in back to front order and must not intersect. To convince ourselves
of this, we can consider two objects obj1 and obj2 with colorsC1 andC2 and alphas
A1 and A2. Assume that obj2 is in front of obj1 and that the frame buffer has been
cleared to black. If obj2 is drawn first, obj1 will not be drawn at all unless depth
buffering is disabled. Turning off depth buffering generally is a bad idea, but even if
we could turn it off, the results would still be incorrect. After obj2 had been drawn,
the frame buffer color would be C2 � A2. After obj1 had been drawn, the color
would be C1 � A1 + (1 � A1) � C2 � A2. If obj1 had been drawn first, the value
would be C2 � A2 + (1 � A2) � C2 � A2. Sorting will be discussed in detail in
Section 10.3.
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The alpha channel of the fragment can be set in several ways. If lighting is
not being used, then the alpha value can be set using a 4 component color com-
mand such as glColor4fv. If lighting is enabled, then the ambient and diffuse
reflectance coefficients of the material should correspond to the translucency of the
object.

If texturing is enabled, the source of the alpha channel is controlled by the tex-
ture internal format, the texture environment function, and the texture environment
constant color. The interaction is described in more detail in the glTexEnv man
page. Many intricate effects can be implemented using alpha values from textures.

10.3 Sorting

The sorting step can be complicated. The sorting should be done in eye coordinates,
so it is necessary to transform the geometry to eye coordinates in some fashion.
If translucent objects interpenetrate, the individual triangles should be sorted and
drawn from back to front. Ideally, polygons which interpenetrate should be tessel-
lated along their intersections, sorted, and drawn independently, but this is typically
not required to get good results. Frequently only crude or perhaps no sorting at all
gives acceptable results.

If there is a single transparent object, or multiple transparent objects which do
not overlap in screen space (i.e. each screen pixel is touched by at most one of the
transparent objects), a shortcut may be taken under certain conditions. If the objects
are closed, convex, and viewed from the outside, culling may be used to draw the
backfacing polygons prior to the front facing polygons. The steps are as follows:

1. Configure culling to eliminate front facing polygons:
glCullFace(FRONT)

2. Enable backface culling: glEnable(GL CULL FACE)

3. Draw the object

4. Configure culling to eliminate backfacing polygons: glCullFace(BACK)

5. Draw the object again

6. Disable culling: glDisable(GL CULL FACE)

We assume that the vertices of the polygons of the object are arranged in a counter-
clockwise direction when the object is viewed from the outside. If necessary, we can
specify that polygons oriented clockwise should be considered front-facing with the
glFrontFace command.

Drawing depth buffered opaque objects mixed with translucent objects takes
somewhat more care. The usual trick is to draw the background and opaque ob-
jects first in any order with depth testing enabled, depth buffer updates enabled, and
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blending disabled. Next, the translucent objects are drawn from back to front with
blending enabled, depth testing enabled but depth buffer updates disabled so that
translucent objects do not occlude each other.

10.4 Using the Alpha Function

The alpha function is used to discard fragments based upon a comparison of the
fragment’s alpha value with a reference value. The comparison function and the
reference value are specified with the command glAlphaFunc. The alpha test is
enabled with glEnable(GL ALPHA TEST).

The alpha test is frequently used to draw complicated geometry using texture
maps on polygons. For example, a tree can be drawn as a picture of a tree on a
single rectangle. The parts of the texture which are part of the tree have an alpha
value of 1; parts of the texture which are not part of the tree have an alpha value
of 0. This technique is often combined with billboarding (Section 5.7), in which a
rectangle is turned to perpetually face the eyepoint.

Like polygon stippling, the alpha function discards fragments instead of draw-
ing them into the frame buffer. Therefore sorting of the primitives is not necessary
(unless some other mode like alpha blending is enabled). The disadvantage is that
pixels must be completely opaque or completely transparent.

10.5 Using Multisampling

On systems which support the multisample extension (SGIS multisample), the
per-fragment sample mask may be used to change the transparency of an object.

One technique involves GL SAMPLE ALPHA TO MASK SGIS. If transparent
objects in a scene do not overlap, GL SAMPLE ALPHA TO MASK SGIS may be
used. This parameter causes the alpha of a fragment to be mapped to a sample mask
which will be bitwise anded with the fragment’s mask. The value of the generated
sample mask is implementation-dependent and is a function of the pixel location
and the fragment’s alpha value. If two objects were drawn at the same location with
the same transparency, the sample mask would be the same and the same samples
would be touched. If two objects were drawn at the same location with different
transparencies, results may or may not be acceptable.

The simplest technique is to use theglSampleMaskSGIS command to set the
value of the GL SAMPLE MASK SGIS. This value is used to generate a temporary
mask which is bitwise anded with the fragment’s mask. Again, results may not be
correct if transparent objects overlap.

Currently, SGIS multisample is supported by Silicon Graphics and
Hewlett Packard.
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11 Natural Phenomena

The are a large number of naturally occurring phenomena such as smoke, fire and
clouds which are challenging to render at interactive rates with any semblance of
realism. A common solution is to reduce the requirement for complex geometry
by using textures. Many of the techniques use a combination of geometry and tex-
ture which vary as a function of time or other parameters such as distance from the
viewer.

11.1 Smoke

Modelling smoke potentially requires some sophisticated physics, but surprisingly
realistic images can be generated using fairly simple techniques. One such tech-
nique involves capturing a 2D cross section or image of a puff of smoke with both
luminance and alpha channels for the image. The image can then be texture mapped
onto a quadrilateral and blended into the scene. The billboard techniques outlined in
Section 5.7 can be used to ensure that the image is transformed to face the user. Us-
ing a GL MODULATE texture environment, the color and alpha value of the quadri-
lateral can be used to control the color and transparency of the smoke in order to
simulate different types of smoke. For example, smoke from an oil fire would be
dark and opaque, whereas steam from a flare stack would be much lighter in color.

The size, position, orientation, and opacity of the quadrilateral can be varied as
a function of time to simulate the puff of smoke enlarging, drifting and dissipating
over time.

More realistic effects can be achieved using volumetric techniques. Instead of
a 2D image, a 3D volumetric image of smoke is rendered using the algorithms de-
scribed in Section 13. Again, dynamics can be simulated by varying the position,
size and translucency of the volume. More complex dynamics can be simulated by
applying local distortions or deformations to the texture coordinates of the volume
lattice rather than simply applying uniform transformations. The volumetric shad-
ing technique described in Section 13.11 can be used to illuminate the smoke.

There are many procedural techniques which can be used to synthesize both 2D
and 3D textures [13].

11.2 Vapor Trails

Vapor trails emanating from a jet or a missile can be rendered using methods similar
to the painting technique described in Section 6.3. A circular, wispy 2D image such
as that used in the preceding section is used to generate the vapor pattern over some
unit interval by rendering it as a billboard. A texture image consisting only of alpha
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Figure 33. Vapor Trail

values is used to modulate the alpha values of a white billboard polygon. The trajec-
tory of the airborne object is painted using multiple overlapping copies of the bill-
board as shown in Figure 33. Over time the individual billboards gradually enlarge
and fade. The program for rendering a trail is largely an exercise in maintaining
an active list of the position, orientation and time since creation for each billboard
used to paint the trail. As each billboard polygon exceeds a threshold transparency
value it can be discarded from the list.

11.3 Fire

The simplest techniques for rendering fire involve applying static images and movie
loops as textures to billboards.

A static image of fire can be constructed from a noise texture; 16 describes how
to make a noise texture using OpenGL. The weights for different frequency com-
ponents should be chosen to reflect the spectral structure of fire, and turbulence can
also be incorporated effectively into the texture. The texture is mapped to a bill-
board polygon. Several such textures, composited together, can create the appear-
ance of multiple layers of intermingling flames. Finally, the texture coordinates
may be distorted vertically to simulate the effect of flames rising and horizontally
to mimic the effect of winds.

A sequence of fire textures can be played as an animation. The abrupt manner in
which fire moves and changes intensity can be modelled using the same turbulence

116



Programming with OpenGL: Advanced Rendering

techniques used to create the fire texture itself. The speed of the animation play-
back, as well as the distortion applied to the texture coordinates of the billboard,
might be controlled using a turbulent noise function.

11.4 Clouds

Clouds, like smoke, have an amorphous structure without well defined surfaces and
boundaries. In recent times, computationally intensive physical modelling tech-
niques have given way to simplified mathematical models which are both compu-
tationally tractable and aesthetically pleasing [16, 13].

The main idea behind these techniques involves generating a realistic 2D or 3D
texture function t using a fractal or spectral based function. Gardner suggests a
Fourier-like sum of sine waves with phase shifts

t(x; y) = k

nX
i=1

(ci sin(fxix+ pxi) + t0)

nX
i=1

(ci sin(fyiy + pyi) + t0)

with the relationships

fxi+1 = 2fxi

fyi+1 = 2fyi

ci+1 = :707ci

pxi =
�

2
sin(fyi�1y); i > 1

pyi =
�

2
sin(fxi�1x); i > 1

Care must be taken using this technique to choose values to avoid a regular pattern
in the texture. Alternatively, texture generation techniques described in Section 16
can be used.

Either of these techniques can be used to produce a 2D texture which can be
used to render a cloud layer. A cloud layer is simulated by drawing a large textured
polygon in the sky at a fixed altitude. A luminance cloud texture can be blended
with a blue polygon and a white constant texture environment color.

Some of the dynamic aspects of clouds can be simulated by vary parameters
over time. Cloud development can be simulated by scaling and biasing the lumi-
nance values in the texture. Drifting can be simulated by moving the texture pattern
across the sky, i.e., transforming the texture coordinates.

Gardner also suggests using ellipsoids to simulate 3D cloud structures. The
texture data is generated using a 3-dimensional extension of the Fourier synthesis
method outlined above and the textures are applied with increasing translucency
near the boundary of the ellipsoid. These 3D textures can also be combined the
volume rendering techniques described in Section 13 to produce 3D cloud images.
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11.5 Water

A large body of research has been done into modelling, shading, and reproducing
optical effects of water [49, 34, 15], yet most methods still present a large compu-
tation burden to achieve a realistic image. Nevertheless, it is possible to borrow
from these approaches and achieve modest results while retaining interactive per-
formance [28, 13].

The dynamics of wind and waves can be simulated using procedural models
and rendered using meshes or height fields. The geometry is textured using sim-
ple procedural texture images. Multipass rendering techniques can be used to layer
additional effects such as surf. Environment mapping can be used to simulate re-
flections from the surface. The combination of reflection mapping and a dynamic
model for ripples provides a visually compelling image. Alternatively, synthetic
perturbations to the texture coordinates as outlined in Section 5.13.7 can also be
used.

Optical effects such as caustics can be approximated using parts of the OpenGL
pipeline as described by Nishita and Nakamae [33] but interactive frame rates are
not likely to be achieved. Instead such effects can be faked using textures to mod-
ulate the intensity of any geometry that lies below the surface.

11.6 Light Points

OpenGL has direct support for rendering both aliased and antialiased points, but
these simple facilities are usually insufficient for simulating small light sources,
such as stars, beacons, runway lights, etc. In particular, the size of OpenGL points
is not affected by perspective projections. To render more realistic looking small
light sources it is necessary to change some combination of the size and brightness
of the source as a function of distance from the eye.

The brightness attenuation a as a function of distance, d, can be approximated
by using the same equation used in the OpenGL lighting equation

1

kc + kld+ kqd2

Attenuation can be achieved by modulating the point size by the square root of the
attenuation

sizeeffective = size �p
a

As the point size approaches the size of a single pixel the resolution of the raster
display system will cause artifacts. To avoid this problem the point can be made
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semi-transparent once it crosses a particular size threshold. The alpha value is pro-
portional to the ratio of the point area determined from the size attenuation compu-
tation to the area of the point being rendered

alpha =

�
sizeeffective

sizethreshold

�2

More complex behavior such as defocusing, perspective distortion and direc-
tionality of light sources can be achieved by using an image of the light lobe as a
texture map combined with billboarding to keep the light lobe oriented towards the
viewer.

11.7 Other Atmospheric Effects

OpenGL provides a primitive capability for rendering atmospheric effects such as
fog, mist and haze. It is useful to simulate the affects of atmospheric effects on visi-
bility to increase realism, and it allows the database designer to cover up a multitude
of sins such as “dropping” polygons near the far clipping plane in order to sustain
a fixed frame rate.

OpenGL implements fogging by blending the fog color with the incoming frag-
ments using a fog blending factor, f ,

C = fCin + (1� f)Cfog

This blending factor is computed using one of three equations: exponential
(GL EXP), exponential-squared (GL EXP2), and linear (GL LINEAR)

f = e�(density�z)

f = e�(density�z)
2

f =
end� z

end� start

where z is the eye-coordinate distance between the viewpoint and the fragment cen-
ter.

Linear fog is frequently used to implement intensity depth-cuing in which ob-
jects closer to the viewer are drawn at higher intensity [14]. The effect of intensity
as a function of distance is achieved by blending the incoming fragments with a
black fog color.

The exponential fog equation has some physical basis. It is the result of inte-
grating a uniform attenuation between the object and the viewer. The exponential
function can be used to represent a number of atmospheric effects using different
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combinations of fog colors and density values. Since OpenGL does not fog the pixel
values during a clear operation, the value of f at the far plane, far,

ffar = e�(density�far)

can be used to determine the color to which to clear the background

Cbg = ffarCin + (1� ffar)Cfog

where Cin is the color to which the background would be cleared without fog en-
abled.

As mentioned earlier, the obscured visibility of objects near the far plane can
be exploited to overcome various problems such as drawing time overruns, level-
of-detail transitions, and database paging. However, in practice it has been found
that the exponential function doesn’t attenuate distant fragments rapidly enough,
so exponential-squared fog was introduced to provide a sharper fall-off in visibil-
ity. Some vendors have gone a step further and provided more control over the fog
function by allowing applications to control the fog value through a spline curve.

There are other problems that OpenGL’s primitive fog model does not address.
For example, emissive geometry such as the light points described above should
be attenuated less severely than non-emissive geometry. This effect can be approx-
imated by pre-compensating the color values for emissive geometry, or reducing
the fog density when emissive geometry is drawn. Neither of these solutions is
completely satisfactory since colors values are clamped 1.0 in OpenGL, limiting
the amount of precompensation that can be done. Many OpenGL implementations
use lookup table methods to efficiently compute the fog function, so changes to the
fog density may result in expensive table recomputations. To overcome this prob-
lem some vendors have provided a mechanism to bias the eye-coordinate distance,
avoiding the need to recompute the fog lookup table.

If OpenGL fog processing is bypassed it is possible to do more sophisticated
atmospheric effects using multipass techniques. The OpenGL fog computation can
be thought of as simple table lookup using the eye-coordinate distance. The result is
used as a blend factor for blending between the fragment color and fog color. A sim-
ilar operation can be implemented usingglTexGen to generate the eye-coordinate
distance for each fragment and a 1D texture for the fog function. Using a specially
constructed 2D or 3D texture and a more sophisticated, texture coordinate genera-
tion function, it is possible to compute more complex fog functions incorporating
parameters such as altitude and eye-coordinate distance.
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12 Image Processing

12.1 Introduction

One of the strengths of OpenGL is that it provides tools for both image processing
and 3D rendering. Unlike some libraries that contain only one or the other, OpenGL
was designed with the understanding that many image processing tools are useful
for 3D graphics. For example, convolution may be used to implement depth-of-
field effects. Conversely, many operations typically thought of as image process-
ing operations may be cast as geometric rendering and texture mapping operations.
Electronic light tables (ELT’s) used for defense imaging require image transforma-
tions which can be implemented using OpenGL’s textured drawing capabilities. In
this section, we will explore image processing applications of OpenGL, beginning
with color manipulation, moving on to convolution, and finally discussing image
warping. To solve these problems, we have three major parts of OpenGL at our
disposal: the pixel transfer pipeline, geometric drawing and texturing, and fragment
operations.

12.1.1 The Pixel Transfer Pipeline

The pixel transfer pipeline is the part of OpenGL most typically thought of in image
processing applications. The pipeline is a configurable series of operations which
are applied to each pixel during any command that moves pixels between the frame
buffer, host memory, and texture memory, including:

� glDrawPixels

� glReadPixels

� glTexImage2D

� glGetTexImage2D

� glCopyPixels

These operations move image data which falls into one of the following categories:

� Color index values

� Stencil buffer values

� Depth values

� Color values (RGBA, luminance, luminance/alpha, red, green, ...)
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The “pixel transfer pipeline” actually is four independent pipelines: one for each
category of data.

For image processing, operations on color data are generally the most interest-
ing. Before any operations are applied, source data in any color format (for exam-
ple, GL LUMINANCE) and type (for example, GL UNSIGNED BYTE) is converted
into the canonical RGBA format, with each component represented as a floating-
point value. All color pixel transfer operations are defined as operating on images
of this type and format. After the pixel transfer operations have been applied, the
image is converted to its destination type and format.

Base OpenGL defines only a few pixel transfer operations, which are controlled
using the glPixelTransfer command. The operations are:

� GL INDEX SHIFT and GL INDEX OFFSET, which are applied only to
color index images

� Scale and bias values which are applied to each channel of RGBA images

� Scale and bias values which are applied to depth values.

� Pixel maps, discussed in detail in Section 12.2.3

The pixel transfer pipeline is the part of OpenGL that has undergone the most
growth through OpenGL extensions. Some of the more interesting extensions will
be discussed in this section. We will list the vendors who have committed to support
each extension as of April 1997. Where possible, we will mention techniques to
achieve equivalent results on systems that do not support the extension.

12.1.2 Geometric Drawing and Texturing

OpenGL’s texturing capabilities were discussed in detail in Section 5. These capa-
bilities can be put to work to solve image processing problems. By texturing an in-
put image onto a geometric grid, we can apply arbitrary deformations to the image.
Given the textured draw rates of hardware-accelerated OpenGL platforms, very im-
pressive performance can often be achieved though the use of textured geometric
drawing. Image processing applications using texturing will be discussed in section
12.4.

12.1.3 The Frame Buffer and Per-Fragment Operations

Per-fragment and frame buffer operations can be used to perform operations on pix-
els of an image in parallel. Additionally, multiple images may be combined in a
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variety of ways. Two main features are of interest: blending and the accumula-
tion buffer. These features were discussed in detail in section 6. The accumulation
buffer is particularly important since it provides several fundamental operations:

� Scaling of an image by a constant:

– glAccum(GL MULT, <scale>)

– glAccum(GL LOAD, <scale>)

– glAccum(GL RETURN, <scale>)

� Biasing of an image by a constant:

– glAccum(GL ADD, <scale>)

– Clear of frame buffer with color <scale>, followed by
glAccum(GL LOAD, 1)

� Linear combination of two images on a pixel-by-pixel basis:
glAccum(GL LOAD, <bias1>) followed by glAccum(GL ACCUM,
<bias2>)

The accumulation buffer and blending will be discussed in subsequent sections in
terms of the image processing operations they are used to implement.

12.2 Colors and Color Spaces

In this section we will consider ways to modify the pixels of an image on a local
basis. That is, each output pixel will be a function of a single corresponding input
pixel. Convolution, a non-local operation, will be considered in the next section.

12.2.1 The Accumulation Buffer: Interpolation and Extrapolation

Haeberli and Voorhies have suggested several interesting image processing tech-
niques using linear interpolation and extrapolation. Each technique is stated in
terms of the formula:

out = (1� x) � in0 + x � in1 (6)

The equation is evaluated on a per-pixel basis. in0 and in1 are the input images,
out is the output image, and x is the blending factor. If x is between 0 and 1, the
equations describe a linear interpolation. If x is allowed to range outside [0::1], ex-
trapolation results.[19]

In the limited case where 0 � x � 1, these equations may be implemented
using the accumulation buffer via the following steps:
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1. Draw in0 into the color buffer

2. Load in0, scaling by (1� x) (glAccum(GL LOAD, (1-x)))

3. Draw in1 into the color buffer

4. Accumulate in1, scaling by x (glAccum(GL ACCUM,x))

5. Return the results (glAccum(GL RETURN, 1))

We assume that in0 and in1 are between 0 and 1. Since the accumulation buffer
can only store values in the range [�1::1], for the case x < 0 or x > 1, the equation
must be implemented in a different way. Given the value x, we can modify equation
6 and derive a list of accumulation buffer operations to perform the operation. We
define a scale factor s such that:

s = max(jxj ; j1� xj)

Equation 6 becomes:

out = s(
(1� x)

s
in0 +

x

s
in1)

and the list of steps becomes:

1. Compute s

2. Draw in0 into the color buffer

3. Load in0, scaling by (1�x)

s
(glAccum(GL LOAD, (1-x)/s))

4. Draw in1 into the color buffer

5. Accumulate in1, scaling by x
s

(glAccum(GL ACCUM, x/s))

6. Return the results, scaling by s (glAccum(GL RETURN, s))

The techniques suggested by Haeberli and Voorhies use a degenerate image as
in0 and an appropriate value of x to move toward or away from that image. To in-
crease brightness, in0 is set to a black image and x > 1. To change contrast, in0 is
set to a grey image of the average luminance value of in1. Moving toward (x < 1)
the grey image increases contrast; moving away decreases it. Saturation may be
varied using a black and white version of in1 as in0 (for information on converting
RGB images to luminance, see section 12.2.4). Sharpening may be accomplished
by setting in0 to a blurred version of in1.[19] For more details, readers are encour-
aged to visit http://www.sgi.com/grafica/interp/index.html
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12.2.2 Pixel Scale and Bias Operations

Scale and bias operations can be used to adjust the colors of images. Also, they
can be used to select and expand a small range of values in the input image. Scales
and biases are applied at several locations in the pixel transfer pipeline. In general,
scales and biases are controlled with eight floating point values (a scale and a bias
for each channel).

The first scale and bias in the pixel transfer pipeline is part of base OpenGL
and is specified with glPixelTransfer(<pname>, <value>) where
<pname> specifies one of GL RED SCALE, GL RED BIAS, GL GREEN SCALE,
GL GREEN BIAS, GL BLUE SCALE, GL BLUE BIAS, GL ALPHA SCALE,
or GL ALPHA BIAS. Other scale and bias steps are associated with the color
matrix extension (SGI color matrix) and the convolution extension
(EXT convolution).

12.2.3 Look-Up Tables

One useful tool for color modification is the look-up table. Generally speaking, a
look-up table takes a value, maps it to a location in a table, and replaces the incom-
ing value with the contents of the table entry. OpenGL provides three mechanisms
which are basically look-up tables. Two, pixel maps and color tables, look up com-
ponents independently in one-dimensional tables. These mechanisms provide effi-
cient mapping for applications requiring no between the channels of the image. A
third mechanism, pixel texturing, uses the OpenGL texturing capability to perform
multi-dimensional look-ups.

Pixel Maps Pixel maps are a feature of base OpenGL which allow certain look-up
operations to be performed. OpenGL maintains tables which map:

� The red channel to the red channel (GL PIXEL MAP R TO R)

� The green channel to the green channel (GL PIXEL MAP G TO G)

� The blue channel to the blue channel (GL PIXEL MAP B TO B)

� The alpha channel to the alpha channel (GL PIXEL MAP A TO A)

� Color indices to color indices (GL PIXEL MAP I TO I)

� Stencil indices to stencil indices (GL PIXEL MAP S TO S)

� Color indices to RGBA values (GL PIXEL MAP I TO R,
GL PIXEL MAP I TO G, GL PIXEL MAP I TO B, and
GL PIXEL MAP I TO A)
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Tables that map color indices to RGBA values are used automati-
cally whenever an image with a color index format is transferred to a
destination which requires an RGBA image. For example, performing a
glDrawPixels of a color index image to an RGBA frame buffer would
result in application of the I to RGBA pixel maps. Other tables are en-
abled with the commands glPixelTransfer(GL MAP COLOR, 1) and
glPixelTransfer(GL MAP STENCIL, 1).

Pixel maps are defined using the glPixelMap command and queried using
the glGetPixelMap command. Details on the use of these commands may be
found in [7]. The sizes of the pixel maps are not tied together in any way. For ex-
ample, the R to R pixel map does not need to be the same size as the G to G pixel
map.

Each system provides a constant, GL MAX PIXEL MAP TABLE, which gives
the maximum size of a pixel map which may be defined.

The Color Table Extension The color table extension, SGI color table,
provides additional look-up tables in the OpenGL pixel transfer pipeline. Although
the capabilities of color tables and pixel maps are similar, the semantics are differ-
ent.

The color table extension defines the following look-up tables:

� “First” color table (GL COLOR TABLE SGI)

� Post convolutioncolor table (GL POST CONVOLUTION COLOR TABLE SGI)

� Post color matrix color table (GL POST COLOR MATRIX COLOR TABLE SGI)

Each table is independently enabled and disabled using the glEnable and
glDisable commands. One, two, or all three of the tables may be applied during
the same operation. Color tables do not operate on color index images, unless the
color index image was previously converted to an RGBA image by the I to RGBA
pixel maps as described in the previous section.

Color tables are specified using the glColorTableEXT and
glCopyColorTableEXT commands and are queried using the
glGetColorTableEXT command. The man pages for these commands
provide details on their use. Note that unlike the RGBA to RGBA pixel maps, all
channels of a color table are specified at the same time.

When a color table is specified, an internal format parameter (for example,
GL RGB or GL LUMINANCE EXT) gives the channels present in the table. When
the color table is applied to an image (which is by definition RGBA), channels of
the image which are not present in the color table are left unmodified. In this way,
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color tables are more flexible than pixel mpas, which map and replace all channels
of the input image.

Although color tables provide a similar functionality to pixel maps and may
prove more useful in certain circumstances, they do not replace pixel maps in the
OpenGL pipeline and the tables managed by pixel maps and color tables are inde-
pendent. It is possible to apply both a pixel map and a color table (or color tables)
during the same pixel operation (although the utility of this is questionable). The
maximum sizes and relative efficiencies of pixel maps and color tables vary from
platform to platform.

The color table extension is currently supported by the following vendors:

� Silicon Graphics

� Hewlett Packard

� Sun Microsystems, Inc.

The Texture Color Table Extension The texture color table ex-
tension (SGI texture color table) provides a color table
(GL TEXTURE COLOR TABLE SGI) which is applied to texels after filter-
ing and prior to combination with the fragment color with the texture environment
operation. The procedures to define, enable, and disable the texture color table are
the same as those of the tables in SGI color table.

The texture color table extension is currently supported by the following ven-
dors:

� Silicon Graphics

� Evans & Sutherland

� Hewlett Packard

� Sun Microsystems, Inc.

The Pixel Texture Extension The pixel texture extension
(SGIX pixel texture) allows multi-dimensional lookups through OpenGL’s
texturing capability. Remember that OpenGL defines rasterization of a pixel image
during a glDrawPixels or glCopyPixels command as the generation of a
fragment for each pixel in the image. Per-fragment operations are applied, includ-
ing texturing (if enabled). If the input image contained color data, each fragment’s
color comes from the color of the pixel that generated it. The texture coordinate of
the fragment is taken from the current raster position, which is generally not useful
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because the texture coordinate will be constant over the pixel rectangle. The pixel
texture extension allows the texture coordinates s, t, q, and r of the fragment to
be copied from the color coordinates R, G, B, and A of the pixel. With three and
four dimensional textures (EXT texture3D and SGIS texture4D), arbitrary
effects can be implemented (although the texture storage requirements to do so can
be staggering).

The pixel texture extension is supported by the following vendors:

� Silicon Graphics

Equivalent Functionality Without SGIX pixel texture There is
no way to apply a true multidimensional lookup to a pixel image without
SGIX pixel texture. In some cases, pixel maps and color tables may be
used as a substitute. Blending, accumulation buffer operations, or scale/bias
operations may be used when the function to be applied is linear and each channel
is independent. In other cases, the application will have to perform the lookup on
the host or draw a textured point for each pixel in the image.

12.2.4 The Color Matrix Extension

The color matrix extension (SGI color matrix) defines a 4x4 color matrix
which is managed using the same commands as the projection, modelview, or tex-
ture matrix. The color matrix premultiplies RGBA colors in the pixel transfer
pipeline and as such can be used to perform linear color space conversions.

Since the color matrix is treated like any other matrix, it is always enabled and
defaults to the identity. To change the contents of the color matrix, the current ma-
trix mode must be set to GL COLOR using the glMatrixMode command. After
that, the color matrix may be manipulated using the same commands as any other
matrix. The commandsglLoadMatrix, glPushMatrix, andglPopMatrix
generally prove the most useful.

The color matrix extension is currently supported on the following platforms:

� Silicon Graphics

Equivalent Functionality Without SGI color matrix Unfortunately, the
functionality of SGI color matrix is difficult to efficiently duplicate on sys-
tems which do not support the extension. In the case where the image is going
from the host to the framebuffer (a glDrawPixels operation), the best way to
handle the situation is the split the image up into red, green, blue, and alpha im-
ages (via application processing or a draw followed by reads with format set
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to GL RED, GL GREEN, GL BLUE, or GL ALPHA). The red, green, blue, and al-
pha images can be drawn as GL LUMINANCE images. RGBA scale operations
are applied, with the four values equal to the row of the matrix corresponding to
source channel. The images are composited in the frame buffer using blending
(glBlendFunc(GL ONE, GL ONE)).

Scale and Bias Scale and bias operations may be performed using the color ma-
trix. A scale factor can be applied using the glScale command. A bias is equiv-
alent to a translation and may be applied using the glTranslate command. Us-
ing glScale and glTranslate, the R scale or bias is put in the x parameter,
the G scale or bias in the y parameter, and the B scale or bias in the z parame-
ter. Modifications to the A channel must be specified using glLoadMatrix or
glMultMatrix. In general using the color matrix will be slower than using a
transfer operation which implements scale and bias directly, but management of
state may be easier using color matrices. Also, the scale and bias could be rolled
into another color matrix operation.

Conversion to Luminance Converting a color image into a luminance image
may be accomplished by putting the weights for R, G, and B along the top row of
the matrix: 2
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The recommended weight values for Rw, Gw, and Bw are 0:3086, 0:6094, and
0:0820. Some authors have used the values from the YIQ color conversion equa-
tion (0:299, 0:587, and 0:114), but Haeberli notes that these values are incorrect in
a linear RGB color space.[18]

Modifying Saturation The saturation of a color is the distance of that color from
a grey of equal intensity.[14] Haeberli has suggested modifying saturation using the
equation: 2
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where:

a = (1� s) �Rw + s
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b = (1� s) �Rw

c = (1� s) �Rw

d = (1� s) �Gw

e = (1� s) �Gw + s

f = (1� s) �Gw

g = (1� s) �Bw

h = (1� s) �Bw

i = (1� s) �Bw + s

with Rw, Gw, and Bw as described in the above section. Since the saturation of
a color is the difference between the color and a grey value of equal intensity, it
is comforting to note that setting s to 0 gives the luminance equation. Setting s

to 1 leaves the saturation unchanged; setting it to �1 takes the complement of the
colors.[18]

Hue Rotation Changing the hue of a color may be accomplished by loading a
rotation about the grey vector (1; 1; 1). This operation may be performed in one
step using the glRotate command. The matrix may also be constructed via the
following steps:[18]

1. Load the identity matrix (glLoadIdentity)

2. Rotate such that the grey vector maps onto the Z axis using the glRotate
command

3. Rotate about the Z axis to adjust the hue (glRotate(<degrees>, 0,
0, 1))

4. Rotate the grey vector back into position

Unfortunately, a naive application of glRotate will not preserve the luminance
of the image. To avoid this problem, we must make sure that areas of constant lumi-
nance map to planes perpendicular to the Z axis when we perform the hue rotation.
Recalling that the luminance of a vector (R;G;B) is equal to:

(R;G;B) � (Rw; Gw; Bw)

we realize the a plane of constant luminance k is defined by:

(R;G;B) � (Rw; Gw; Bw) = k

Therefore, the vector (Rw; Gw; Bw) is perpendicular to planes of constant lumi-
nance. The algorithm for matrix construction becomes the following:[18]
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1. Load the identity matrix

2. Apply a rotation matrix M such that the grey vector (1; 1; 1) maps onto the
positive Z axis

3. Compute (R0

w; G
0

w; B
0

w) = M(Rw; Gw; Bw) Apply a skew transform which
maps (R0

w; G
0

w; B
0

w) to (0; 0; B0

w). This matrix is:
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4. Rotate about the Z axis to adjust the hue

5. Apply the inverse of the shear matrix

6. Apply the inverse of the rotation matrix

It is possible to compute a single matrix as a function of Rw, Gw, Bw , and the de-
grees of rotation which would perform the operation.

CMY Conversion The CMY color space describes colors in terms of the sub-
tractive primaries: cyan, magenta, and yellow. CMY is used mainly for hardcopy
devices such as color printers. Generally, the conversion from RGB to CMY fol-
lows the equation:[14]
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CMY conversion may be performed using the color matrix or a scale and bias op-
eration. The conversion is equivalent to a scale by �1 and a bias by +1. Using the
4x4 color matrix, the equation may be restated as:
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Here, we require that the incoming alpha channel be equal to 1. If the source
is RGB, the 1 will be added automatically in the format conversion stage of the
pipeline.
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A related color space, CMYK, uses a fourth channel (K) to represent black.
Since conversion to CMYK requires a min() operation, it cannot be performed us-
ing the color matrix.

An extension, CMYKA, also supports conversion to and from CMYK and
CMYKA. This extension is currently supported by Evans & Sutherland.

YIQ Conversion The YIQ color space is used in U.S. color television broadcast-
ing. Conversion from RGBA to YIQA may be accomplished using the color matrix:
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(Generally, YIQ is not used with an alpha channel so the fourth component is elim-
inated.) The inverse matrix is used to map YIQ to RGBA.[14]

12.3 Convolutions

12.3.1 Introduction

Convolutions are used to perform many common image processing operations in-
cluding sharpening, blurring, noise reduction, embossing, and edge enhancement.
In this section, we begin with a very brief overview of the mathematics of the con-
volution operation. More detailed explanations of the mathematics and uses of the
convolution operation can be found in many books on computer graphics and image
processing. One good reference is [14]. After our brief mathematical introduction,
we will describe two ways to perform convolutions using OpenGL: via the accu-
mulation buffer and via the convolution extension.

12.3.2 The Convolution Operation

The convolution operation is a mathematical operation which takes two functions
f(x) and g(x) and produces a third function h(x). Mathematically, convolution is
defined as:

h(x) = f(x) � g(x) =
Z +1

�1

f(�)g(x� �)d� (7)

g(x) is referred to as the filter. The integral only needs to be evaluated over the
range where g(x� �) is nonzero (called the support of the filter).[14]

In spatial domain image processing, we discretize the convolution operation.
f(x) becomes an array of pixels F [x]. The kernel g(x) is an array of values
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G[0:::(width� 1)] (we assume finite support). Equation 7 becomes:

H [x] =

width�1X
i=0

F [x+ i]G[i] (8)

Two-Dimensional Convolutions Since in image processing we generally operate
on two-dimensional images, we extend equation 8 to:

H [x][y] =

height�1X
j=0

width�1X
i=0

F [x+ i][y + j]G[i][j] (9)

To convolve an image, the filter array is aligned with an equal sized subset of the
image. Every element in the convolution kernel array corresponds to a pixel in the
subimage. At each convolve step, the color values of each pixel corresponding to
a kernel array element are read, then scaled by their corresponding kernel element.
The resulting values are all summed together into a single value.

Thus, every element of the kernel, and every pixel under the kernel, contributes
values that are combined into a single convolved pixel color. One of the kernel ar-
ray elements corresponds to the location where this output value is written back to
update the output image.

Generally, convolving is done with separate input and output images, so that the
input image is read-only, and the outputs of the individual convolution steps don’t
affect each other.

After each convolution step, the convolution kernel filter position is shifted by
one, covering a slightly different set of pixels in the input image, and a new convo-
lution step is performed. The cycle continues, convolving consecutive pixels in a
scanning pattern, until the entire image has been convolved.

The convolution filter could have a single element per-pixel, where the RGBA
components are scaled by the same value, or have separate red, green, blue, and
alpha values for each kernel element.

Separable Filters In the general case, the two-dimensionalconvolutionoperation
requires (width � height) multiplications for each output pixel. Separable filters
are a special case of general convolution in which the filter

G[0::(width� 1)][0::(height� 1)]

can be expressed in terms of two vectors

Grow[0::(width� 1)]Gcol[0::(height� 1)]
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such that for each (i; j)�([0::(width� 1)]; [0::(height� 1)])

G[i][j] = Grow[i] �Gcol[j]

If the filter is separable, the convolution operation may be performed using only
(width+ height) multiplications for each output pixel. Equation 9 becomes:

H [x][y] =

height�1X
j=0

width�1X
i=0

F [x + i][y + j]G[i][j] =

height�1X
j=0

width�1X
i=0

F [x+ i][y + j]Grow[i]Gcol[j] =

height�1X
j=0

Gcol[j]
width�1X
i=0

F [x + i][y + j]Grow[i]

To apply the separable convolution, we first apply Grow as though it were a width
by 1 filter. We then apply Gcol as though it were a 1 by height filter.

12.3.3 Convolutions Using the Accumulation Buffer

The convolutionoperation may be implemented using the accumulation buffer. The
input image is stored in the color buffer and read by the glAccum function. The
output image is built up in the accumulation buffer. For each kernel entry G[i][j],
we translate the input image by (�i;�j) from its original position. The translation
may be accomplished using the glCopyPixels command. We then accumulate
the translated image using the command glAccum(GL ACCUM, G[i][j]).
width � height translations and accumulations must be performed.

Here is an example of using the accumulation buffer to convolve using a Sobel
filter, commonly used to do edge detection. This filter is used to find horizontal
edges, and is defined as: 2
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Since the accumulation buffer can only store values in the range (-1..1), we first
modify the kernel such that at any point in the computation the values do not exceed
this range. Assuming the input images values are in the range (0..1), the modified
kernel is: 2
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The operations needed to apply the filter are:
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1. Draw the input image

2. glAccum(GL LOAD, 1/4)

3. Translate the input image left by one pixel

4. glAccum(GL ACCUM, 2/4)

5. Translate the input image left by one pixel

6. glAccum(GL ACCUM, 1/4)

7. Translate the input image right by two pixels and down by two pixels

8. glAccum(GL ACCUM, -1/4)

9. Translate the input image left by one pixel

10. glAccum(GL ACCUM, -2/4)

11. Translate the input image left by one pixel

12. glAccum(GL ACCUM, -1/4)

13. Return the results to the frame buffer (glAccum(GL RETURN, 4))

In this example, each pixel in the output image is the combination of pixels in the
3 by 3 pixel square whose lower left corner is at the output pixel. At each step, the
image is shifted so that the pixel that would have been under the kernel element
with the value used is under the lower left corner. As an optimization, we ignore
locations where the kernel is equal to zero.

A general algorithm for the 2D convolution operation is:

Draw the input image
for (j = 0; j < height; j++) {

for (i = 0; i < width; i++) {
glAccum(GL_ACCUM, G[i][j]*scale);
Move the input image to the left by 1 pixel

}
Move the input image to the right by width pixels
Move the input image down by 1 pixel

}
glAccum(GL_RETURN, 1/scale);
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scale is a value chosen to ensure that the intermediate results cannot go outside a
certain range. In the Sobel filter example, scale = 4. Assuming the input values
are in (0::1), scale can be naively computed using the following algorithm:

float minPossible = 0, maxPossible = 1;
for (j = 0; j < height; j++) {

for (i = 0; i < width; i++) {
if (G[i][j] < 0) {

minPossible += G[i][j];
} else {

maxPossible += G[i][j];
}

}
}
scale = 1.0 / ((-minPossible > maxPossible) ?

-minPossible : maxPossible);

Since the accumulation buffer has limited precision, more accurate results could be
obtained by changing the order of the computation and computing scale accord-
ingly. Additionally, if the input image can be constrained to a smaller range, scale
can be made larger, which may also give more accurate results.

For separable kernels, convolution can be implemented using width+ height

image translations and accumulations. A general algorithm is:

Draw the input image
for (i = 0; i < width; i++) {

glAccum(GL_ACCUM, Grow[i]);
Move the input image to the left 1 pixel

}
glAccum(GL_RETURN, 1);
for (j = 0; j < height; j++) {

glAccum(GL_ACCUM, Gcol[j]);
Move the frame buffer image down by 1 pixel

}
glAccum(GL_RETURN, 1);

In this example, we have assumed that the row and column filters have been con-
structed such that the accumulation buffer values will never go out of range. For
the general case, a scale value may be needed. More accurate results may be ob-
tained if scale values are computed independently for the row and column steps.
An accumulation buffer multiply in between the two steps may be required.
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12.3.4 The Convolution Extension

The convolution extension, EXT convolution, defines a stage in the
OpenGL pixel transfer pipeline which applies a 1D, separable 2D, or general
2D convolution. The 1D convolution is applied only to 1D texture down-
loads and is infrequently used. 2D kernels are specified using the commands
glConvolutionFilter2DEXT, glCopyConvolutionFilter2DEXT,
and glSeparableFilter2DEXT. The convolution stage is enabled using
glEnable. Filters are queried using glGetConvolutionFilterEXT and
glGetSeparableFilterEXT.

The maximum permitted convolution size is machine-dependent
and may be queried using glGetConvolutionParameterfvEXT
with the parameters GL MAX CONVOLUTION WIDTH EXT and
GL MAX CONVOLUTION HEIGHT EXT.

The relative performance of separable and general filters varies from platform
to platform, but it is best to specify a separable filter whenever possible.

EXT convolution is currently supported by the following vendors:

� Silicon Graphics

� Hewlett Packard

� Sun Microsystems, Inc.

12.3.5 Useful Convolution Filters

In this section, we briefly describe several useful convolution filters. The filters
may be applied to an image using either the convolution extension or the accumula-
tion buffer technique. Unless otherwise noted, the kernels presented are normalized
(that is, the kernel weights sum to 0).

The reader should keep in mind that this section is intended only as a very ba-
sic reference. Numerous texts on image processing provide more details and other
filters. All information presented in this section comes from [31].

Line detection Detection of one pixel wide lines can accomplished with the fol-
lowing filters:
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64 �1 �1 �1

2 2 2

�1 �1 �1

3
75

137



Programming with OpenGL: Advanced Rendering

Vertical Edges 2
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Right Diagonal Edges 2
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Gradient Detection (Embossing) Changes in value over 3 pixels can be detected
using kernels called Gradient Masks or Prewitt Masks. The direction of the change
from darker to lighter is described by one of the points of the compass. The 3x3
kernels are as follows:
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South 2
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Smoothing and Blurring Smoothing and blurring operations are low-pass spa-
tial filters. They reduce or eliminate high-frequency aspects of an image.

Arithmetic Mean The arithmetic mean simply takes an average of the pixels
in the kernel. Each element in the filter is equal to 1 divided by the total number of
elements in the filter. Thus the 3x3 arithmetic mean filter is:2
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Basic Smooth: 3x3 (not normalized)2
64 1 2 1
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Basic Smooth: 5x5 (not normalized)

2
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High-pass Filters A high-pass filter enhances the high-frequency parts of an im-
age. This type of filter is used to sharpen images.
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Basic High-Pass Filter: 3x32
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Basic High-Pass Filter: 5x52
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Laplacian Filter The Laplacian is used to enhance discontinuities. The 3x3 ker-
nel is: 2
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and the 5x5 is: 2
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Sobel Filter The Sobel filter consists of two kernels which detect horizon-
tal and vertical changes in an image. If both are applied to an image, the
results can by used to compute the magnitude and direction of the edges in
the image. If the application of the Sobel kernels results in two images
which are stored in the arrays Gh[0..(height-1][0..(width-1)] and
Gv[0..(height-1)][0..(width-1)], the magnitude of the edge passing
through the pixel x, y is given by:

Msobel[x][y] =
q
Gh[x][y]2+Gv[x][y]2 = jGh[x][y]j+ jGv[x][y]j

(we are justified in using the magnitude representation since the values represent
the magnitude of orthogonal vectors). The direction can also be derived from Gh
and Gv:

�sobel[x][y] = tan�1(
Gv[x][y]

Gh[x][y]
)

The 3x3 Sobel kernels are:
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Horizontal 2
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12.4 Image Warping

12.4.1 The Pixel Zoom Operation

OpenGL provides control over the generation of fragments from pixels via the
pixel zoom operation. Zoom factors are specified using glPixelZoom. Negative
zooms are used to specify reflections.

Pixel zooming may prove faster than the texture mapping techniques described
below on some systems, but do not provide as fine a control over filtering.

12.4.2 Warps Using Texture Mapping

Image warping or dewarping may be implemented using texture mapping by defin-
ing a correspondence between a uniform polygonal mesh and a warped mesh. The
points of the warped mesh are assigned the corresponding texture coordinates of
the uniform mesh and the mesh is texture mapped with the original image. Using
this technique simple transformations such as zoom, rotation, or shearing can be
efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortion in satellite imagery.

Line Integral Convolution Brian Cabral and Casey Leedom have developed a
technique for vector field visualization known as line integral convolution.[8] The
technique takes an input vector field and an input image. For each location p in the
input vector field, a parametric curve P (p; s) is generated which passes through the
location and follows the vector field for some distance in either direction. To create
an output pixel F 0(p), a weighted sum of the values of the input image F along the
curve is computed. The weighting function is k(x). Thus the continuous form of
the equation is:

F 0

(p) =

RL
�L F (P (p; s))k(s)dsRL

�L k(s)ds
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To discretize the equation, we use values P0::l along the curve P (p; s):

F 0

(p) =

Pl
i=0 F (Pi)hiPl

i=0 hi

The computation of the output values of this equation may accelerated using
OpenGL. We use a mesh texture mapped with the input image to create the output
image. The mesh is redrawn l times. At each step, we advect the texture coordi-
nates and accumulate the results. Advection applies a mapping defined by the vec-
tor field to the input points. A simple advection implementation moves each point
by a fixed amount in the direction of the vector flow at the point. Advection has
been well-studied, and many more complicated algorithms exist.

An implementation of the algorithm uses the following variables:

� int l: Number of steps

� GLfloat h[0..(l-1)]: Kernel weights

� GLfloat hNormalize: Normalization factor (
Pl

i=0 hi)

� GLfloat gridW, gridH: Size of the grid

� GLfloat *grid[2]: Grid of texture coordinates.

and the functions:

� advect grid(GLfloat s): Advect grid by s, which may be positive
or negative.

We begin by initializing the grid points:

void init(void)
{

int x, y;

for (y = 0; y < gridH; y++) {
for (x = 0; x < gridW; x++) {

grid[y*gridW + x][0] = x;
grid[y*gridW + x][1] = y;

}
}

}

The texture image is then downloaded and bound. In the draw routine we call:
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void lic(void)
{

int x, y;
int i;

advect_grid(-l/2);

glClear(GL_COLOR_BUFFER_BIT | GL_ACCUM_BUFFER_BIT);

/* scale texture coordinates */
glPushAttrib(GL_TRANSFORM_BIT);
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glScalef(1.0/(gridW-1), 1.0/(gridH-1), 1);

for (i = 0; i < l; i++) {
glEnable(GL_TEXTURE_2D);
for (y = 0; y < gridH-1; y++) {

glBegin(GL_QUAD_STRIP);
for (x = 0; x < gridW-1; x++) {
glTexCoord2fv(grid[y*gridW + x]);
glVertex2i(x, y);
glTexCoord2fv(grid[y*gridW + x+1]);
glVertex2i(x+1, y);
glTexCoord2fv(grid[(y+1)*gridW + x]);
glVertex2i(x, y+1);
glTexCoord2fv(grid[(y+1)*gridW + x+1]);
glVertex2i(x+1, y+1);

}
glEnd();

}
glDisable(GL_TEXTURE_2D);
glAccum(GL_ACCUM, h[i]);

advect_grid(1);
}

glAccum(GL_RETURN, hNormalize);

glPopMatrix();
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glPopAttrib();
}

In thelic routine, we first clear the color and accumulation buffers. Next, we mod-
ify the texture matrix such that a texture coordinate of (gridW, gridH) will
map to the upper right corner of the input texture.

Upon each iteration of the loop, we draw the grid using the array of texture
coordinates (vertex arrays could provide a more efficient implementation). Then,
we accumulate the results, weighting by the kernel array entry. Next, we call
advect grid to update the texture coordinate array. At the end of the routine,
we return the results and normalize by the sum of the kernel weights.

Upon implementation, several difficulties may present themselves. First, im-
plementing advect grid well is non-trivial (but well-studied). Second, here we
have used a static grid to draw the field. This approach will probably lead to arti-
facts when drawing high-frequency fields or unnecessary inefficiency when draw-
ing low-frequency fields. A better approach would subdivide the grid based on the
behavior of the vector field. Also, the user may find that the results of the accumu-
lation operation go outside the range [�1::1] if care is not taken when choosing the
kernel and normalization values. Finally, dealing with the three different coordinate
spaces (vector field, grid, and texture image) can become complicated.

13 Volume Visualization with Texture

Volume rendering is a useful technique for visualizing three dimensional arrays of
sampled data. Examples of sampled 3D data can range from computational fluid
dynamics, medical data from CAT or MRI scanners, seismic data, or any volumet-
ric information where geometric surfaces are difficult to generate or unavailable.
Volume visualization provides a way to see through the data, revealing complex
3D relationships.

There are a number of approaches for visualization of volume data. Many of
them use data analysis techniques to find the contour surfaces inside the volume of
interest, then render the resulting geometry with transparency.

The 3D texture approach is a direct data visualization technique, using 2D or
3D textured data slices, combined using a blending operator [11]. The approach
described here is equivalent to ray casting [22] and produces the same results. Un-
like ray casting, where each image pixel is built up ray by ray, this approach takes
advantage of spatial coherence. The 3D texture is used as a voxel cache, process-
ing all rays simultaneously, one 2D layer at a time. Since an entire 2D slice of the
voxels are “cast” at one time, the resulting algorithm is much more efficient than
ray casting.
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Figure 34. Slicing a 3D Texture to Render Volume

This section is divided into two approaches, one using 2D textures, the other
using a 3D texture. Although the 3D texture approach is simpler and yields superior
results overall, 3D textures are currently still an EXT extension in OpenGL and are
not universally available like 2D textures. 3D texturing is currently slated to go into
the core of OpenGL 1.2, so both methods [11] are described here.

13.1 Overview of the Technique

The technique for visualizing volume data is composed of two parts. First the tex-
ture data is sampled with planes parallel to the viewport and stacked along the di-
rection of view. These planes are rendered as polygons, clipped to the limits of the
texture volume. These clipped polygons are textured with the volume data, and the
resulting images are blended together, from back to front, towards the viewing posi-
tion. As each polygon is rendered, its pixel values are blended into the frame buffer
to provide the appropriate transparency effect.

If the OpenGL implementation doesn’t support 3D textures, a more limited ver-
sion of the technique can be used, where 3 sets of 2D textures are created, one set
for each major plane of the volume data. The process then proceeds as with the
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Figure 35. Slicing a 3D Texture with Spheres

3D case, except that the slices are constrained to be parallel to one of the three 2D
texture sets.

Close-up views of the volume cause sampling errors to occur at texels that are
far from the line of sight into the data. To correct this problem, use a series of con-
centric tessellated spheres centered around the eyepoint, rather than a single flat
polygon, to generate each textured “slice” of the data. As with flat slices, the spheri-
cal shells should be clipped to the data volume, and each textured shell blended from
back to front.

13.2 3D Texture Volume Rendering

Using 3D textures for volume rendering is the most desirable method. The slices
can be oriented perpendicular to the viewer’s line of sight, and close-up views can
be rendered with spherical “shell slices” to avoid aliasing in the parts of the image
that where sampled far from the direction of view.

Here are the steps for rendering a volume using 2D textures:

1. Load the volume data into a 3D texture. This is done once for a particular
data volume.

2. Choose the number of slices, based on the criteria in Section 13.5. Usually
this matches the texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction
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4. Compute a series of polygons that cut through the data perpendicular to the
direction of view. Use texture coordinate generation to texture the slice prop-
erly with respect to the 3D texture data.

5. Use the texture transform matrix to set the desired orientation the textured
images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend opera-
tion is performed at each slice; the type of blend depends on the desired effect.
See the blend equation descriptions in Section 13.4 for details.

7. As the viewpoint and direction of view changes, recompute the data slice po-
sitions and update the texture transformation matrix as necessary.

13.3 2D Texture Volume Rendering

Volume rendering with 2D textures is more complex and does not provide as good
results as 3D textures, but can be used on any OpenGL implementation.

The problem with 2D textures is that the data slice polygons can’t always be
perpendicular to the view direction. Three sets of 2D texture maps are created, each
set perpendicular to one of the major axes of the data volume. These texture sets are
created from adjacent 2D slices of the original 3D volume data along a major axis.
The data slice polygons must be aligned with whichever set of 2D texture maps is
most parallel to it. In the worst case, the data slices are canted 45 degrees from the
view direction.

The more edge-on the slices are to the eye, the worse the data sampling is. In
the extreme case of an edge-on slice, the textured values on the slices aren’t blended
at all. At each edge pixel, only one sample is visible, from the line of texel values
crossing the polygon slice. All the other values are obscured.

For the same reason, sampling the texel data as spherical shells to avoid aliasing
when doing close-ups of the volume data, isn’t practical with 2D textures.

Here are the steps for rendering a volume using 2D textures:

1. Generate the three sets of 2D textures from the volume data. Each set of 2D
textures is oriented perpendicular to one of volume’s major axes. This pro-
cessing is done once for a particular data volume.

2. Choose the number of slices, based on the criteria in Section 13.5. Usually
this matches the texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction
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4. Find the set of 2D textures most perpendicular to the direction of view. Gen-
erate data slice polygons parallel to the 2D texture set chosen. Use texture
coordinate generation to texture each slice properly with respect to its corre-
sponding 2D texture in the texture set.

5. Use the texture transform matrix to set the desired orientation the textured
images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend opera-
tion is performed at each slice; the type of blend depends on the desired effect.
See the blend equation descriptions in Section 13.4 for details.

7. As the viewpoint and direction of view changes, recompute the data slice po-
sitions and update the texture transformation matrix as necessary. Always
orient the data slices to the 2D texture set that is most closely aligned with it.

13.4 Blending Operators

There a number of common blending functions used in volume visualization. They
are described below.

13.4.1 Over

The over operator [38] is the most common way to blend for volume visualization.
Volumes blended with the over operator approximate the flow of light through a
colored, translucent material. The translucency of each point in the material is de-
termined by the value of the texel’s alpha channel. Texels with higher alpha values
tend to obscure texels behind them, and stand out through the obscuring texels in
front of them.

The over operator can be implemented in OpenGL by setting the blend function
to perform the over operation:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

13.4.2 Attenuate

The attenuate operator simulates an X-ray of the material. With attenuate, the
texel’s alpha appears to attenuate light shining through the material along the view
direction towards the viewer. The texel alpha channel models material density. The
final brightness at each pixel is attenuated by the total texel density along the direc-
tion of view.
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Attenuation can be implemented with OpenGL by scaling each element by the
number of slices, then summing the results. This can be done by combination of
the appropriate blend function and blend color:

glBlendFunc(GL_CONSTANT_ALPHA_EXT, GL_ONE)
glBlendColorEXT(1.f, 1.f, 1.f, 1.f/number_of_slices)

13.4.3 MIP

In this context MIP stands for Maximum Intensity Projection. It is used in medical
imaging to visualize blood flow. MIP finds the brightest texel alpha from all the
texture slices at each pixel location. MIP is a contrast enhancing operator; structures
with higher alpha values tend to stand out against the surrounding data.

MIP can be implemented with OpenGL using the blend function and the blend
minmax extension:

glBlendFunc(GL_ONE, GL_ONE)
glBlendEquationEXT(GL_MAX_EXT)

13.4.4 Under

Volume slices rendered front to back with the under operator give the same re-
sult as the over operator blending slices from back to front. Unfortunately,
OpenGL doesn’t have an exact equivalent for the under operator, although us-
ing glBlendFunc(GL ONE MINUS DST, GL DST) is a good approximation.
Use the over operator and back to front rendering for best results. See section 6.1
for more details.

13.5 Sampling Frequency

There are a number of factors to consider when choosing the number of slices (data
polygons) to use when rendering your volume:

Performance It’s often convenient to have separate “interactive” and “detail”
modes for viewing volumes. The interactive mode can render the volume
with a smaller number of slices, improving the interactivity at the expense
of image quality. Detail mode - rendering with more slices - can be invoked
when the volume being manipulated slows or stops.

Cubical Voxels The data slice spacing should be chosen so that the texture sam-
pling rate from slice to slice is equal to the texture sampling rate within each
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slice. Uniform sampling rate treats 3D texture texels as cubical voxels, which
minimizes resampling artifacts.

For a cubical data volume, the number of slices through the volume should
roughly match the resolution in texels of the slices. When the viewing di-
rection is not along a major axis, the number of sample texels changes from
plane to plane. Choosing the number of texels along each side is usually a
good approximation.

Non-linear blending The over operator is not linear, so adding more slices doesn’t
just make the image more detailed. It also increases the overall attenuation,
making it harder to see density details at the “back” of the volume. Strictly
speaking, if you change the number of slices used to render the volume, the
alpha values of the data should be rescaled. There is only one correct sam-
ple spacing for a given data set’s alpha values. Generally, it doesn’t buy you
anything to have more slices than you have voxels in your 3D data.

Perspective When viewing a volume in perspective, the density of slices should
increase with distance from the viewer. The data in the back of the volume
should appear denser as a result of perspective distortion. If the volume isn’t
being viewed in perspective, then uniformly spaced data slices are usually the
best approach.

Flat vs. Spherical Slices If you are using spherical slices to get good close-ups of
the data, then the slice spacing should be handled in the same way as for flat
slices. The spheres making up the slices should be tessellated finely enough
to avoid concentric shells from touching each other.

2D vs. 3D Textures 3D textures can sample the data in the S, T, or R directions
freely. 2D textures are constrained to S and T. 2D texture slices correspond
exactly to texel slices of the volume data. To create a slice at an arbitrary
point would require resampling the volume data.

Theoretically, the minimum data slice spacing is computed by finding the
longest ray cast through the volume in the view direction, transforming the texel
values found along that ray using the transfer function (if there is one), then finding
the highest frequency component of the transformed texels, and using double that
number for the minimum number of data slices for that view direction.

This can lead to a large number of slices. For a data cube 512 texels on a side,
the worst case would be at least 1024

p
3 slices, or about 1774 slices. In practice,

however, the volume data tends to be bandwidth limited; and in many cases choos-
ing the number of data slices to be equal to the volumes dimensions, measured in
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texels, works well. In this example, you may get satisfactory results with 512 slices,
rather than 1774. If the data is very blurry, or image quality is not paramount (for
example, in “interactive mode”), this value could be reduced by a factor of two or
four.

13.6 Shrinking the Volume Image

For best visual quality, render the volume image so that the size of a texel is about
the size of a pixel. Besides making it easier to see density details in the image, larger
images avoid the problems associated with under-sampling a minified volume.

Reducing the volume size will cause the texel data to be sampled to a smaller
area. Since the over operator is non-linear, the shrunken data will interact with it
to yield an image that is different, not just smaller. The minified image will have
density artifacts that are not in the original volume data.

If a smaller image is desired, first render the image full size in the desired ori-
entation, then shrink the resulting 2D image.

13.7 Virtualizing Texture Memory

Volume data doesn’t have to be limited to the maximum size of 3D texture memory.
The visualization technique can be virtualized by dividing the data volume into a set
of smaller “bricks”. Each brick is loaded into texture memory, then data slices are
textured and blended from the brick as usual. The processing of bricks themselves
is ordered from back to front relative to the viewer. The process is repeated with
each brick in the volume until the entire volume has been processed.

To avoid sampling errors at the edges, data slice texture coordinates should be
adjusted so they don’t use the surface texels of any brick. The bricks themselves are
oriented so that they overlap by one volume texel with their immediate neighbors.
This allows the results of rendering each brick to combine seamlessly.

13.8 Mixing Volumetric and Geometric Objects

In many applications it is useful to display both geometric primitives and volumetric
data sets in the same scene. For example, medical data can be rendered volumet-
rically, with a polygonal prosthesis placed inside it. The embedded geometry may
be opaque or transparent.

Opaque geometric objects are rendered along with the volumetric data slice
polygons using depth buffering for both. With depth buffering on, the pixels of
planes behind the object aren’t rendered, while the planes in front of the object blend
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it in. The blending of the planes in front of the object gradually obscure it, making
it appear embedded in the volume data.

If the object itself should be transparent, it must be rendered a slice at a time.
The object is chopped into slabs using user defined clipping planes.The slab thick-
ness corresponds to the spacing between volume data slices. Each slab of object cor-
responds to one of the data slices. Each slice of the object is rendered and blended
with its corresponding data slice polygon, as the polygons are rendered back to
front.

13.9 Transfer Functions

Different alpha values in volumetric data often correspond to different materials in
the volume being rendered. To help analyze the volume data, a non-linear trans-
fer function can be applied to the texels, highlighting particular classes of volume
data. This transformation function can be applied through one of OpenGL’s lookup
tables. The SGI texture color table extension applies a lookup table to texels val-
ues during texturing, after the texel value is filtered.

Since filtering adjusts the texel component values, a more accurate method is
to apply the lookup table to the texel values before the textures are filtered. If the
EXT color table table extension is available, then a colortable in the pixel path can
be used to process the texel values while the texture is loaded. If lookup tables aren’t
available, the processing can be done to the volume data by the application, before
loading the texture.

13.10 Volume Cutting Planes

Additional surfaces can be created on the volume with user defined clipping planes.
A clipping plane can be used to cut through the volume, exposing a new surface.
This technique can help expose the volume’s internal structure. The rendering tech-
nique is the same, with the addition of one or more clipping planes defined while
rendering and blending the data slice polygons.

13.11 Shading the Volume

In addition to visualizing the voxel data, the data can be lit and shaded. Since there
are no explicit surfaces in the data, lighting is computed per volume texel.

The direct approach to shading is to do it on the host. The volumetric data can
be processed to find the gradient at each voxel. Then the dot product between the
gradient vector, now used as a normal, and the light is computed, and the results
saved as 3D data. The volumetric data now contains the intensityat each point in the
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data, instead of data density. Specular intensity can be computed the same way, and
combined so that each texel contains the total light intensity at every sample point
in the volume. This processed data can then be visualized in the manner described
previously.

The problem with this technique is that a change of light source (or viewer po-
sition, if specular lighting is desired) requires that the data volume be reprocessed.
A more flexible approach is to save the components of the gradient vectors as color
components in the 3D texture. Then the lighting can be done while the data is be-
ing visualized. One way to do this is to transform the texel data using the color
matrix extension. The light direction can be processed to form a matrix that when
multiplied by the texture color components (now containing the components of the
normal at that point), the will produce the dot product of the two. The color ma-
trix is part of the pixel path, so this processing can be done when the texture is be-
ing loaded. Now the 3D texture contains lighting intensities as before, but the dot
product calculations are done in the pixel pipeline, not in the host.

The data’s gradient vectors could also be computed interactively, as an exten-
sion of the texture bump-mapping technique described in Section 8.3. Each data
slice polygon is treated as a surface polygon to be bump-mapped. Since the tex-
ture data must be shifted and subtracted, then blended with the shaded polygon to
generate the lit slice before blending, the process of generating lit slices must be
processed separately from the blending of slices to create the volume image.

13.12 Warped Volumes

The data volume can be warped by non-linear shifting the texture coordinates of the
data slices. For more warping control, tessellate the the vertices to provide more
vertex locations to perturb the texture coordinate values. Among other things, very
high quality atmospheric effects, such as smoke, can be produced with this tech-
nique.

14 Using the Stencil Buffer

The stencil buffer is like the depth and color buffers, but is a value per pixel that has
an application-specific use. The stencil buffer isn’t directly visible like the color
buffer, but the bits in the stencil planes form an unsigned integer that affects and is
updated by drawing commands, through the stencil function and the stencil opera-
tions. The stencil function controls whether a fragment is discarded or not by the
stencil test, and the stencil operation determines how the stencil planes are updated
as a result of that test. [32].
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Comparison Description of comparison test between reference and stencil value

GL NEVER always fails
GL ALWAYS always passes
GL LESS passes if reference value is less than stencil buffer
GL LEQUAL passes if reference value is less than or equal to stencil buffer
GL EQUAL passes if reference value is equal to stencil buffer
GL GEQUAL passes if reference value is greater than or equal to stencil buffer
GL GREATER passes if reference value is greater than stencil buffer
GL NOTEQUAL passes if reference value is not equal to stencil buffer

Table 4: Stencil Buffer Comparisons

Stencil buffer actions are part of OpenGL’s fragment operations. Stencil testing
occurs immediately after the alpha test, and immediately before the depth test. If
GL STENCIL TEST is enabled, and stencil planes are available, the application
can control what happens under three different scenarios:

1. The stencil test fails

2. The stencil test passes, but the depth test fails

3. Both the stencil and the depth test pass.

Whether a stencil operation for a given fragment passes or fails has nothing to
do with the color or depth value of the fragment. The stencil operation is a com-
parison between the value in the stencil buffer for the fragment’s destination pixel
and the stencil reference value. A mask is bitwise AND-ed with the value in the
stencil planes and with the reference value before the the comparison is applied.
The reference value, the comparison function, and the comparison mask are set by
glStencilFunc. The comparison functions available are listed in Table 4.

Stencil function and stencil test are often used interchangeably in these notes,
but the “stencil test” specifically means the application of the stencil function in
conjunction with the stencil mask.

If the stencil test fails, the fragment is discarded (the color and depth values for
that pixel remain unchanged) and the stencil operation associated with the stencil
test failing is applied to that stencil value. If the stencil test passes, then the depth
test is applied. If the depth test passes (or if depth testing is disabled or if the visual
does not have a depth buffer), the fragment continues on through the pixel pipeline,
and the stencil operation corresponding to both stencil and depth passing is applied
to the stencil value for that pixel. If the depth test fails, the stencil operation set for
stencil passing but depth failing is applied to the pixel’s stencil value.
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Stencil Operation Results of Operation on Stencil Values

GL KEEP stencil value unchanged
GL ZERO stencil value set to zero
GL REPLACE stencil value replaced by stencil reference value
GL INCR stencil value incremented
GL DECR stencil value decremented
GL INVERT stencil value bitwise inverted

Table 5: Stencil Buffer Operations

Thus, the stencil test controls which fragments continue towards the frame-
buffer, and the stencil operation controls how the stencil buffer is updated by the
results of both the stencil test and the depth test.

The stencil operations available are described in Table 5.
The glStencilOp call sets the stencil operations for all three stencil test re-

sults: stencil fail, stencil pass/depth buffer fail, and stencil pass/depth buffer pass.
Writes to the stencil buffer can be disabled and enabled per bit by

glStencilMask. This allows an application to apply stencil tests without
the results affecting the stencil values, or to partition the stencil buffer into several
smaller logical stencil buffers. Keep in mind, however, that the GL INCR and
GL DECR operations operate on each stencil value as a whole, and may not operate
as expected when the stencil mask is not all ones. Stencil writes can also be
disabled by calling glStencilOp(GL KEEP, GL KEEP, GL KEEP).

There are three other important ways of controlling and accessing the sten-
cil buffer. Every stencil value in the buffer can be set to a desired value by call-
ingglClearStencil andglClear(GL STENCIL BUFFER BIT). The con-
tents of the stencil buffer can be read into system memory using glReadPixels
with the format parameter set to GL STENCIL INDEX. The contents of the stencil
buffer can also be set using glDrawPixels.

Different machines support different numbers of stencil bits per pixel. Use
glGetIntegerv(GL STENCIL BITS, ...) to see how many bits the
visual supports. If multiple stencil bits are available, the mask argument to
glStencilFunc can be used to divide up the stencil buffer into a number of dif-
ferent sections. This allows the application to store separate stencil values per pixel
within the same stencil buffer.

The following sections describe how to use the stencil buffer in a number of
useful multipass rendering techniques.
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Figure 36. Using stencil to dissolve between images

14.1 Dissolves with Stencil

Stencil buffers can be used to mask selected pixels on the screen. This allows for
pixel by pixel compositing of images. You can draw geometry or arrays of stencil
values to control, per pixel, what is drawn into the color buffer. One way to use this
capability is to composite multiple images.

A common film technique is the “dissolve”, where one image or animated se-
quence is replaced with another, in a smooth sequence. The stencil buffer can be
used to implement arbitrary dissolve patterns. The alpha planes of the color buffer
and the alpha function can also be used to implement this kind of dissolve, but using
the stencil buffer frees up the alpha planes for motion blur, transparency, smoothing,
and other effects.

The basic approach to a stencil buffer dissolve is to render two different images,
using the stencil buffer to control where each image can draw to the frame buffer.
This can be done very simply by defining a stencil test and associating a different
reference value with each image. The stencil buffer is initialized to a value such that
the stencil test will pass with one of the images’ reference values, and fail with the
other. An example of a dissolve partway between two images is shown in Figure 36.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is
all cleared to one value, allowing only one of the images to be drawn to the frame
buffer. Frame by frame, the stencil buffer is progressively changed (in an appli-
cation defined pattern) to a different value, one that passes only when compared
against the second image’s reference value. As a result, more and more of the first
image is replaced by the second.

Over a series of frames, the first image “dissolves” into the second, under con-
trol of the evolving pattern in the stencil buffer.

Here is a step-by-step description of a dissolve.
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1. Clear the stencil buffer with glClear(GL STENCIL BUFFER BIT)

2. Disable writing to the color buffer, using
glColorMask(GL FALSE,GL FALSE,GL FALSE,GL FALSE)

3. If the values in the depth buffer should not change, use
glDepthMask(GL FALSE)

For this example, we’ll have the stencil test always fail, and set the stencil op-
eration to write the reference value to the stencil buffer. Your application will also
need to turn on stenciling before you begin drawing the dissolve pattern.

1. Turn on stenciling; glEnable(GL STENCIL TEST)

2. Set stencil function to always fail; glStencilFunc(GL NEVER, 1,
1)

3. Set stencil op to write 1 on stencil test failure;
glStencilOp(GL REPLACE, GL KEEP, GL KEEP)

4. Write the dissolve pattern to the stencil buffer by drawing geometry or using
glDrawPixels.

5. Disable writing to the stencil buffer with glStencilMask(GL FALSE).

6. Set stencil function to pass on 0; glStencilFunc(GL EQUAL, 0, 1).

7. Enable color buffer for writing with glColorMask(GL TRUE,
GL TRUE, GL TRUE, GL TRUE).

8. If you’re depth testing, turn depth buffer writes back on with
glDepthMask.

9. Draw the first image. It will only be written where the stencil buffer values
are 0.

10. Change the stencil test so only values that are 1 pass;
glStencilFunc(GL EQUAL, 1, 1).

11. Draw the second image. Only pixels with stencil value of 1 will change.

12. Repeat the process, updating the stencil buffer, so that more and more stencil
values are 1, using your dissolve pattern, and redrawing image 1 and 2, until
the entire stencil buffer has 1’s in it, and only image 2 is visible.

If each new frame’s dissolve pattern is a superset of the previous frame’s pattern,
image 1 doesn’t have to be re-rendered. This is because once a pixel of image 1 is
replaced with image 2, image 1 will never be redrawn there. Designing the dissolve
pattern with this restriction can improve the performance of this technique.
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Rendered Directly Decaled Using Stencil

Figure 37. Using stencil to render coplanar polygons

14.2 Decaling with Stencil

In the dissolve example, the stencil buffer controls where pixels were drawn from
an entire scene. Using stencil to control pixels drawn from a particular primitive
can help solve a number of important problems:

1. Drawing depth-buffered, co-planar polygons without z-buffering artifacts.

2. Decaling multiple textures on a primitive.

The idea is similar to a dissolve: write values to the stencil buffer that mask
the area you want to decal. Then use the stencil mask to control two separate draw
steps; one for the decaled region, one for the rest of the polygon.

A useful example that illustrates the technique is rendering co-planar polygons.
If one polygon is to be rendered directly on top of another (runway markings, for
example), the depth buffer can’t be relied upon to produce a clean separation be-
tween the two. This is due to the quantization of the depth buffer. Since the poly-
gons have different vertices, the rendering algorithms can produce z values that are
rounded to the wrong depth buffer value, so some pixels of the back polygon may
show through the front polygon. In an application with a high frame rate, this re-
sults in a shimmering mixture of pixels from both polygons (commonly called “Z
fighting” or “flimmering”). An example is shown in in Figure 37.

To solve this problem, the closer polygons are drawn with the depth test dis-
abled, on the same pixels covered by the farthest polygons. It appears that the closer
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polygons are “decaled” on the farther polygons.
Decaled polygons can be drawn with the following steps:

1. Turn on stenciling; glEnable(GL STENCIL TEST).

2. Set stencil function to always pass; glStencilFunc(GL ALWAYS, 1,
1).

3. Set stencil op to set 1 if depth passes, 0 if it fails;
glStencilOp(GL KEEP, GL ZERO, GL REPLACE).

4. Draw the base polygon.

5. Set stencil function to pass when stencil is 1;
glStencilFunc(GL EQUAL, 1, 1).

6. Disable writes to stencil buffer; glStencilMask(GL FALSE).

7. Turn off depth buffering; glDisable(GL DEPTH TEST).

8. Render the decal polygon.

The stencil buffer doesn’t have to be cleared to an initial value; the stencil val-
ues are initialized as a side effect of writing the base polygon. Stencil values will
be one where the base polygon was successfully written into the frame buffer, and
zero where the base polygon generated fragments that failed the depth test. The
stencil buffer becomes a mask, ensuring that the decal polygon can only affect the
pixels that were touched by the base polygon. This is important if there are other
primitives partially obscuring the base polygon and decal polygons.

There are a few limitations to this technique. First, it assumes that the decal
polygon doesn’t extend beyond the edge of the base polygon. If it does, you’ll have
to clear the entire stencil buffer before drawing the base polygon, which is expen-
sive on some machines. If you are careful to redraw the base polygon with the sten-
cil operations set to zero the stencil after you’ve drawn each decaled polygon, you
will only have to clear the entire stencil buffer once, for any number of decaled poly-
gons.

Second, if the screen extents of the base polygons you’re decaling overlap,
you’ll have to perform the decal process for one base polygon and its decals be-
fore you move on to another base and decals. This is an important consideration if
your application collects and then sorts geometry based on its graphics state, where
the rendering order of geometry may be changed by the sort.

This process can be extended to allow a number of overlapping decal polygons,
the number of decals limited by the number of stencil bits available for the visual.
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The decals don’t have to be sorted. The procedure is the similar to the previous
algorithm, with the following extensions.

Assign a stencil bit for each decal and the base polygon. The lower the number,
the higher the priority of the polygon. Render the base polygon as before, except
instead of setting its stencil value to one, set it to the largest priority number. For
example, if there were three decal layers, the base polygon would have a value of
8.

When you render a decal polygon, only draw it if the decal’s priority number
is lower than the pixels it’s trying to change. For example, if the decal’s priority
number was 1, it would be able to draw over every other decal and the base poly-
gon; glStencilFunc(GL LESS, 1, 0) and glStencilOp(GL KEEP,
GL REPLACE, GL REPLACE).

Decals with the lower priority numbers will be drawn on top of decals with
higher ones. Since the region not covered by the base polygon is zero, no decals
can write to it. You can draw multiple decals at the same priority level. If you over-
lap them, however, the last one drawn will overlap the previous ones at the same
priority level.

Multiple textures can be drawn onto a polygon with a similar technique. Instead
of writing decal polygons, the same polygon is drawn with each subsequent texture
and an alpha value to blend the old pixel color and the new pixel color together.

14.3 Finding Depth Complexity with the Stencil Buffer

Finding depth complexity, or how many fragments were generated for each pixel
in a depth buffered scene, is important for analyzing graphics performance. It in-
dicates how well polygons are distributed across the frame buffer and how many
fragments were generated and discarded, clues for application tuning.

One way to show depth complexity is to use the color values of the pixels in
the scene to indicate the number of times a pixel was written. It is relatively easy
to draw an image representing depth complexity with the stencil buffer. The basic
approach is simple. Increment a pixel’s stencil value every time the pixel is written.
When the scene is finished, read back the stencil buffer and display it in the color
buffer, color coding the different stencil values.

This technique generates a count of the number of fragments generated for each
pixel, whether the depth test failed or not. By changing the stencil operations, a sim-
ilar technique could be used to count the number of fragments discarded after fail-
ing the depth test or to count the number of times a pixel was covered by fragments
passing the depth test.

Here’s the procedure in more detail:
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1. Clear the depth and stencil buffer;
glClear(GL STENCIL BUFFER BIT|GL DEPTH BUFFER BIT).

2. Enable stenciling; glEnable(GL STENCIL TEST).

3. Set up the proper stencil parameters; glStencilFunc(GL ALWAYS, 0,
0), glStencilOp(GL KEEP, GL INCR, GL INCR).

4. Draw the scene.

5. Read back the stencil buffer with glReadPixels, using
GL STENCIL INDEX as the format argument.

6. Draw the stencil buffer to the screen using glDrawPixels with
GL COLOR INDEX as the format argument.

You can control the mapping of stencil values to colors by turning on the color
mapping withglPixelTransferi(GL MAP COLOR, GL TRUE) and setting
the appropriate pixel transfer maps with glPixelMap. You can map the stencil
values to either RGBA or color index values, depending on the type of color buffer
to which you’re writing.

14.4 Compositing Images with Depth

Compositing separate images together is a useful technique for increasing the com-
plexity of a scene [12]. An image can be saved to memory, then drawn to the screen
using glDrawPixels. Both the color and depth buffer contents can be copied
into the frame buffer. This is sufficient for 2D style composites, where objects are
drawn on top of each other to create the final scene. To do true 3D compositing, it’s
necessary to use the color and depth values simultaneously, so that depth testing can
be used to determine which surfaces are obscured by others.

The stencil buffer can be used for true 3D compositing in a two pass operation.
The color buffer is disabled for writing, the stencil buffer is cleared, and the saved
depth values are copied into the frame buffer. Depth testing is enabled, insuring
that only depth values that are closer to the original can update the depth buffer.
glStencilOp is called to set a stencil buffer bit if the depth test passes.

The stencil buffer now contains a mask of pixels that were closer to the view
than the pixels of the original image. The stencil function is changed to accomplish
this masking operation, the color buffer is enabled for writing, and the color values
of the saved image are drawn to the frame buffer.

This technique works because the fragment operations, in particular the depth
test and the stencil test, are part of both the geometry and imaging pipelines in
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OpenGL. Here is the technique in more detail. It assumes that both the depth and
color values of an image have been saved to system memory, and are to be compos-
ited using depth testing to an image in the frame buffer:

1. Clear the stencil buffer using glClear, or’ing in
GL STENCIL BUFFER BIT

2. Disable the color buffer for writing with glColorMask

3. Set stencil values to 1 when the depth test passes by
calling glStencilFunc(GL ALWAYS, 1, 1), and
glStencilOp(GL KEEP, GL KEEP, GL REPLACE)

4. Ensure depth testing is set; glEnable(GL DEPTH TEST),
glDepthFunc(GL LESS)

5. Draw the depth values to the frame buffer with glDrawPixels, using
GL DEPTH COMPONENT for the format argument.

6. Set the stencil buffer to test for stencil values of
1 with glStencilFunc(GL EQUAL, 1, 1) and
glStencilOp(GL KEEP, GL KEEP, GL KEEP).

7. Disable the depth testing with glDisable(GL DEPTH TEST)

8. Draw the color values to the frame buffer with glDrawPixels, using
GL RGBA as the format argument.

At this point, both the depth and color values will have been merged, using the
depth test to control which pixels from the saved image would update the frame
buffer. Compositing can still be problematic when merging images with coplanar
polygons.

This process can be repeated to merge multiple images. The depth values of the
saved image can be manipulated by changing the values of GL DEPTH SCALE and
GL DEPTH BIAS with glPixelTransfer. This technique could allow you to
squeeze the incoming image into a limited range of depth values within the scene.

15 Line Rendering Techniques

15.1 Hidden Lines

This technique allows you to draw wireframe objects with the hidden lines removed,
or drawn in a style different from the ones that are visible. This technique can clarify
complex line drawings of objects, and improve their appearance [27] [4].
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The algorithm assumes that the object is composed of polygons. The algorithm
first renders the polygons of the objects, then the edges themselves, which make up
the line drawing. During the first pass, only the depth buffer is updated. During the
second pass, the depth buffer only allows edges that are not obscured by the objects
polygons to be rendered.

Here’s the algorithm in detail:

1. Disable writing to the color buffer with glColorMask

2. Enable depth testing with glEnable(GL DEPTH TEST)

3. Render the object as polygons

4. Enable writing to the color buffer

5. Render the object as edges

In order to improve the appearance of the edges (which may show depth buffer
aliasing artifacts), use polygon offset or stencil decaling techniques to draw the
polygon edges. The following technique works well, although its not completely
general. Use the stencil buffer to mask where all the lines, both hidden and visible,
are. Then use the stencil function to prevent the polygon rendering from updating
the depth buffer where the stencil values have been set. When the visible lines are
rendered, there is no depth value conflict, since the polygons never touched those
pixels.

Here’s the modified algorithm:

1. Disable writing to the color buffer with glColorMask

2. Disable depth testing; glDisable(GL DEPTH TEST)

3. Enable stenciling; glEnable(GL STENCIL TEST)

4. Clear the stencil buffer

5. Set the stencil buffer to set the stencil values to 1 where pixels are drawn;
glStencilFunc(GL ALWAYS, 1, 1); glStencilOp(GL KEEP,
GL KEEP, GL REPLACE)

6. Render the object as edges

7. Use the stencil buffer to mask out pixels where the sten-
cil value is 1; glStencilFunc(GL EQUAL, 1, 1) and
glStencilOp(GL KEEP, GL KEEP, GL KEEP)
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8. Render the object as polygons

9. Turn off stenciling glDisable(GL STENCIL TEST)

10. Enable writing to the color buffer

11. Render the object as edges

The only problem with this algorithm is if the hidden and visible lines aren’t all
the same color, or interpolate colors between endpoints. In this case, it’s possible
for a hidden and visible line to overlap, in which case the most recent line will be
the one that is drawn.

Instead of removing hidden lines, sometimes it’s desirable to render them with
a different color or pattern. This can be done with a modification of the algorithm:

1. Leave the color depth buffer enabled for writing

2. Set the color and/or pattern you want for the hidden lines

3. Render the object as edges

4. Disable writing to the color buffer

5. Render the object as polygons

6. Set the color and/or pattern you want for the visible lines

7. Render the object as edges

In this technique, all the edges are drawn twice; first with the hidden line pattern,
then with the visible one. Rendering the object as polygonsupdates the depth buffer,
preventing the second pass of line drawing from effecting the hidden lines.

15.2 Haloed Lines

Haloing lines makes it easier to understand a wireframe drawing. Lines that pass
behind other lines stop short a little before passing behind. It makes it clearer which
line is in front of the other.

Haloed lines can be drawn using the depth buffer. The technique has two passes.
First disable writing to the color buffer; the first pass only updates the depth buffer.
Set the line width to be greater than the normal line width you’re using. The width
you choose will determine the extent of the halos. Render the lines. Now set the
line width back to normal, and enable writing to the color buffer. Render the lines
again. Each line will be bordered on both sides by a wider “invisible line” in the
depth buffer. This wider line will mask out other lines as they pass beneath it.
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1. Disable writing to the color buffer

2. Enable the depth buffer for writing

3. Increase line width

4. Render lines

5. Restore line width

6. Enable writing to the color buffer

7. Ensure that depth testing is on, passing on GL LEQUAL

8. Render lines

This method will not work where multiple lines with the same depth meet. In-
stead of connecting, all of the lines will be “blocked” by the last wide line drawn.
There can also be depth buffer aliasing problems when the wide line z values are
changed by another wide line crossing it. This effect becomes more pronounced if
the narrow lines are widened to improve image clarity.

To avoid this problem, use polygon offset to move the narrower visible lines in
front of the obscuring lines. The minimum offset should be used to avoid lines from
one surface of the object “popping through” the lines of a another surface separated
by only a small depth value.

If the vertices of the objects faces are oriented to allow face culling, Then face
culling can be used to sort the object surfaces and allow a more robust technique:
The lines of the objects back faces are drawn, then obscuring wide lines of the front
face are drawn, then finally the narrow lines of the front face are drawn. No special
depth buffer techniques are needed.

1. Cull the front faces of the object

2. Draw the object as lines

3. Cull the back faces of the object

4. Draw the object as wide lines in the background color

5. Draw the object as lines

Since the depth buffer isn’t needed, there are no depth aliasing problems. The
backface culling technique is fast and works well, but is not general. It won’t work
for multiple obscuring or intersecting objects.
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Haloed Line

Depth buffer
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Figure 38. Haloed Line

15.3 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge
around a complex object. A silhouette edge defines the outer boundaries of the ob-
ject with respect to the viewer.

The stencil buffer can be used to render a silhouette edge around an object. With
this technique, you can render the object, then draw a silhouette around it, or just
draw the silhouette itself [40].

The object is drawn 4 times; each time displaced by one pixel in the x or y di-
rection. This offset must be done in window coordinates. An easy way to do this
is to change the viewport coordinates each time, changing the viewport transform.
The color and depth values are turned off, so only the stencil buffer is affected.

Every time the object covers a pixel, it increments the pixel’s stencil value.
When the four passes have been completed, the perimeter pixels of the object will
have stencil values of 2 or 3. The interior will have values of 4, and all pixels sur-
rounding the object exterior will have values of 0 or 1.

Here is the algorithm in detail:

1. If you want to see the object itself, render it in the usual way.

2. Clear the stencil buffer to zero.

3. Disable writing to the color and depth buffers

4. Set the stencil function to always pass, set the stencil operation to increment

5. Translate the object by +1 pixel in y, using glViewport
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6. Render the object

7. Translate the object by -2 pixels in y, using glViewport

8. Render the object

9. Translate by +1 pixel x and +1 pixel in y

10. Render

11. Translate by -2 pixel in x

12. Render

13. Translate by +1 pixel in x. You should be back to the original position.

14. Turn on the color and depth buffer

15. Set the stencil function to pass if the stencil value is 2 or 3. Since the possible
values range from 0 to 4, the stencil function can pass if stencil bit 1 is set
(counting from 0).

16. Rendering any primitive that covers the object will draw only the pixels of the
silhouette. For a solid color silhouette, render a polygon of the color desired
over the object.

16 Tuning Your OpenGL Application

Tuning your software makes it use hardware capabilities more effectively. Writing
high-performance code is usually more complex than just following a set of rules.
Most often, it involves making trade-offs between special functionality,quality, and
performance for a particular application.

16.1 What Is Pipeline Tuning?

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the
code in which a program spends 90% of its time. Pipeline tuning uses a different
approach: it looks for bottlenecks, overloaded stages that are holding up other pro-
cesses.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent
in the bottleneck is the best way to improve performance. Conversely, doing work
that further narrows the bottleneck, or that creates a new bottleneck somewhere else,
will further degrade performance. If different parts of the hardware are responsible
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for different parts of the pipeline, the workload can be increased at other parts of
the pipeline without degrading performance, as long as that part does not become
a new bottleneck. In this way, an application can sometimes be altered to draw a
higher-quality image with no performance degradation.

Different programs stress different parts of the pipeline, so it’s important to un-
derstand which elements in the graphics pipeline are the bottlenecks for your pro-
gram.

Note that in a software implementation, all the work is done on the host CPU.
As a result, it doesn’t make sense to increase the work in the geometry pipeline if
rasterization is the bottleneck: you’d be increasing the work for the CPU and de-
creasing performance.

16.1.1 Three-Stage Model of the Graphics Pipeline

The graphics pipeline consists of three conceptual stages. Depending on the imple-
mentation, all parts may be done by the CPU or parts of the pipeline may be done
by an accelerator card. The conceptual model is useful in either case: it helps you
to know where your application spends its time. The stages are:

� The application. The application program running on the CPU, feeding com-
mands to the graphics subsystem (always on the CPU).

� The geometry subsystem. The per-polygon operations, such as coordinate
transformations, lighting, texture coordinate generation, and clipping (may
be hardware-accelerated).

� The raster subsystem. The per-pixel operations, such as the simple operation
of writing color values into the framebuffer, or more complex operations like
depth buffering, alpha blending, and texture mapping (may be hardware ac-
celerated).

The amount of work required from the different pipeline stages varies depend-
ing on what the application does. For example, consider a program that draws
a small number of large polygons. Because there are only a few polygons, the
pipeline stage that does geometry operations is lightly loaded. Because those few
polygons cover many pixels on the screen, the pipeline stage that does rasterization
is heavily loaded.

To speed up this program, you must speed up the rasterization stage, either by
drawing fewer pixels, or by drawing pixels in a way that takes less time by turning
off modes like texturing, blending, or depth-buffering. In addition, because spare
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capacity is available in the per-polygon stage, you may be able to increase the work-
load at that stage without degrading performance. For example, try to use a more
complex lighting model, or define geometries such that they remain the same size
but look more detailed because they are composed of a larger number of polygons.

16.1.2 Finding Bottlenecks in Your Application

The basic strategy for isolating bottlenecks is to measure the time it takes to exe-
cute a program (or part of a program) and then change the code in ways that don’t
alter its performance (except by adding or subtracting work at a single point in the
graphics pipeline). If changing the amount of work at a given stage of the pipeline
does not alter performance appreciably, that stage is not the bottleneck. If there is
a noticeable difference in performance, you’ve found a bottleneck.

Application bottlenecks. To see if your application is the bottleneck, remove as
much graphics work as possible, while preserving the behavior of the application
in terms of the number of instructions executed and the way memory is accessed.
Often, changing just a few OpenGL calls is a sufficient test. For example, replac-
ing the vertex and normal calls glVertex3fv and glNormal3fv with color
subroutine calls (glColor3fv) preserves the CPU behavior while eliminating all
drawing and lighting work in the graphics pipeline. If making these changes does
not significantly improve performance, then your application is the bottleneck.

Geometry bottlenecks. Programs that create bottlenecks in the geometry (per-
polygon) stage are termed transform limited. To test for bottlenecks in geometry
operations, change the program so that the application code runs at the same speed
and the same number of pixels are filled, but the geometry work is reduced. For
example, if you are using lighting, call glDisable with a GL LIGHTING argu-
ment to temporarily turn off lighting. If performance improves, your application has
a per-polygon bottleneck. For more information, see “Tuning the Geometry Sub-
system”.

Rasterization bottlenecks. Programs that cause bottlenecks at the rasterization
(per-pixel) stage in the pipeline are fillrate limited. To test for bottlenecks in raster-
ization operations, shrink objects or make the window smaller to reduce the num-
ber of active pixels. This technique won’t work if your program alters its behavior
based on the sizes of objects or the size of the window. You can also reduce the work
done per pixel by turning off per-pixel operations such as depth-buffering, textur-
ing, or alpha blending. If any of these experiments speed up the program, it has a
fill-rate bottleneck. For more information, see “Tuning the Raster Subsystem”.
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Performance Parameter Pipeline Stage

Amount of data per polygon All stages
Time of application overhead Application
Transform rate and mode setting for polygon Geometry subsystem
Total number of polygons in a frame Geometry and raster subsystem
Number of pixels filled Raster subsystem
Fill rate for the given mode settings Raster subsystem
Time of screen and/or depth buffer clear Raster subsystem

Table 6: Factors Influencing Performance

Many programs draw a variety of things, each of which stresses different parts
of the system. Decompose such a program into pieces and time each piece. You
can then focus on tuning the slowest pieces.

16.1.3 Factors Influencing Performance

Table 6 provides an overview of factors that may limit rendering performance and
the part of the pipeline they belong to.

16.2 Optimizing Your Application Code

16.2.1 Optimize Cache and Memory Usage

On most systems, memory is structured as a hierarchy that contains a small amount
of faster, more expensive memory at the top and a large amount of slower memory
at the base. The hierarchy is organized from registers in the CPU at the top down
to the disks at the bottom. As memory locations are referenced, they are automati-
cally copied into higher levels of the hierarchy, so data that is referenced most often
migrates to the fastest memory locations.

The goal of machine designers and programmers is to maximize the chance of
finding data as high up in the memory hierarchy as possible. To achieve this goal,
algorithms for maintaining the hierarchy, embodied in the hardware and the operat-
ing system, assume that programs have locality of reference in both time and space;
that is, programs keep frequently accessed locations close together. Performance
increases if you respect the degree of locality required by each level in the memory
hierarchy.
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Minimizing Cache Misses. Most CPU’s have first-level instruction and data
caches on chip and many have second-level cache(s) that are bigger but somewhat
slower. Memory accesses are much faster if the data is already loaded into the first-
level cache. When your program accesses data that isn’t in one of the caches, it
gets a cache miss. This causes a block of consecutively addressed words, including
the data that you just accessed, to be loaded into the cache. Since cache misses are
costly, you should try to minimize them, using these tips:

� Keep frequently accessed data together. Store and access frequently used
data in flat, sequential data structures and avoid pointer indirection. This way,
the most frequently accessed data remains in the first-level cache as much as
possible.

� Access data sequentially. Each cache miss brings in a block of consecutively
addressed words of needed data. If you are accessing data sequentially then
each cache miss will bring in n words (where n is system dependent); if you
are accessing only every nth word, then you will be constantly reading in un-
needed data, degrading performance.

� Avoid simultaneously traversing several large buffers of data, such as an array
of vertex coordinates and an array of colors within a loop since there can be
cache conflicts between the buffers. Instead, pack the contents into one buffer
whenever possible. If you are using vertex arrays, try to use interleaved ar-
rays. (For more information on vertex arrays see “Rendering Geometry Ef-
ficiently”.) However, if packing your data forces a big increase in the size of
the data, it may not be the right optimization for your program.

16.2.2 Store Data in a Format That is Efficient for Rendering

Putting some extra effort into generating a simpler database makes a significant dif-
ference when traversing that data for display. A common tendency is to leave the
data in a format that is good for loading or generating the object, but non-optimal
for actually displaying it. For peak performance, do as much of the work as possi-
ble before rendering. Preprocessing of data is typically done at initialization time
or when changing from a modeling to a fast-rendering mode.

See “Rendering Geometry Efficiently” and “Rendering Images Efficiently” for
tips on how to store your geometric data and image data to make it more efficient
for rendering.

Minimizing State Changes. Your program will almost always benefit if you re-
duce the number of state changes. A good way to do this is to sort your scene data
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according to what state is set and render primitives with the same state settings to-
gether. Primitives should be sorted by the most expensive state settings first. Typi-
cally it is expensive to change texture binding, material parameters, fog parameters,
texture filter modes, and the lighting model. However, some experimentation will
be required to determine which state settings are most expensive on the system you
are running on. For example, on systems that accelerate rasterization, it may not be
that expensive to change rasterization controls such as the depth test function and
whether or not depth testing is enabled. But if you are running on a system with
software rasterization, this may cause the graphics pipeline to be revalidated.

It is also important to avoid redundant state changes. If your data is stored in a
hierarchical database, make decisions about which geometry to display and which
modes to use at the highest possible level. Decisions that are made too far down the
tree can be redundant.

16.2.3 Per-Platform Tuning

Many of the performance tuning techniques discussed here (e.g., minimizing the
number of state changes and disabling features that aren’t required) are a good idea
no matter what system you are running on. Other tuning techniques need to be pro-
grammed for a particular system. For example, before you sort your database based
on state changes, you need to determine which state changes are the most expensive
for each system you are interested in running on.

In addition, you may want to modify the behavior of your program depending
on which modes are fast. This is especially important for programs that must run at
a particular frame rate. Features may need to be disabled in order to maintain the
frame rate. For example, if a particular texture mapping environment is slow on
one of your target systems, you may need to disable texture mapping or change the
texture environment whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you will
need to do some performance characterization. This isn’t always straightforward.
Often a particular device is able to accelerate certain features, but not all at the same
time. Thus it is important to test the performance for combinations of features that
you will be using. For example, a graphics adapter may accelerate texture mapping
but only for certain texture parameters and texture environment settings. Even if all
texture modes are accelerated, experimentation will be required to see how many
textures you can use at once without causing the adapter to page textures in and out
of the local memory.

An even more complicated situation arises if the graphics adapter has a shared
pool of memory that is allocated to several tasks. For example, the adapter may not
have a frame buffer deep enough to contain a depth buffer and a stencil buffer. In
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this case, the adapter would be able to accelerate both depth buffering and stenciling
but not at the same time. Or perhaps, depth buffering and stenciling can both be
accelerated but only for certain stencil buffer depths.

Typically, per-platform testing is done at initialization time. You should do
some trial runs through your data with different combinations of state settings and
calculate the time it takes to render in each case. You may want to save the results
in a file so your program doesn’t have to do this each time it starts up. You can find
an example of how to measure the performance of particular OpenGL operations
and save the results using the isfast program on the website.

16.3 Tuning the Geometry Subsystem

16.3.1 Use Expensive Modes Efficiently

OpenGL offers many features that create sophisticated effects with excellent perfor-
mance. However, these features have some performance cost, compared to drawing
the same scene without them. Use these features only where their effects, perfor-
mance, and quality are justified.

� Turn off features when they are not required. Once a feature has been turned
on, it can slow the transform rate even when it has no visible effect.

For example, the use of fog can slow the transform rate of polygons even
when the polygons are too close to show fog, and even when the fog
density is set to zero. For these conditions, turn off fog explicitly with
glDisable(GL FOG).

� Minimize mode changes. Be especially careful about expensive mode
changes such as changingglDepthRange parameters and changing fog pa-
rameters when fog is enabled.

� For optimum performance, use flat shading whenever possible. This re-
duces the number of lighting computations from one per-vertex to one per-
primitive, and also reduces the amount of data that must be processed for each
primitive. This is particularly important for high-performance line drawing.

16.3.2 Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the ma-
trix type is known. Follow these guidelines to achieve optimal transform rates:

� Use glLoadIdentity to initialize a matrix, rather than loading your own
copy of the identity matrix.

173



Programming with OpenGL: Advanced Rendering

� Use specific matrix calls such as glRotate, glTranslate, and
glScale rather than composing your own rotation, translation, or scale
matrices and calling glLoadMatrix and/or glMultMatrix.

16.3.3 Optimizing Lighting Performance

OpenGL offers a large selection of lighting features. The penalties some features
carry may vary depending on the hardware you’re running on. Be prepared to ex-
periment with the lighting configuration.

As a general rule, use the simplest possible lightingmodel: a single infinite light
with an infinite viewer. For some local effects, try replacing local lights with infinite
lights and a local viewer.

Use the following settings for peak performance lighting:

� Single infinite light.

� Nonlocal viewing. Set GL LIGHT MODEL LOCAL VIEWER to GL FALSE
in glLightModel. (the default)

� Single-sided lighting. Set GL LIGHT MODEL TWO SIDE to GL FALSE in
glLightModel. (the default)

� Disable GL COLOR MATERIAL.

� Disable GL NORMALIZE. Since it is usually necessary to renormalize nor-
mals when the model-view matrix includes a scaling transformation, consider
preprocessing the scene to eliminate scaling.

In addition, follow these guidelines to achieve peak lighting performance:

� Avoid using multiple lights.

There may be a sharp drop in lighting performance when adding lights.

� Avoid using local lights.

Local lights are noticeably more expensive than infinite lights.

� Don’t change material parameters frequently.

Changing material parameters can be expensive. If you need to change
the material parameters many times per frame, consider rearranging
the scene traversal to minimize material changes. Also consider using
glColorMaterial if you need to change some material parameters
often, rather than using glMaterial to change parameters explicitly.
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The following code fragment illustrates how to change ambient and diffuse
material parameters at every polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
/* Draw triangles: */
glBegin(GL_TRIANGLES);
/* Set ambient and diffuse material parameters: */
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
...
glEnd();

� Avoid local viewer.

Local viewing: Setting GL LIGHT MODEL LOCAL VIEWER to GL TRUE
with glLightModel, while using infinite lights only, reduces performance
by a small amount. However, each additional local light noticeably degrades
the transform rate.

� Disable two-sided lighting.

Two-sided lighting illuminates both sides of a polygon. This is much faster
than the alternative of drawing polygons twice. However, using two-sided
lighting is significantly slower than one-sided lighting for a single rendering
of an object.

� Disable GL NORMALIZE.

If possible, provide unit-length normals and don’t call glScale to avoid
the overhead of GL NORMALIZE. On some OpenGL implementations it
may be faster to simply rescale the normal, instead of renormalizing
it, when the modelview matrix contains a uniform scale matrix. The
EXT rescale normal extension may be supported by these implemen-
tations to improve the performance of this case. If so, you can enable
GL RESCALE NORMAL EXT and the normal will be rescaled making re-
normalization unnecessary.

� Avoid changing the GL SHININESS material parameter if possible.

Setting a new GL SHININESS value requires significant computation each
time.
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� Avoid using lighting calls inside a glBegin/glEnd sequence.

� If possible, avoid calls toglMaterial during aglBegin/glEnd drawing
sequence.

Calling glMaterial between glBegin/glEnd has a serious perfor-
mance impact. While making such calls to change colors by changing ma-
terial properties is possible, the performance penalty makes it unadvisable.
Use glColorMaterial instead.

16.3.4 Advanced Geometry-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing.
Follow these guidelines to draw objects with complex surface characteristics:

� Use texture to replace complex geometry.

Texture mapping can be used instead of extra polygons to add detail to a ge-
ometric object. This can greatly simplify geometry, resulting in a net speed
increase and an improved picture, as long as it does not cause the program to
become fill-limited.

� Use textured polygons as single-polygon billboards.

Billboards are polygons that are fixed at a point and rotated about an axis, or
about a point, so that the polygon always faces the viewer. Billboards can be
used for distant objects to save geometry.

� Use glAlphaFunc in conjunction with one or more textures to give the ef-
fect of rather complex geometry on a single polygon.

Consider drawing an image of a complex object by texturing it onto a sin-
gle polygon. Set alpha values to zero in the texture outside the image of the
object. (The edges of the object can be antialiased by using alpha values
between zero and one.) Orient the polygon to face the viewer. To prevent
pixels with zero alpha values in the textured polygon from being drawn, call
glAlphaFunc(GL NOTEQUAL, 0.0).

This effect is often used to create objects like trees that have complex edges
or many holes through which the background should be visible (or both).

� Eliminate objects or polygons that will be out of sight or too small to see.

� Use fog to increase visual detail without drawing small background objects.
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16.4 Tuning the Raster Subsystem

An explosion of both data and operations is required to rasterize a polygon as indi-
vidual pixels. Typically, the operations include depth comparison, Gouraud shad-
ing, color blending, logical operations, texture mapping, and possibly antialiasing.
The following techniques can improve performance for a fill-limited applications.

16.4.1 Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For exam-
ple, if you are drawing a sphere, half of its polygons are backfacing at any given
time. Backface and frontface removal is done after transformation calculations
but before per-fragment operations. This means that backface removal may make
transform-limited polygons somewhat slower, but make fill-limited polygons sig-
nificantly faster. You can turn on backface removal when you are drawing an object
with many backfacing polygons, then turn it off again when drawing is completed.

16.4.2 Minimizing Per-Pixel Calculations

Another way to improve fill-limited drawing is to reduce the work required to render
fragments.

Avoid Unnecessary Per-Fragment Operations. Turn off per-fragment opera-
tions for objects that do not require them, and structure the drawing process to mini-
mize their use without causing excessive toggling of modes. For example, if you are
using alpha blending to draw some partially transparent objects, make sure that you
disable blending when drawing the opaque objects. Also, if you enable alpha test
to render textures with holes through which the background can be seen, be sure to
disable alpha testing when rendering textures or objects with no holes. It also helps
to sort primitives so that primitives that require alpha blending or alpha test to be
enabled, are drawn at the same time.

Use Simple Fill Algorithms for Large Polygons. If you are drawing very large
polygons such as “backgrounds”, your performance will be improved if you use
simple fill algorithms. For example, you should set glShadeModel to GL FLAT
if smooth shading isn’t required. Also, disable per-fragment operations such as
depth buffering, if possible. If you need to texture the background polygons, con-
sider using GL REPLACE for the texture environment.
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Use the Depth Buffer Efficiently. Any rendering operation can become fill-
limited for large polygons. Clever structuring of drawing can eliminate or minimize
per-pixel depth buffering operations. For example, if large backgrounds are drawn
first, they do not need to be depth buffered. It is better to disable depth buffering
for the backgrounds and then enable it for other objects where it is needed.

Games and flight simulators often use this technique. The sky and ground are
drawn with depth buffering disabled, then the polygons lying flat on the ground
(runway and grid) are drawn without suffering a performance penalty. Finally,
depth buffering is enabled for drawing the mountains and airplanes.

There are many other special cases in which depth buffering might not be re-
quired. For example, terrain, ocean waves, and 3D function plots are often repre-
sented as height fields (X-Y grids with one height value at each lattice point). It’s
straightforward to draw height fields in back-to-front order by determining which
edge of the field is furthest away from the viewer, then drawing strips of trian-
gles or quadrilaterals parallel to that starting edge and working forward. The entire
height field can be drawn without depth testing provided it doesn’t intersect any
piece of previously-drawn geometry. Depth values need not be written at all, un-
less subsequently-drawn depth buffered geometry might intersect the height field;
in that case, depth values for the height field should be written, but the depth test
can be avoided by calling glDepthFunc(GL ALWAYS).

16.4.3 Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

� Avoid frequent switching between texture maps. If you have many small tex-
tures, consider combining them into a single larger, tiled texture. Rather than
switching to a new texture before drawing a textured polygon choose texture
coordinates that select the appropriate small texture tile within the large tex-
ture.

� Use texture objects to encapsulate texture data. Place all the
glTexImage calls (including mipmaps) required to completely spec-
ify a texture and the associated glTexParameter calls (which set texture
properties) into a texture object and bind this texture object to the rendering
context. This allows the implementation to compile the texture into a format
that is optimal for rendering and, if the system accelerates texturing, to
efficiently manage textures on the graphics adapter.

� If possible, use glTexSubImageD to replace all or part of an existing tex-
ture image rather than the more costly operations of deleting and creating an
entire new image.
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� Call glAreTexturesResident to make sure that all your textures are
resident during rendering. (On systems where texturing is done on the host,
glAreTexturesResident always returns GL TRUE.) If necessary, re-
duce the size or internal format resolution of your textures until they all fit
into memory. If such a reduction creates intolerably fuzzy textured objects,
you may give some textures lower priority.

� Avoid expensive texture filter modes. On some systems, trilinear filtering is
much more expensive than point sampling or bilinear filtering.

16.4.4 Clearing the Color and Depth Buffers Simultaneously

The most basic per-frame operations are clearing the color and depth buffers. On
some systems, there are optimizations for common special cases of these opera-
tions.

Whenever you need to clear both the color and depth
buffers, don’t clear each buffer independently. Instead use
glClear(GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT)

Also, be sure to disable dithering before clearing.

16.5 Rendering Geometry Efficiently

16.5.1 Using Peak-Performance Primitives

This section describes how to draw geometry with optimal primitives. Consider
these guidelines to optimize drawing:

� Use connected primitives (line strips, triangle strips, triangle fans, and quad
strips).

Connected primitives are desirable because they reduce the amount of data
and the amount of per-polygon or per-line work done by the OpenGL. Be
sure to put as many vertices as possible in a glBegin/glEnd sequence to
amortize the cost of a glBegin and glEnd.

� Avoid using glBegin(GL POLYGON).

When rendering independent triangles, use glBegin(GL TRIANGLES)
instead of glBegin(GL POLYGON). Also, when rendering independent
quadrilaterals, use glBegin(GL QUADS).

� Batch primitives between glBegin and glEnd.
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Use a single call to glBegin(GL TRIANGLES) to draw multiple inde-
pendent triangles rather than calling glBegin(GL TRIANGLES) multiple
times. Also, use a single call to glBegin(GL QUADS) to draw multiple
independent quadrilaterals, and a single call to glBegin(GL LINES) to
draw multiple independent line segments.

� Use “well-behaved” polygons–convexand planar, with only three or four ver-
tices.

Concave and self-intersecting polygons must be tessellated by GLU before
they can be drawn, and are therefore prohibitively expensive. Nonplanar
polygons and polygons with large numbers of vertices are more likely to ex-
hibit shading artifacts.

If your database has polygons that are not well-behaved, perform an initial
one-time pass over the database to transform the troublemakers into well-
behaved polygons and use the new database for rendering. You can store the
results in OpenGL display lists. Using connected primitives results in addi-
tional gains.

� Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors
sent per polygon. Setting a color or normal per vertex, regardless of the
glShadeModel used, may be slower than setting only a color per poly-
gon, because of the time spent sending the extra data and resetting the current
color. The number of normals and colors per polygon also directly affects the
size of a display list containing the object.

� Group like primitives and minimize state changes to reduce pipeline revali-
dation.

16.5.2 Using Vertex Arrays

Vertex arrays are available in OpenGL 1.1. They offer the following benefits:

� The OpenGL implementation can take advantage of uniform data formats.

� TheglInterleavedArrays call lets you specify packed vertex data eas-
ily. Packed vertex formats are typically faster for OpenGL to process.

� The glDrawArrays call reduces subroutine call overhead.

� The glDrawElements call reduces subroutine call overhead and also re-
duces per-vertex calculations because vertices are reused.
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� Use the EXT compiled vertex array extension if it is available. This
extension allows you to lock down the portions of the arrays that you are us-
ing. This way the OpenGL implementation can DMA the arrays to the graph-
ics adapter or reuse per-vertex calculations for vertices that are shared by ad-
jacent primitives.

If you use glBegin and glEnd instead of glDrawArrays or
glDrawElements calls, put as many vertices as possible between the glBegin
and the glEnd calls.

16.5.3 Using Display Lists

You can often improve performance by storing frequently used commands in a dis-
play list. If you plan to redraw the same geometry multiple times, or if you have a
set of state changes that need to be applied multiple times, consider using display
lists. Display lists allow you to define the geometry and/or state changes once and
execute them multiple times. Some graphics hardware may store display lists in
dedicated memory or may store the data in an optimized form for rendering.

The biggest drawback of using display lists is data expansion. The display list
contains an entire copy of all your data plus additional data for each command and
for each list. As a result, tuning for display lists focuses mainly on reducing storage
requirements. Performance improves if the data that is being traversed fits in the
cache. Follow these rules to optimize display lists:

� Call glDeleteLists to delete display lists that are no longer needed. This
frees storage space used by the deleted display lists and expedites the creation
of new display lists.

� Avoid duplication of display lists. For example, if you have a scene with 100
spheres of different sizes and materials, generate one display list that is a unit
sphere centered about the origin. Then reference the sphere many times, set-
ting the appropriate material properties and transforms each time.

� Make the display lists as flat as possible, but be sure not to exceed the
cache size. Avoid using an excessive hierarchy with many invocations to
glCallList. Each glCallList invocation requires the OpenGL im-
plementation to do some work (eg., a table lookup) to find the designated dis-
play list. A flat display list requires less memory and yields simpler and faster
traversal. It also improves cache coherency.

On the other hand, excessive flattening increases the size. For example, if
you’re drawing a car with four wheels, having a hierarchy with four pointers
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from the body to one wheel is preferable to a flat structure with one body and
four wheels.

� Avoid creating very small display lists. Very small lists may not perform well
since there is some overhead when executing a list. Also, it is often inefficient
to split primitive definitions across display lists.

� If appropriate, store state settings with geometry; it may improve perfor-
mance.

For example, suppose you want to apply a transformation to some geomet-
ric objects and then draw the result. If the geometric objects are to be trans-
formed in the same way each time, it is better to store the matrix in the display
list.

16.5.4 Balancing Polygon Size and Pixel Operations

The optimum size of polygons depends on the other operations going on in the
pipeline:

� If the polygons are too large for the fill-rate to keep up with the rest of the
pipeline, the application is fill-rate limited. Smaller polygons balance the
pipeline and increase the polygon rate.

� If the polygons are too small for the rest of the pipeline to keep up with fill-
ing, then the application is transform limited. Larger and fewer polygons, or
fewer vertices, balance the pipeline and increase the fill rate.

16.6 Rendering Images Efficiently

To improve performance when drawing pixel rectangles, follow these guidelines:

� Disable all per-fragment operations.

� Disable texturing and fog.

� Define images in the native hardware format so type conversion is not nec-
essary.

� Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to
overload in host bandwidth, processing, or rasterizing. When all modes are
off, the path is most likely limited by host bandwidth, and a wise choice of
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host pixel format and type pays off tremendously. For this reason, using type
GL UNSIGNED BYTE, for the image components is sometimes faster.

Zooming up pixels may create a raster bottleneck.

� A big pixel rectangle has a higher throughput (that is, pixels per second) than
a small rectangle. Because the imaging pipeline is tuned to trade off a rela-
tively large setup time with a high throughput, a large rectangle amortizes the
setup cost over many pixels.

16.7 Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of
applications. This section discusses those factors.

16.7.1 Factors Contributing to Animation Speed

The smoothness of an animation depends on its frame rate. The more frames ren-
dered per second, the smoother the motion appears.

Smooth animation also requires double buffering. In double buffering, one
framebuffer holds the current frame, which is scanned out to the monitor by video
hardware, while the rendering hardware is drawing into a second buffer that is not
visible. When the new framebuffer is ready to be displayed, the system swaps the
buffers. The system must wait until the next vertical retrace period between raster
scans to swap the buffers, so that each raster scan displays an entire stable frame,
rather than parts of two or more frames.

Frame rates must be integral multiples of the screen refresh time, which is 16.7
msec (milliseconds) for a 60-Hz monitor. If the draw time for a frame is slightly
longer than the time for n raster scans, the system waits until the n+1st vertical re-
trace before swapping buffers and allowing drawing to continue, so the total frame
time is (n+1)*16.7 msec.

To summarize: A change in the time spent rendering a frame has no visible ef-
fect unless it changes the total time to a different integer multiple of the screen re-
fresh time.

If you want an observable performance increase, you must reduce the render-
ing time enough to take a smaller number of 16.7 msec raster scans. Alternatively,
if performance is acceptable, you can add work without reducing performance, as
long as the rendering time does not exceed the current multiple of the raster scan
time.

To help monitor timing improvements, turn off double buffering. If you don’t,
it’s difficult to know if you’re near a 16.7 msec boundary.
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16.7.2 Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing mea-
surements in single-buffer mode only. For more detailed information, see “Taking
Timing Measurements”.

In addition, follow these guidelines to optimize frame rate performance:

� Reduce drawing time to a lower multiple of the screen refresh time.

This is the only way to produce an observable performance increase.

� Perform non-graphics computation after swapping buffers.

A program is free to do non-graphics computation during the wait cycle be-
tween vertical retraces. Therefore, the procedure for rendering a frame is:
call swap buffers immediately after sending the last graphics call for the cur-
rent frame, perform computation needed for the next frame, then execute
OpenGL calls for the next frame.

� Do non-drawing work after a screen clear.

Clearing a full screen takes time. If you make additional drawing calls im-
mediately after a screen clear, you may fill up the graphics pipeline and force
the program to stall. Instead, do some non-drawing work after the clear.

16.8 Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It
helps you determine which changes to your code have a noticeable effect on the
speed of your application.

To achieve performance that is demonstrably close to the best the hardware can
achieve, you can first follow the more general tuning tips provided here, but you
then need to apply a rigorous and systematic analysis.

16.8.1 Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to
do and then calculating how long that should take, based on the known performance
characteristics of the hardware. Compare this calculation of expected performance
with the performance actually observed and continue to apply the tuning techniques
until the two match more closely. At this point, you have a detailed accounting of
how your program spends its time, and you are in a strong position both to tune fur-
ther and to make appropriate decisions considering the speed-versus-quality trade-
off.
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The following parameters determine the performance of most applications:

� Total number of polygons in a frame

� Transform rate for the given polygon type and mode settings

� Number of pixels filled

� Fill rate for the given mode settings

� Time of color and depth buffer clear

� Time of buffer swap

� Time of application overhead

� Number of attribute changes and time per change

16.8.2 Achieving Accurate Timing Measurements

Consider these guidelines to get accurate timing measurements:

� Take measurements on a quiet system. Verify that no unusual activity is tak-
ing place on your system while you take timing measurements. Terminate
other applications. For example, don’t have a clock or a network application
running while you are benchmarking.

� Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time
that’s at least one hundred times the clock resolution. A good rule of thumb
is to benchmark something that takes at least two seconds so that the uncer-
tainty contributed by the clock reading is less than one percent of the total er-
ror. To measure something that’s faster, write a loop to execute the test code
repeatedly.

� Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a
given timing trial. If the scene changes, the current bottleneck in the graphics
pipeline may change, making your timing measurements meaningless. For
example, if you are benchmarking the drawing of a rotating airplane, choose
a single frame and draw it repeatedly, instead of letting the airplane rotate.
Once a single frame has been analyzed and tuned, look at frames that stress
the graphics pipeline in different ways, then analyze and tune them individ-
ually.
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� Compare multiple trials.

Run your program multiple times and try to understand variance in the tri-
als. Variance may be due to other programs running, system activity, prior
memory placement, or other factors.

� Call glFinish before reading the clock at the start and at the end of the
time trial.

This is important if you are using a machine with hardware acceleration be-
cause the graphics commands are put into a hardware queue in the graphics
subsystem, to be processed as soon as the graphics pipeline is ready. The CPU
can immediately do other work, including issuing more graphics commands
until the queue fills up.

When benchmarking a piece of graphics code, you must include in your mea-
surements the time it takes to process all the work left in the queue after the
last graphics call. Call glFinish at the end of your timing trial, just be-
fore sampling the clock. Also call glFinish before sampling the clock
and starting the trial, to ensure no graphics calls remain in the graphics queue
ahead of the process you are timing.

16.8.3 Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

� Determine how many polygons are being drawn and estimate how many pix-
els they cover on the screen. Have your program count the polygons when
you read in the database. To determine the number of pixels filled, start by
making a visual estimate. Be sure to include surfaces that are hidden behind
other surfaces, and notice whether or not backface elimination is enabled. For
greater accuracy, use feedback mode and calculate the actual number of pix-
els filled or use the stencil buffer technique described in Section 14.3.

� Determine the transform and fill rates on the target system for the mode set-
tings you are using. Refer to the product literature for the target system to
determine some transform and fill rates. Determine others by writing and run-
ning small benchmarks.

� Divide the number of polygons drawn by the transform rate to get the time
spent on per-polygon operations.

� Divide the number of pixels filled by the fill rate to get the time spent on per-
pixel operations.
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� Measure the time spent in the application. To determine time spent execut-
ing instructions in the application, stub out the OpenGL calls and benchmark
your application.

This process takes some effort to complete. In practice, it’s best to make a quick
start by making some assumptions, then refine your understanding as you tune and
experiment. Ultimately, you need to experiment with different rendering techniques
and do repeated benchmarks, especially when the unexpected happens.

17 List of Demo Programs

This list shows the demonstration programs available on the Programming with
OpenGL: Advanced Rendering web site at:

http://www.sgi.com/Technology/OpenGL/advanced sig97.html
The programs are grouped by the sections in which they’re discussed. Each line

gives a short description of the program.
Modelling

� tvertex.c - show problems caused by t-vertices

� quad decomp.c - shows example of quadrilateral decomposition

� tess.c - shows examples of sphere tessellation

� cap.c - shows how to cap the region exposed by a clipping plane

� csg.c - shows how to render CSG solids with the stencil buffer

Geometry and Transformations

� depth.c - compare screen and eye space z

� decal.c - shows how to decal coplanar polygons with the stencil buffer

� hiddenline.c - shows how to render wireframe objects with hidden lines

� stereo.c - shows how to generate stereo image pairs

� tile.c - shows how to tile images

� raster.c - shows how to move the current raster position off-screen

Texture Mapping

� mipmap lines.c - shows different mipmap generation filters
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� genmipmap.c - shows how to use the OpenGL pipeline to generate mipmaps

� textile.c - shows how to tile textures

� texpage.c - shows how to page textures

� textrim.c - shows how to trim textures

� textext.c - shows how draw characters with texture maps

� projtex.c - shows how to do spotlight illumination using projective textures

� cyl billboard.c - shows how to do cylindrical billboards

� sph billboard.c - shows how to do spherical billboards

� warp.c - shows how to warp images with textures

� noise.c - shows how to make a filtered noise function

� spectral.c - shows how to make a spectral function from filtered noise

� spotnoise.c - shows how to use spot noise

� tex3dsolid.c - renders a solid image with a 3d texture

� tex3dfunc.c - creates a 2d texture that varies with r value

Blending

� comp.c - shows Porter/Duff compositing

� transp.c - shows how to draw transparent objects

� imgproc.c - shows image processing operations

Antialiasing

� lineaa.c - shows how to draw antialiased lines

� texaa.c - shows how to antialias with texture

� accumaa.c - shows how to antialias a scene with the accumulation buffer

Lighting

� envphong.c - shows how to draw phong highlights with environment map-
ping
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� lightmap2d.c - shows how to do 2D texture lightmaps

� lightmap3d.c - shows how to do 3D texture lightmaps

� bumpmap.c - shows how to bumpmap with texture

Scene Realism

� motionblur.c - shows how to do motion blur with the accumulation buffer

� field.c - shows how to achieve depth of field effects with the accumulation
buffer

� genspheremap.c - shows how to generate sphere maps

� mirror.c - shows how to do planar mirror reflections

� projshadow.c - shows how to render projection shadows

� shadowvol.c - shows how to render shadows with shadow volumes

� shadowmap.c - shows how to render shadows with shadow maps

� softshadow.c - shows how to do soft shadows with the accumulation buffer
by jittering light sources

� softshadow2.c - shows how to do soft shadows by creating lighting textures
with the accumulation buffer

Transparency

� screendoor.c - shows how to do screen-door transparency

� alphablend.c - shows how to do transparency with alpha blending

Natural Phenomena

� smoke.c - shows how to render smoke

� smoke3d.c - shows how to render 3D smoke using volumetric techniques

� cloud.c - shows how to render a cloud layer

� cloud3d.c - shows how to render a 3D cloud using volumetric techniques

� fire.c - shows how to render fire using movie loops

� water.c - shows an example water rendering technique
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� lightpoint.c - shows how to render point light sources

Image Processing

� convolve.c - shows how to convolve with the accumulation buffer

� cmatrix - shows how to modify colors with a color matrix

Volume Visualization with Texture

� vol2dtex.c - volume visualization with 2D textures

� vol3dtex.c - volume visualization with 3D textures

Using the Stencil Buffer

� dissolve.c - shows how to do dissolves with the stencil buffer

� zcomposite.c - shows how to composite depth-buffered images with the sten-
cil buffer

Line Rendering Techniques

� haloed.c - shows how to draw haloed lines using the depth buffer

� silhouette.c - shows how to draw the silhouette edge of an object with the
stencil buffer

18 Equation Appendix

This Appendix describes some important formula and matrices referred to in the
text.

18.1 Projection Matrices

18.1.1 Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where:
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18.1.2 Orthographic Projection

The call glOrtho(l, r, b, t, u, f) generates R, where:

R =

0
BBB@

2
r�l

0 0 � r+l
r�l

0
2
t�b

0 � t+b
t�b

0 0 � 2
f�n

�f+n
f�n

0 0 0 1

1
CCCA and R�1

=

0
BBB@

r�l
2 0 0

r+l
2

0
t�b
2

0
t+b
2

0 0
f�n
2

n+f
2

0 0 0 1

1
CCCA

R is defined as long as l 6= r, t 6= b, and n 6= f .

18.2 Lighting Equations

18.2.1 Attenuation Factor

The attenuation factor is defined to be:

attenuation factor =
1

kc + kld+ kqd2

where

d = distance between the light’s position and the vertex

kc = GL CONSTANT ATTENUATION

kl = GL LINEAR ATTENUATION

kq = GL QUADRATIC ATTENUATION

If the light is directional, the attenuation factor is 1.

18.2.2 Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on whether
the light is actually a spotlight and whether the vertex lies inside or outside the cone
of illumination produced by the spotlight:

� 1 if the light isn’t a spotlight (GL SPOT CUTOFF is 180.0).

� 0 if the light is a spotlight but the vertex lies outside the cone of illumination
produced by the spotlight.
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� (maxfv � d; 0g)GL SPOT EXPONENT where: v = (vx; vy; vz) is the unit
vector that points from the spotlight (GL POSITION) to the vertex.

d = (dx; dy; dz) is the spotlight’s direction (GL SPOT DIRECTION), as-
suming the light is a spotlight and the vertex lies inside the cone of illumina-
tion produced by the spotlight.

The dot product of the two vectors v and d varies as the cosine of the angle
between them; hence, objects directly in line get maximum illumination, and
objects off the axis have their illumination drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination,
OpenGL evaluates (maxfv̂ � d̂; 0g)where v̂ and d̂ are as defined above. If this value
is less than the cosine of the spotlight’s cutoff angle (GL SPOT CUTOFF), then the
vertex lies outside the cone; otherwise, it’s inside the cone.

18.2.3 Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient
material property:

ambientlight � ambientmaterial

18.2.4 Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex,
the diffuse color of the light, and the diffuse material property:

(maxfl � n; 0g) � diffuselight � diffusematerial

where:

l = (lx; ly; lz) is the unit vector that points from the vertex to the light position
(GL POSITION).

n = (nx; ny; nz) is the unit normal vector at the vertex.

18.2.5 Specular Term

The specular term also depends on whether light falls directly on the vertex. If~l �~n
is less than or equal to zero, there is no specular component at the vertex. (If it’s
less than zero, the light is on the wrong side of the surface.) If there’s a specular
component, it depends on the following:

� The unit normal vector at the vertex (nx; ny; nz).
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� The sum of the two unit vectors that point between (1) the vertex and
the light position and (2) the vertex and the viewpoint (assuming that
GL LIGHT MODEL LOCAL VIEWER is true; if it’s not true, the vector
(0; 0; 1) is used as the second vector in the sum). This vector sum is normal-
ized (by dividing each component by the magnitude of the vector) to yield
s = (sx; sy; sz).

� The specular exponent (GL SHININESS).

� The specular color of the light (GL SPECULARlight).

� The specular property of the material (GL SPECULARmaterial).

Using these definitions, here’s how OpenGL calculates the specular term:

(maxfs � n; 0g)shininess � specularlight � specularmaterial

However, if ~l � ~n = 0, the specular term is 0.

18.2.6 Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following
represents the entire lighting calculation in RGBA mode.

vertex color = emissionmaterial +

ambientlightmodel � ambientmaterial +

n�1X
i=0

 
1

kc + kld+ kqd2

!
(spotlight effect)i

(ambientlight � ambientmaterial +

(maxfl � n; 0g) � diffuselight � diffusematerial +

(maxfs � n; 0g)shininess � specularlight � specularmaterial)i
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Abstract

Generating images of texture mapped geometry requires

projecting surfaces onto a two-dimensional screen. If

this projection involves perspective, then a division

must be performed at each pixel of the projected surface

in order to correctly calculate texture map coordinates.

We show how a simple extension to perspective-

correct texture mapping can be used to create vari-

ous lighting e�ects. These include arbitrary projec-

tion of two-dimensional images onto geometry, realis-

tic spotlights, and generation of shadows using shadow

maps[10]. These e�ects are obtained in real time using

hardware that performs correct texture mapping.

CR Categories and Subject Descriptors: I.3.3

[Computer Graphics]: Picture/Image Generation;

I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism - color, shading, shadowing, and

texture

Additional Key Words and Phrases: lighting,

texture mapping

1 Introduction

Producing an image of a three-dimensional scene re-

quires �nding the projection of that scene onto a two-

dimensional screen. In the case of a scene consisting of

texture mapped surfaces, this involves not only deter-

mining where the projected points of the surfaces should

appear on the screen, but also which portions of the

texture image should be associated with the projected

points.
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If the image of the three-dimensional scene is to ap-

pear realistic, then the projection from three to two di-

mensions must be a perspective projection. Typically,

a complex scene is converted to polygons before projec-

tion. The projected vertices of these polygons determine

boundary edges of projected polygons.

Scan conversion uses iteration to enumerate pixels on

the screen that are covered by each polygon. This itera-

tion in the plane of projection introduces a homogeneous

variation into the parameters that index the texture of

a projected polygon. We call these parameters texture

coordinates. If the homogeneous variation is ignored in

favor of a simpler linear iteration, incorrect images are

produced that can lead to objectionable e�ects such as

texture \swimming" during scene animation[5]. Correct

interpolation of texture coordinates requires each to be

divided by a common denominator for each pixel of a

projected texture mapped polygon[6].

We examine the general situation in which a tex-

ture is mapped onto a surface via a projection, after

which the surface is projected onto a two dimensional

viewing screen. This is like projecting a slide of some

scene onto an arbitrarily oriented surface, which is then

viewed from some viewpoint (see Figure 1). It turns out

that handling this situation during texture coordinate

iteration is essentially no di�erent from the more usual

case in which a texture is mapped linearly onto a poly-

gon. We use projective textures to simulate spotlights

and generate shadows using a method that is well-suited

to graphics hardware that performs divisions to obtain

correct texture coordinates.

2 Mathematical Preliminaries

To aid in describing the iteration process, we introduce

four coordinate systems. The clip coordinate system

is a homogeneous representation of three-dimensional

space, with x, y, z, and w coordinates. The origin of

this coordinate system is the viewpoint. We use the

term clip coordinate system because it is this system

in which clipping is often carried out. The screen co-
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nate systems.

ordinate system represents the two-dimensional screen

with two coordinates. These are obtained from clip co-

ordinates by dividing x and y by w, so that screen co-

ordinates are given by xs = x=w and ys = y=w (the

s superscript indicates screen coordinates). The light

coordinate system is a second homogeneous coordinate

system with coordinates xl, yl , zl, and wl; the origin of

this system is at the light source. Finally, the texture

coordinate system corresponds to a texture, which may

represent a slide through which the light shines. Tex-

ture coordinates are given by xt = xl=wl and yt = yl=wl

(we shall also �nd a use for zt = zl=wl). Given (xs; ys),

a point on a scan-converted polygon, our goal is to �nd

its corresponding texture coordinates, (xt; yt).

Figure 2 shows a line segment in the clip coordi-

nate system and its projection onto the two-dimensional

screen. This line segment represents a span between two

edges of a polygon. In clip coordinates, the endpoints

of the line segment are given by

Q
1
= (x1; y1; z1; w1) and Q2 = (x2; y2; z2; w2):

A point Q along the line segment can be written in clip

coordinates as

Q = (1� t)Q1 + tQ2 (1)

for some t 2 [0; 1]. In screen coordinates, we write the

corresponding projected point as

Qs = (1� ts)Qs

1
+ tsQs

2
(2)

where Qs

1
= Q1=w1 and Q

s

2
= Q2=w2.

To �nd the light coordinates of Q given Qs, we must

�nd the value of t corresponding to ts (in general t 6= ts).

This is accomplished by noting that

Qs = (1�ts)Q1=w1+t
sQ2=w2 =

(1� t)Q1 + tQ2

(1� t)w1 + tw2

(3)

and solving for t. This is most easily achieved by choos-

ing a and b such that 1�ts = a=(a+b) and ts = b=(a+b);

we also choose A and B such that (1� t) = A=(A+B)

and t = B=(A+ B). Equation 3 becomes

Qs =
aQ1=w1 + bQ2=w2

(a+ b)
=

AQ1 +BQ2

Aw1 +Bw2

: (4)

It is easily veri�ed that A = aw2 and B = bw1 satisfy

this equation, allowing us to obtain t and thus Q.

Because the relationship between light coordinates

and clip coordinates is a�ne (linear plus translation),

there is a homogeneous matrix M that relates them:

Ql =MQ =
A

A +B
Ql

1
+

B

A+ B
Ql

2
(5)

where Ql

1
= (xl

1
; yl

1
; zl

1
; wl

1
) andQl

2
= (xl

2
; yl

2
; zl

2
; wl

2
) are

the light coordinates of the points given by Q1 and Q2

in clip coordinates.

We �nally obtain

Qt = Ql=wl

=
AQl

1
+BQl

2

Awl

1
+Bwl

2

=
aQl

1
=w1 + bQl

2
=w2

a(wl

1
=w1) + b(wl

2
=w2)

: (6)

Equation 6 gives the texture coordinates correspond-

ing to a linearly interpolated point along a line segment

in screen coordinates. To obtain these coordinates at

a pixel, we must linearly interpolate xl=w, yl=w, and

wl=w, and divide at each pixel to obtain

xl=wl =
xl=w

wl=w
and yl=wl =

yl=w

wl=w
: (7)



(For an alternate derivation of this result, see [6].)

If wl is constant across a polygon, then Equation 7

becomes

s =
s=w

1=w
and t =

t=w

1=w
; (8)

where we have set s = xl=wl and t = yl=wl. Equation 8

governs the iteration of texture coordinates that have

simply been assigned to polygon vertices. It still implies

a division for each pixel contained in a polygon. The

more general situation of a projected texture implied

by Equation 7 requires only that the divisor be wl=w

instead of 1=w.

3 Applications

To make the various coordinates in the following exam-

ples concrete, we introduce one more coordinate system:

the world coordinate system. This is the coordinate sys-

tem in which the three-dimensional model of the scene

is described. There are thus two transformation ma-

trices of interest: Mc transforms world coordinates to

clip coordinates, and Ml transforms world coordinates

to light coordinates. Iteration proceeds across projected

polygon line segments according to equation 6 to obtain

texture coordinates (xt; yt) for each pixel on the screen.

3.1 Slide Projector

One application of projective texture mapping consists

of viewing the projection of a slide or movie on an arbi-

trary surface[9][2]. In this case, the texture represents

the slide or movie. We describe a multi-pass drawing

algorithm to simulate �lm projection.

Each pass entails scan-converting every polygon in the

scene. Scan-conversion yields a series of screen points

and corresponding texture points for each polygon. As-

sociated with each screen point is a color and z-value,

denoted c and z, respectively. Associated with each cor-

responding texture point is a color and z-value, denoted

c� and z� . These values are used to modify correspond-

ing values in a framebu�er of pixels. Each pixel, denoted

p, also has an associated color and z-value, denoted cp
and zp.

A color consists of several indepenedent components

(e.g. red, green, and blue). Addition or multiplication

of two colors indicates addition or multiplication of each

corresponding pair of components (each component may

be taken to lie in the range [0; 1]).

Assume that zp is initialized to some large value for all

p, and that cp is initialized to some �xed ambient scene

color for all p. The slide projection algorithm consists

of three passes; for each scan-converted point in each

pass, these actions are performed:

Pass 1 If z < zp, then zp  z (hidden surface

removal)

Pass 2 If z = zp, then cp  cp + c� (illumination)

Pass 3 Set cp = c � cp (�nal rendering)

Pass 1 is a z-bu�ering step that sets zp for each pixel.

Pass 2 increases the brightness of each pixel accord-

ing to the projected spotlight shape; the test ensures

that portions of the scene visible from the eye point are

brightened by the texture image only once (occlusions

are not considered). The e�ects of multiple �lm projec-

tions may be incorporated by repeating Pass 2 several

times, modifyingMl and the light coordinates appropri-

ately on each pass. Pass 3 draws the scene, modulating

the color of each pixel by the corresponding color of the

projected texture image. E�ects of standard (i.e. non-

projective) texture mappingmay be incorporated in this

pass. Current Silicon Graphics hardware is capable of

performing each pass at approximately 105 polygons per

second.

Figure 3 shows a slide projected onto a scene. The

left image shows the texture map; the right image shows

the scene illuminated by both ambient light and the pro-

jected slide. The projected image may also be made to

have a particular focal plane by rendering the scene sev-

eral times and using an accumulation bu�er as described

in [4].

The same con�guration can transform an image cast

on one projection plane into a distinct projection plane.

Consider, for instance, a photograph of a building's fa-

cade taken from some position. The e�ect of viewing

the facade from arbitrary positions can be achieved by

projecting the photograph back onto the building's fa-

cade and then viewing the scene from a di�erent vantage

point. This e�ect is useful in walk-throughs or y-bys;

texture mapping can be used to simulate buildings and

distant scenery viewed from any viewpoint[1][7].

3.2 Spotlights

A similar technique can be used to simulate the e�ects

of spotlight illumination on a scene. In this case the

texture represents an intensity map of a cross-section of

the spotlight's beam. That is, it is as if an opaque screen

were placed in front of a spotlight and the intensity at

each point on the screen recorded. Any conceivable spot

shape may be accommodated. In addition, distortion

e�ects, such as those attributed to a shield or a lens,

may be incorporated into the texture map image.

Angular attenuation of illumination is incorporated

into the intensity texture map of the spot source. At-

tenuation due to distance may be approximated by ap-

plying a function of the depth values zt = zl=wl iterated

along with the texture coordinates (xt; yt) at each pixel

in the image.

This method of illuminatinga scene with a spotlight is

useful for many real-time simulation applications, such



Figure 3. Simulating a slide projector.

as aircraft landing lights, directable aircraft taxi lights,

and automotive headlights.

3.3 Fast, Accurate Shadows

Another application of this technique is to produce

shadows cast from any number of point light sources.

We follow the method described by Williams[10], but in

a way that exploits available texture mapping hardware.

First, an image of the scene is rendered from the view-

point of the light source. The purpose of this render-

ing is to obtain depth values in light coordinates for

the scene with hidden surfaces removed. The depth

values are the values of zl=wl at each pixel in the im-

age. The array of zt values corresponding to the hidden

surface-removed image are then placed into a texture

map, which will be used as a shadow map[10][8]. We

refer to a value in this texture map as z� .

The generated texture map is used in a three-pass ren-

dering process. This process uses an additional frame-

bu�er value �p in the range [0; 1]. The initial conditions

are the same as those for the slide projector algorithm.

Pass 1 If z < zp, then zp  z, cp  c (hidden

surface removal)

Pass 2 If z� = zt, then �p  1; else �p  0 (shadow

testing)

Pass 3 cp  cp + (c modulated by �p) (�nal ren-

dering)

Pass 1 produces a hidden surface-removed image of the

scene using only ambient illumination. If the two values

in the comparison in Pass 2 are equal, then the point

represented by p is visible from the light and so is not

in shadow; otherwise, it is in shadow. Pass 3, drawn

with full illumination, brightens portions of the scene

that are not in shadow.

In practice, the comparison in Pass 2 is replaced with

z� > zt+�, where � is a bias. See [8] for factors governing

the selection of �.

This technique requires that the mechanism for set-

ting �p be based on the result of a comparison between

a value stored in the texture map and the iterated zt.

For accuracy, it also requires that the texture map be

capable of representing large z� . Our latest hardware

posseses these capabilites, and can perform each of the

above passes at the rate of at least 105 polygons per

second.

Correct illumination frommultiple colored lights may

be produced by performing multiple passes. The

shadow e�ect may also be combined with the spotlight

e�ect described above, as shown in Figure 4. The left

image in this �gure is the shadow map. The center

image is the spotlight intensity map. The right image

shows the e�ects of incorporating both spotlight and

shadow e�ects into a scene.

This technique di�ers from the hardware implemen-

tation described in [3]. It uses existing texture map-

ping hardware to create shadows, instead of drawing

extruded shadow volumes for each polygon in the scene.

In addition, percentage closer �ltering [8] is easily sup-

ported.

4 Conclusions

Projecting a texture image onto a scene from some light

source is no more expensive to compute than simple tex-

ture mapping in which texture coordinates are assinged

to polygon vertices. Both require a single division per-

pixel for each texture coordinate; accounting for the tex-

ture projection simply modi�es the divisor.

Viewing a texture projected onto a three-dimensional

scene is a useful technique for simulating a number of

e�ects, including projecting images, spotlight illumina-

tion, and shadows. If hardware is available to perform

texture mapping and the per-pixel division it requires,

then these e�ects can be obtained with no performance

penalty.



Figure 4. Generating shadows using a shadow map.
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Executive Summary

As of today, texture mapping is used in visual simulation and computer animation to reduce geometric
complexity while enhancing realism. In this report, this common usage of the technology is extended by
presenting application models of real−time texture mapping that solve a variety of visualization problems in
the general technical and scientific world, opening new ways to represent and analyze large amounts of
experimental or simulated data.

The topics covered in this report are:

• Abstract definition of the texture mapping concept
• Visualization of properties on surfaces by color coding
• Information filtering on surfaces
• Real−time volume rendering concepts
• Quality−enhanced surface rendering

In the following sections, each of these aspects will be described in detail. Implementation techniques are
outlined using pseudo code that emphasizes the key aspects. A basic knowledge in GL programming is
assumed. Application examples are taken from the chemical market. However, for the scope of this report
no particular chemical background is required, since the data being analyzed can in fact be replaced by any
other source of technical, scientific or engineering information processing.

Note, that this report discusses the potential of released advanced graphics technology in a very detailed
fashion. The presented topics are based on recent and ongoing research and therefore subjected to change.

The methods described are the result of a team−work involving scientists from different research areas and
institutions, and is called theTexture Team,consisting of the following members:

• Prof. Juergen Brickmann, Technische Hochschule, Darmstadt, Germany
• Dr. Peter Fluekiger, Swiss Scientific Computing Center, Manno, Switzerland
• Christian Henn, M.E. Mueller−Institute for Microscopy, Basel, Switzerland
• Dr. Michael Teschner, Silicon Graphics Marketing, Basel, Switzerland

Further support came from SGI’s Advanced Graphics Division engineering group.

Colored pictures and sample code are available from sgigate.sgi.com via anonymous ftp. The files will be
there starting November 1st 1993 and will be located in the directory pub/SciTex.

For more information, please contact:

Michael Teschner (41) 61 67 09 03 (phone)
SGI Marketing, Basel (41) 61 67 12 01 (fax)
Erlenstraesschen 65
CH−4125 Riehen, Switzerland micha@basel.sgi.com (email)
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1 Introduction

Texture mapping [1,2] has traditionally been used to add realism in computer generated images. In recent
years, this technique has been transferred from the domain of software based rendering systems to a
hardware supported feature of advanced graphics workstations. This was largely motivated by visual
simulation and computer animation applications that use texture mapping to map pictures of surface texture
to polygons of 3−D objects [3].

Thus, texture mapping is a very powerful approach to add a dramatic amount of realism to a computer
generated image without blowing up the geometric complexity of the rendered scenario, which is essential
in visual simulators that need to maintain a constant frame rate. E.g., a realistically looking house can be
displayed using only a few polygons with photographic pictures of a wall showing doors and windows
being mapped to. Similarly, the visual richness and accuracy of natural materials such as a block of wood
can be improved by wrapping a wood grain pattern around a rectangular solid.

Up to now, texture mapping has not been used in technical or scientific visualization, because the above
mentioned visual simulation methods as well as non−interactive rendering applications like computer
animation have created a severe bias towards what texture mapping can be used for, i.e. wooden [4] or
marble surfaces for the display of solid materials, or fuzzy, stochastic patterns mapped on quadrics to
visualize clouds [5,6].

It will be demonstrated that hardware−supported texture mapping can be applied in a much broader range of
application areas. Upon reverting to a strict and formal definition of texture mapping that generalizes the
texture to be a general repository for pixel−based color information being mapped on arbitrary 3−D
geometry, a powerful and elegant framework for the display and analysis of technical and scientific
information is obtained.

2 Abstract definition of the texture mapping concept

In the current hardware implementation of SGI [7], texture mapping is an additional capability to modify
pixel information during the rendering procedure, after the shading operations have been completed.
Although it modifies pixels, its application programmers interface is vertex−based. Therefore texture
mapping results in only a modest or small increase in program complexity. Its effect on the image
generation time depends on the particular hardware being used: entry level and interactive systems show a
significant performance reduction, whereas on third generation graphics subsystems texture mapping may
be used without any performance penalty.
Three basic components are needed for the texture mapping procedure: (1) the texture, which is defined in
the texture space, (2) the 3−D geometry, defined on a per vertex basis and (3) a mapping function that links
the texture to the vertex description of the 3−D object.

The texture space [8,9] is a parametric coordinate space which can be 1,2 or 3 dimensional. Analogous to
the pixel (picture element) in screen space, each element in texture space is called texel (texture element).
Current hardware implementations offer flexibility with respect to how the information stored with each
texel is interpreted. Multi−channel colors, intensity, transparency or even lookup indices corresponding to a
color lookup table are supported.

In an abstract definition of texture mapping, the texture space is far more than just a picture within a
parametric coordinate system: the texture space may be seen as a special memory segment, where a variety
of information can be deposited which is then linked to object representations in 3−D space. Thus this
information can efficiently be used to represent any parametric property that needs to be visualized.

Although the vertex−based nature of 3−D geometry in general allows primitives such as points or lines to
be texture−mapped as well, the real value of texture mapping emerges upon drawing filled triangles or
higher order polygons.

The mapping procedure assigns a coordinate in texture space to each vertex of the 3−D object. It is
important to note that the dimensionality of the texture space is independent from the dimensionality of the
displayed object. E.g., coding a simple property into a 1−D texture can be used to generate isocontour lines
on arbitrary 3−D surfaces.
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Figure 1: Color coding with RGB interpolation (left) and texture mapping (right).

This problem can be solved by storing the color ramp as a 1−D texture. In contrast to the above described
procedure, the scalar property information is used as the texture coordinates for the surface vertices. The
color interpolation is then performed in the texture space, i.e. the coloring is evaluated at every pixel
(Figure 1 right). High contrast variation in the color code is now possible, even on sparsely tessellated
surfaces.

It is important to note that, although the texture is one−dimensional, it is possible to tackle a 3−D problem.
The dimensionality of texture space and object space is independent, thus they do not affect each other.
This feature of the texture mapping method, as well as the difference between texture interpolation and
color interpolation is crucial for an understanding of the applications presented in this report.

3 Color−coding based application solutions

Color−coding is a popular means of displaying scalar information on a surface [10]. E.g., this can be used
to display stress on mechanical parts or interaction potentials on molecular surfaces.

The problem with traditional, Gouraud shading−based implementations occurs when there is a high
contrast color code variation on sparsely tesselated geometry: since the color coding is done by assigning
RGB color triplets to the vertices of the 3−D geometry, pixel colors will be generated by linear
interpolation in RGB color space.

As a consequence, all entries in the defined color ramp laying outside the linear color ramp joining two
RGB triplets are never taken into account and information will be lost. In Figure 1, a symmetric grey scale
covering the property range is used to define the color ramp. On the left hand side, the interpolation in the
RGB color space does not reflect the color ramp. There is a substantial loss of information during the
rendering step.

With a highly tessellated surface, this problem can be reduced. An alignment of the surface vertices with
the expected color code change or multi−pass rendering may remove such artifacts completely. However,
these methods demand large numbers of polygons or extreme algorithmic complexity, and are therefore
not suited for interactive applications.
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Figure 2: Electrostatic potential coded on the solvent accessible surface of ethanol. 

Figure 2 shows the difference between the two procedures with a concrete example: the solvent accessible
surface of the ethanol molecule is colored by the electrostatic surface potential, using traditional RGB color
interpolation (left) and texture mapping (right).

The independence of texture and object coordinate space has further advantages and is well suited to
accommodate immediate changes to the meaning of the color ramp. E.g., by applying a simple 3−D
transformation like a translation in texture space the zero line of the color code may be shifted. Applying a
scaling transformation to the texture adjusts the range of the mapping. Such modifications may be
performed in real−time.

With texture mapping, the resulting sharp transitions from one color−value to the next significantly
improves the rendering accuracy. Additionally, these sharp transitions help to visually understand the
object’s 3−D shape.

3.1 Isocontouring on surfaces

Similar to the color bands in general color−coding, discrete contour lines drawn on an object provide
valuable information about the object’s geometry as well as its properties, and are widely used in visual
analysis applications. E.g., in a topographic map they might represent height above some plane that is either
fixed in world coordinates or moves with the object [11]. Alternatively, the curves may indicate intrinsic
surface properties, such as an interaction potential or stress distributions.

With texture mapping, discrete contouring may be achieved using the same setup as for general color
coding. Again, the texture is 1−D, filled with a base color that represents the objects surface appearance. At
each location of a contour threshold, a pixel is set to the color of the particular threshold. Figure 3 shows an
application of this texture to display the hydrophobic potential of Gramicidine A, a channel forming
molecule as a set of isocontour lines on the surface of the molecular surface.

Scaling of the texture space is used to control the spacing of contour thresholds. In a similar fashion,
translation of the texture space will result in a shift of all threshold values. Note that neither the underlying
geometry nor the texture itself was modified during this procedure. Adjustment of the threshold spacing is
performed in real−time, and thus fully interactive.
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Figure 4: Display of metrics on a Zeolithe’s molecular surface with a 2−D texture.

Figure 3: Isocontour on a molecular surface with different scaling in texture space.

3.2 Displaying metrics on arbitrary surfaces

An extension of the concept presented in the previous section can be used to display metrics on an arbitrary
surface, based on a set of reference planes. Figure 4 demonstrates the application of a 2−D texture to attach
tick marks on the solvent accessible surface of a zeolithe.

In contrast to the property−based, per vertex binding of texture coordinates, the texture coordinates for the
metric texture are generated automatically: the distance of an object vertex to a reference plane is
calculated by the harware and on−the−fly translated to texture coordinates. In this particular case two
orthogonal planes are fixed to the orientation of the object’s geometry. This type of representation allows
for exact measurement of sizes and distance units on a surface.
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Figure 5: Solvent accessible surface of Gramicidine A, showing the ESP filtered with the MLP.

The surface is color−coded, or grey−scale as in the printed example, only at those loactions, where the
surface has a certain lipophobicity. The surface parts with lipophilic behavior are clamped to white. In this
example the information is filtered using a delta type function, suppressing all information not exceeding a
specified threshold. In other cases, a continouos filter may be more appropriate, to allow a more fine
grained quantification.

3.3 Information filtering

The concept of using a 1−D texture for color−coding of surface properties may be extended to 2−D or even
3−D. Thus a maximum of three independent properties can simultaneously be visualized. However,
appropriate multidimensional color lookup tables must be designed based on a particular application,
because a generalization is either non−trivial or eventually impossible. Special care must be taken not to
overload the surface with too much information.

One possible, rather general solution can be obtained by combining a 1−D color ramp with a 1−D threshold
pattern as presented in the isocontouring example, i.e. color bands are used for one property, whereas
orthogonal, discrete isocontour lines code for the second property. In this way it is possible to display two
properties simultaneously on the same surface, while still being capable of distinguishing them clearly.

Another approach uses one property to filter the other and display the result on the objects surface,
generating additional insight in two different ways: (1) the filter allows the scientist to distinguish between
important and irrelevant information, e.g. to display the hot spots on an electrostatic surface potential, or (2)
the filter puts an otherwise qualitative property into a quantitative context, e.g., to use the standard deviation
from a mean value to provide a hint as to how accurate a represented property actually is at a given location
on the object surface.

A good role model for this is the combined display of the electrostatic potential (ESP) and the molecular
lipophilic potential (MLP) on the solvent accessible surface of Gramicidine A. The electrostatic potential
gives some information on how specific parts of the molecule may interact with other molecules, the
molecular lipophilic potential gives a good estimate where the molecule has either contact with water
(lipophobic regions) or with the membrane (lipophilic regions). The molecule itself is a channel forming
protein, and is loacted in the membrane of bioorganisms, regulating the transport of water molecules and
ions. Figure 5 shows the color−coding of the solvent accessible surface of Gramicidine A against the ESP
filtered with the MLP. The texture used for this example is shown in Figure 8.
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Figure 6: Clipping of the solvent accessible surface of Gramicidine A according to the MLP.

There is a distinct advantage in using alpha texture as a component for information filtering: irrelevant
information can be completely eliminated, while geometric information otherways hidden within the
surface is revealed directly in the context of the surface. And again, it is worthwhile to mention, that by a
translation in texture space, the clipping range can be changed interactively!

Another useful application is to filter the electrostatic potential with the electric fileld. Taking the absolute
value of the electric field, the filter easily pinpoints the areas of the highest local field gradient, which helps
in identifying the binding site of an inhibitor without further interaction of the scientist. With translation in
the texture space, one can interactively modify the filter threshold or change the appearance of the color
ramp.

3.4 Arbitrary surface clipping

Color−coding in the sense of information filtering affects purely the color information of the texture map.
By adding transparency as an additional information channel, a lot of flexibility is gained for the
comparison of multiple property channels. In a number of cases, transparency even helps in geometrically
understanding of a particular property. E.g., the local flexibility of a molecule structure according to the
crystallographically determined B−factors can be visually represented: the more rigid the structure is, the
more opaque the surface will be displayed. Increasing transparency indicates higher floppyness of the
domains. Such a transparency map may well be combined with any other color coded property, as it is of
interest to study the dynamic properties of a molecule in many different contexts.

An extension to the continuous variation of surface transparency as in the example of molecular flexibility
mentioned above is the use of transparency to clip parts of the surface away completely, depending on a
property coded into the texture. This can be achieved by setting the alpha values at the appropriate vertices
directly to zero. Applied to the information filtering example of Gramicidine A, one can just clip the surface
using a texture where all alpha values in the previously white region a set to 0, as is demonstrated in Figure
6.



− 9 −  SGI, August  4, 1995Version 1.0

Figure 7: Example of a 2−D texture used for information filtering, with different transformations applied:
original texture (left), translation in s coordinates to adjust filter threshold (middle) and scaling along in t 

coordinates to change meaning of the texture colors (right).  

The texture environment defines how the texure modifies incoming pixel values. In this case we want to
keep the information from the lighting calculation and modulate this with the color coming from the
texture image:

3.5 Color−coding pseudo code example

All above described methods for property visualization on object surfaces are based upon the same texture
mapping requirements. Neither are they very demanding in terms of features nor concerning the amount of
texture memory needed.

Two options are available to treat texture coordinates that fall outside the range of the parametric unit
square. Either the texture can be clamped to constant behaviour, or the entire texture image can be
periodically repeated. In the particular examples of 2−D information filtering or property clipping, the
parametric s coordinate is used to modify the threshold (clamped), and the t coordinate is used to change the
appearance of the color code (repeated). Figure 7 shows different effects of transforming this texture map,
while the following pseudo code example expresses the presented texture setup. GL specific calls and
constants are highlighted inboldface:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER, TX_POINT,
TX_WRAP_S, TX_CLAMP,
TX_WRAP_T, TX_REPEAT,
TX_NULL

};

texdef2d (
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

texbind (texIndex);

The texture image is an array of unsigned integers, where the packing of the data depends on the number of
components being used for each texel.
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Figure 8: Schematic representation of the drawTexturedSurface()  routine.

texEnvParams = {
TV_MODULATE, TV_NULL

};

tevdef (texEnvIndex,numTexEnvParams,texEnvParams);
tevbind (texEnvIndex);

Matrix transformations in texture space must be targeted to a matrix stack that is reserved for texture
modifications:

mmode( MTEXTURE);
translate (texTransX,0.0,0.0);
scale (1.0,texScaleY,1.0);

mmode( MVIEWING);

The drawing of the object surface requires the binding of a neutral material to get a basic lighting effect.
For each vertex, the coordinates, the surface normal and the texture coordinates are traversed in form of
calls tov3f , n3f andt2f .

Theafunction() call is only needed in the case of surface clipping. It will prevent the drawing of any
part of the polygon that has a texel color with alpha = 0:

pushmatrix ();
loadmatrix (modelViewMatrix);
if(clippingEnabled) {

afunction (0, AF_NOTEQUAL);
}
drawTexturedSurface();

popmatrix ();

v3f(coo)

n3f (norm)

for (all vertices) { n3f(), t2f(), v3f() } 

t2f(quality)
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4 Real−time volume rendering techniques

Volume rendering is a visualization technique used to display 3−D data without an intermediate step of
deriving a geometric representation like a solid surface or a chicken wire. The graphical primitives being
characteristic for this technique are called voxels, derived from volume element and analog to the pixel.
However, voxels describe more than just color, and in fact can represent opacity or shading parameters as
well.

A variety of experimental and computational methods produce such volumetric data sets: computer
tomography (CT), magnetic resonance imaging (MRI), ultrasonic imaging (UI), confocal light scanning
microscopy (CLSM), electron microscopy (EM), X−ray crystallography, just to name a few. Characteristic
for these data sets are a low signal to noise ratio and a large number of samples, which makes it difficult to
use surface based rendering technique, both from a performance and a quality standpoint.

The data structures employed to manipulate volumetric data come in two flavours: (1) the data may be
stored as a 3−D grid, or (2) it may be handled as a stack of 2−D images. The former data structure is often
used for data that is sampled more or less equally in all the three dimensions, wheras the image stack is
preferred with data sets that are high resolution in two dimensions and sparse in the third.

Historically, a wide variety of algorithms has been invented to render volumetric data and range from ray
tracing to image compositing [12]. The methods cover an even wider range of performance, where the
advantage of image compositing clearly emerges, where several images are created by slicing the volume
perpendicular to the viewing axis and then combined back to front, thus summing voxel opacities and colors
at each pixel.

In the majority of the cases, the volumetric information is stored using one color channel only. This allows
to use lookup tables (LUTs) for alternative color interpretation. I.e., before a particular entry in the color
channel is rendered to the frame buffer, the color value is interpreted as a lookup into a table that aliases the
original color. By rapidly changing the color and/or opacity transfer function, various structures in the
volume are interactively revealed.

By using texture mapping to render the images in the stack, a performance level is reached that is far
superior to any other technique used today and allows the real−time manipulation of volumetric data. In
addition, a considerable degree of flexibility is gained in performing spatial transformations to the volume,
since the transformations are applied in the texture domain and cause no performance overhead.

4.1 Volume rendering using 2−D textures

As a linear extension to the original image compositing algotrithm, the 2−D textures can directly replace the
images in the stack. A set of mostly quadrilateral polygons is rendered back to front, with each polygon
binding its own texture if the depth of the polygon corresponds to the location of the sampled image.
Alternatively, polygons inbetween may be textured in a two−pass procedure, i.e. the polygon is rendered
twice, each time binding one of the two closest images as a texture and filtering it with an appropriate linear
weighting factor. In this way, inbetween frames may be obtained even if the graphics subsystem doesn’t
support texture interpolation in the third dimension.

The resulting volume looks correct as long as the polygons of the image stack are alligned parallel to the
screen. However, it is important to be able to look at the volume from arbitrary directions. Because the
polygon stack will result in a set of lines when being oriented perpendicular to the screen, a correct
perception of the volume is no longer possible.

This problem can easily be soved. By preprocessing the volumetric data into three independent image stacks
that are oriented perpendicular to each other, the most appropriate image stack can be selected for rendering
based on the orientation of the volume object. I.e., as soon as one stack of textured polygons is rotated
towards a critical viewing angle, the rendering function switches to one of the two additional sets of
textured polygons, depending on the current orientation of the object.
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Figure 9:  Slice plane through the water density surrounding a sugar molecule. 

4.2 Volume rendering using 3−D textures

As described in the previous section, it is not only possible, but almost trivial to implement real−time
volume rendering using 2−D texture mapping. In addition, the graphics subsystems will operate at peak
performance, because they are optimized for fast 2−D texture mapping. However, there are certain
limitations to the 2−D texture approach: (1) the memory required by the triple image stack is a factor of
three larger than the original data set, which can be critical for large data sets as they are common in medical
imaging or microscopy, and (2) the geometry sampling of the volume must be aligned with the 2−D textures
concerning the depth, i.e. arbitrary surfaces constructed from a triangle mesh can not easily be colored
depending on the properties of a surrounding volume.

For this reason, advanced rendering architectures support hardware implementations of 3−D textures. The
correspondence between the volume to be rendered and the 3−D texture is obvious. Any 3−D surface can
serve as a sampling device to monitor the coloring of a volumetric property. I.e., the final coloring of the
geometry reflects the result of the intersection with the texture. Following this principle, 3−D texture
mapping is a fast, accurate and flexible technique for looking at the volume.

The simplest application of 3−D textures is that of a slice plane, which cuts in arbitrary orientations through
the volume, which is now represented directly by the texture. The planar polygon being used as geometry in
this case will then reflect the contents of the volume as if it were exposed by cutting the object with a knife,
as shown in Figure 9: since the transformation of the sampling polygon and that of the 3−D texture is
independent, it may be freely oriented within the volume. The property visualized in Figure 9 is the
probability of water beeing distributed around a sugar molecule. The orientation of the volume, that means
the transformation in the texture space is the same as the molecular structure. Either the molecule, together
with the volumetric texture, or the slicing polygon may be reoriented in real−time.

An extension of the slice plane approach leads to complete visualization of the entire volume. A stack of
slice planes, oriented in parallel to the computer screen, samples the entire 3−D texture. The planes are
drawn back to front and in sufficiently small intervals. Geometric transformations of the volume are
performed by manipulating the orientation of the texture, keeping the planes in screen−parallel orientation,
as can be seen in Figure 10, which shows a volume rendered example of a medical application.

This type of volume visualization is greatly enhanced by interactive updates of the color lookup table used
to define the texture. In fact a general purpose color ramp editor may be used to vary the lookup colors or
the transparency based on the scalar information at a given point in the 3−D volume.
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Figure 10:  Volume rendering of MRI data using a stack of screen−parallel sectioning planes, 
which is cut in half to reveal detail in the inner part of the object.

5 High quality surface rendering

The visualization of solid surfaces with a high degree of local curvature is a major challenge for accurate
shading, and where the simple Gouraud shading [13] approach always fails. Here, the lighting calculation is
performed for each vertex, depending on the orientation of the surface normal with respect to the light
sources. The output of the lighting calculations is an RGB value for the surface vertex. During rasterization
of the surface polygon the color value of each pixel is computed by linear interpolation between the vertex
colors. Aliasing of the surface highlight is then a consequence of undersampled surface geometry, resulting
in moving Gouraud banding patterns on a surface rotating in real−time, which is very disturbing. Moreover,
the missing accuracy in shading the curved surfaces often leads to a severe loss of information on the
object’s shape, which is not only critical for the evaluation and analysis of scientific data, but also for the
visualization of CAD models, where the visual perception of shape governs the overall design process.

Figure 11 demonstrates this problem using a simple example: on the left, the sphere exhibits typical
Gouraud artifacts, on the right the same sphere is shown with a superimposed mesh that reveals the
tessellation of the sphere surface. Looking at these images, it is obvious how the shape of the highlight of
the sphere was generated from linear interpolation. When rotating the sphere, the highlight begins to
oscillate, depending on how near the surface normal at the brightest vertex is with respect to the precise
highlight position.

The slice plane concept can be extended to arbitrarily shaped objects. The idea is to probe a volumetric
property and to display it wherever the geometric primitives of the probing object cut the volume. The
probing geometry can be of any shape, e.g. a sphere, collecting information about the property at a certain
distance from a specified point, or it may be extended to describe the surface of an arbitrary object.

The independence of the object’s transformation from that of the 3−D texture, offers complete freedom in
orienting the surface with respect to the volume. As a further example of a molecular modeling
application, this provides an opportunity to look at a molecular surface and have the information about a
surrounding volumetric property updated in real−time, based on the current orientation of the surface.
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Figure 12: Phong shaded sphere using surface normals as a lookup for the texture coordinate.

Figure 11: Gouroud shading artifacts on a moderately tessellated sphere.

Correct perception of the curvature and constant, non oscillating highlights can only be achieved with
computationally much more demanding rendering techniques such as Phong shading [14]. In contrast to
linear interpolation of vertex colors, the Phong shading approach interpolates the normal vectors for each
pixel of a given geometric primitive, computing the lighting equation in the subsequent step for each pixel.
Attempts have been made to overcome some of the computationally intensive steps of the procedure [15],
but their performance is insufficient to be a reasonable alternative to Gouraud shading in real−time
applications.

5.1 Real−time Phong shading

With 2−D texture mapping it is now possible to achieve both, high performance drawing speed and highly
accurate shading. The resulting picture compares exactly to the surface computed with the complete Phong
model with infinite light sources.

The basic idea is to use the image of a high quality rendered sphere as texture. The object’s unit length
surface normal is interpreted as texture coordinate. Looking at an individual triangle of the polygonal
surface, the texture mapping process may be understood as if the image of the perfectly rendered sphere
would be wrapped piecewise on the surface polygons. In other words, the surface normal serves as a lookup
vector into the texture, acting as a 2−D lookup table that stores precalculated shading information.

The advantage of such a shading procedure is clear: the interpolation is done in texture space and not in
RGB, therefore the position of the highlight will never be missed. Note that the tessellation of the texture
mapped sphere is exactly the same as for the Gouraud shaded reference sphere in Figure 11.



− 1 5−  SGI, August  4, 1995Version 1.0

Figure 13: Application of the texture mapped Phong shading to a complex surface representing a 
biomolecular structure. The closeups demonstrate the difference between Gouraud shading (above right) and 

Phong shading (below right)  when implemented using texture mapping

5.2 Phong shading pseudo code example

The setup for the texture mapping as used for Phong shading is shown in the following code fragment:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER, TX_BILINEAR ,
TX_NULL

};

texdef2d (
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

As previously mentioned, this method of rendering solid surfaces with highest accuracy can be applied to 
arbitrarily shaped objects. Figure 13 shows the 3−D reconstruction of an electron microscopic experiment, 
visualizing a large biomolecular complex, the asymmetric unit membrane of the urinary bladder. The 
difference between Gouraud shading and the texture mapping implementation of Phong shading is obvious, 
and for the sake of printing quality, can be seen best when looking at the closeups. Although this trick is so 
far only applicable for infinitely distant light sources, it is a tremendous aid for the visualization of highly 
complex surfaces.
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Figure 15: Schematic representation of the drawTexPhongSurface()  routine.

6 Conclusions

Silicon Graphics has recently introduced a new generation of graphics subsystems, which support a variety
of texture mapping techniques in hardware without performance penalty. The potential of using this
technique in technical, scientific and engineering visualization applications has been demonstrated.

Hardware supported texture mapping offers solutions to important visualization problems that have either
not been solved yet or did not perform well enough to enter the world of interactive graphics applications.
Although most of the examples presented here could be implemented using techniques other than texture
mapping, the tradeoff would either be complete loss of performance or an unmaintainable level of
algorithmic complexity.

Most of the examples were taken from the molecular modelling market, where one has learned over the

texbind (texIndex);

texEnvParams = { TV_MODULATE, TV_NULL };

tevdef (texEnvIndex,numTexEnvParams,texEnvParams);
tevbind (texEnvIndex);

As texture, we can use any image of a high quality rendered sphere either with RGB or one intensity
component only. The RGB version allows the simulation of light sources with different colors.

The most important change for the vertex calls in this model is that we do not pass the surface normal data
with then3f command as we normally do when using Gouraud shading. The normal is passed as texture
coordinate and therefore processed with thet3f command.

Surface normals are transformed with the current model view matrix, although only rotational components
are considered. For this reason the texture must be aligned with the current orientation of the object. Also,
the texture space must be scaled and shifted to cover a circle centered at the origin of the s/t coordinate
system, with a unit length radius to map the surface normals:

mmode( MTEXTURE);
loadmatrix (identityMatrix);
translate (0.5,0.5,0.0);
scale (0.5,0.5,1.0);
multmatrix (rotationMatrix);

mmode( MVIEWING);

drawTexPhongSurface();
v3f(coo)

t3f (norm)

for (all vertices) { t3f(), v3f()  } 
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years to handle complex 3−D scenarios interactively and in an analytic manner. What has been shown here
can also be applied in other areas of scientific, technical or engineering visualization. With the examples
shown in this report, it should be possible for software engineers developing application software in other
markets to use the power and flexibility of texture mapping and to adapt the shown solutions to their
specific case.

One important, general conclusion may be drawn from this work: one has to leave the traditional mind set
about texture mapping and go back to the basics in order to identify the participating components and to
understand their generic role in the procedure. Once this step is done it is very simple to use this technique
in a variety of visualization problems.

All examples were implemented on a Silicon Graphics Crimson Reality Engine [7] equipped with two raster
managers. The programs were written in C, either in mixed mode GLX or pure GL.
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Abstract

Texture mapping has traditionally been used to add
realism to computer graphics images. In recent years,
this technique has moved from the domain of software
rendering systems to that of high performance graphics
hardware.

But texture mapping hardware can be used for many
more applications than simply applying diffuse pat-
terns to polygons.

We survey applications of texture mapping including
simple texture mapping, projective textures, and image
warping. We then describe texture mapping techniques
for drawing anti-aliased lines, air-brushes, and anti-
aliased text. Next we show how texture mapping may
be used as a fundamental graphics primitive for volume
rendering, environment mapping, color interpolation,
contouring, and many other applications.

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing, texture-mapping,
line drawing, and anti-aliasing

1 Introduction

Texture mapping[Cat74][Hec86] is a powerful tech-
nique for adding realism to a computer-generated
scene. In its basic form, texture mapping lays an image
(the texture) onto an object in a scene. More general
forms of texture mapping generalize the image to other
information; an “image” of altitudes, for instance, can
be used to control shading across a surface to achieve
such effects as bump-mapping.

Because texture mapping is so useful, it is being
provided as a standard rendering technique both in
graphics software interfaces and in computer graph-
ics hardware[HL90][DWS+88]. Texture mapping can
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therefore be used in a scene with only a modest in-
crease in the complexity of the program that generates
that scene, sometimes with little effect on scene genera-
tion time. The wide availability and high-performance
of texture mapping makes it a desirable rendering tech-
nique for achieving a number of effects that are nor-
mally obtained with special purpose drawing hard-
ware.

After a brief review of the mechanics of texture map-
ping, we describe a few of its standard applications.
We go on to describe some novel applications of tex-
ture mapping.

2 Texture Mapping

When mapping an image onto an object, the color of the
object at each pixel is modified by a corresponding color
from the image. In general, obtaining this color from
the image conceptually requires several steps[Hec89].
The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the
samples. Next, the image must be warped to match
any distortion (caused, perhaps, by perspective) in the
projected object being displayed. Then this warped
image is filtered to remove high-frequency components
that would lead to aliasing in the final step: resampling
to obtain the desired color to apply to the pixel being
textured.

In practice, the required filtering is approximated by
one of several methods. One of the most popular is
mipmapping[Wil83]. Other filtering techniques may also
be used[Cro84].

There are a number of generalizations to this basic
texture mapping scheme. The image to be mapped
need not be two-dimensional; the sampling and fil-
tering techniques may be applied for both one- and
three-dimensional images[Pea85]. In the case of a three-
dimensional image, a two-dimensional slice must be
selected to be mapped onto an object’s boundary, since
the result of rendering must be two-dimensional. The
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image may not be stored as an array but may be pro-
cedurally generated[Pea85][Per85]. Finally, the image
may not represent color at all, but may instead describe
transparency or other surface properties to be used in
lighting or shading calculations[CG85].

3 Previous Uses of Texture Map-
ping

In basic texture mapping, an image is applied to a poly-
gon (or some other surface facet) by assigning texture
coordinates to the polygon’s vertices. These coordi-
nates index a texture image, and are interpolated across
the polygon to determine, at each of the polygon’s pix-
els, a texture image value. The result is that some por-
tion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical
two-dimensional images in this application are images
of bricks or a road surface (in this case the texture image
is often repeated across a polygon); a three-dimensional
image might represent a block of marble from which
objects could be “sculpted.”

3.1 Projective Textures

A generalization of this technique projects a texture
onto surfaces as if the texture were a projected slide or
movie[SKvW+92]. In this case the texture coordinates
at a vertex are computed as the result of the projection
rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re-
projection of a photograph of an object back onto that
object’s geometry.

Projective textures are also useful for simulating
shadows. In this case, an image is constructed that rep-
resents distances from a light source to surface points
nearest the light source. This image can be computed by
performing z-buffering from the light’s point of view
and then obtaining the resulting z-buffer. When the
scene is viewed from the eyepoint, the distance from
the light source to each point on a surface is computed
and compared to the corresponding value stored in the
texture image. If the values are (nearly) equal, then
the point is not in shadow; otherwise, it is in shadow.
This technique should not use mipmapping, because
filtering must be applied after the shadow comparison
is performed[RSC87].

3.2 Image Warping

Image warping may be implemented with texture map-
ping by defining a correspondence between a uni-
form polygonal mesh (representing the original im-
age) and a warped mesh (representing the warped

image)[OTOK87]. The warp may be affine (to gen-
erate rotations, translations, shearings, and zooms) or
higher-order. The points of the warped mesh are as-
signed the corresponding texture coordinates of the
uniform mesh, and the mesh is texture mapped with
the original image. This technique allows for easily-
controlled interactive image warping. The technique
can also be used for panning across a large texture im-
age by using a mesh that indexes only a portion of the
entire image.

3.3 Transparency Mapping

Texture mapping may be used to lay transparent or
semi-transparent objects over a scene by representing
transparency values in the texture image as well as
color values. This technique is useful for simulating
clouds[Gar85] and trees for example, by drawing ap-
propriately textured polygons over a background. The
effect is that the background shows through around
the edges of the clouds or branches of the trees. Texture
map filtering applied to the transparency and color val-
ues automatically leads to soft boundaries between the
clouds or trees and the background.

3.4 Surface Trimming

Finally, a similar technique may be used to cut holes
out of polygons or perform domain space trimming on
curved surfaces[Bur92]. An image of the domain space
trim regions is generated. As the surface is rendered, its
domain space coordinates are used to reference this im-
age. The value stored in the image determines whether
the corresponding point on the surface is trimmed or
not.

4 Additional Texture Mapping Ap-
plications

Texture mapping may be used to render objects that are
usually rendered by other, specialized means. Since it is
becoming widely available, texture mapping may be a
good choice to implement these techniques even when
these graphics primitives can be drawn using special
purpose methods.

4.1 Anti-aliased Points and Line Segments

One simple use of texture mapping is to draw anti-
aliased points of any width. In this case the texture
image is of a filled circle with a smooth (anti-aliased)
boundary. When a point is specified, it’s coordinates
indicate the center of a square whose width is deter-
mined by the point size. The texture coordinates at the

2



Figure 1. Anti-aliased line segments.

square’s corners are those corresponding to the corners
of the texture image. This method has the advantage
that any point shape may be accommodated simply by
varying the texture image.

A similar technique can be used to draw anti-aliased,
line segments of any width[Gro90]. The texture image
is a filtered circle as used above. Instead of a line seg-
ment, a texture mapped rectangle, whose width is the
desired line width, is drawn centered on and aligned
with the line segment. If line segments with round
ends are desired, these can be added by drawing an
additional textured rectangle on each end of the line
segment (Figure 1).

4.2 Air-brushes

Repeatedly drawing a translucent image on a back-
ground can give the effect of spraying paint onto a
canvas. Drawing an image can be accomplished by
drawing a texture mapped polygon. Any conceivable
brush “footprint”, even a multi-colored one, may be
drawn using an appropriate texture image with red,
green, blue, and alpha. The brush image may also eas-
ily be scaled and rotated (Figure 2).

4.3 Anti-aliased Text

If the texture image is an image of a character, then a
polygon textured with that image will show that char-
acter on its face. If the texture image is partitioned
into an array of rectangles, each of which contains the
image of a different character, then any character may
be displayed by drawing a polygon with appropriate
texture coordinates assigned to its vertices. An advan-
tage of this method is that strings of characters may

be arbitrarily positioned and oriented in three dimen-
sions by appropriately positioning and orienting the
textured polygons. Character kerning is accomplished
simply by positioning the polygons relative to one an-
other (Figure 3).

Antialiased characters of any size may be obtained
with a single texture map simply by drawing a polygon
of the desired size, but care must be taken if mipmap-
ping is used. Normally, the smallest mipmap is 1 pixel
square, so if all the characters are stored in a single tex-
ture map, the smaller mipmaps will contain a number
of characters filtered together. This will generate unde-
sirable effects when displayed characters are too small.
Thus, if a single texture image is used for all characters,
then each must be carefully placed in the image, and
mipmaps must stop at the point where the image of a
single character is reduced to 1 pixel on a side. Alterna-
tively, each character could be placed in its own (small)
texture map.

4.4 Volume Rendering

There are three ways in which texture mapping may be
used to obtain an image of a solid, translucent object.
The first is to draw slices of the object from back to
front[DCH88]. Each slice is drawn by first generating
a texture image of the slice by sampling the data rep-
resenting the volume along the plane of the slice, and
then drawing a texture mapped polygon to produce the
slice. Each slice is blended with the previously drawn
slices using transparency.

The second method uses 3D texture mapping[Dre92].
In this method, the volumetric data is copied into the
3D texture image. Then, slices perpendicular to the
viewer are drawn. Each slice is again a texture mapped
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Figure 2. Painting with texture maps.

Figure 3. Anti-aliased text.

polygon, but this time the texture coordinates at the
polygon’s vertices determine a slice through the 3D tex-
ture image. This method requires a 3D texture mapping
capability, but has the advantage that texture memory
need be loaded only once no matter what the view-
point. If the data are too numerous to fit in a single
3D image, the full volume may be rendered in multiple
passes, placing only a portion of the volume data into
the texture image on each pass.

A third way is to use texture mapping to implement
“splatting” as described by[Wes90][LH91].

4.5 Movie Display

Three-dimensional texture images may also be used to
display animated sequences[Ake92]. Each frame forms
one two-dimensional slice of a three-dimensional tex-

ture. A frame is displayed by drawing a polygon with
texture coordinates that select the desired slice. This
can be used to smoothly interpolate between frames of
the stored animation. Alpha values may also be asso-
ciated with each pixel to make animated “sprites”.

4.6 Contouring

Contour curves drawn on an object can provide valu-
able information about the object’s geometry. Such
curves may represent height above some plane (as in a
topographic map) that is either fixed or moves with the
object[Sab88]. Alternatively, the curves may indicate
intrinsic surface properties, such as geodesics or loci of
constant curvature.

Contouring is achieved with texture mapping by first
defining a one-dimensional texture image that is of con-
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Figure 4. Contouring showing distance from a plane.

stant color except at some spot along its length. Then,
texture coordinates are computed for vertices of each
polygon in the object to be contoured using a texture co-
ordinate generation function. This function may calculate
the distance of the vertex above some plane (Figure 4),
or may depend on certain surface properties to produce,
for instance, a curvature value. Modular arithmetic is
used in texture coordinate interpolation to effectively
cause the single linear texture image to repeat over and
over. The result is lines across the polygons that com-
prise an object, leading to contour curves.

A two-dimensional (or even three-dimensional) tex-
ture image may be used with two (or three) texture
coordinate generation functions to produce multiple
curves, each representing a different surface character-
istic.

4.7 Generalized Projections

Texture mapping may be used to produce a non-
standard projection of a three-dimensional scene, such
as a cylindrical or spherical projection[Gre86]. The tech-
nique is similar to image warping. First, the scene is
rendered six times from a single viewpoint, but with
six distinct viewing directions: forward, backward, up,
down, left, and right. These six views form a cube en-
closing the viewpoint. The desired projection is formed
by projecting the cube of images onto an array of poly-
gons (Figure 5).

4.8 Color Interpolation in non-RGB Spaces

The texture image may not represent an image at all,
but may instead be thought of as a lookup table. In-
termediate values not represented in the table are ob-
tained through linear interpolation, a feature normally
provided to handle image filtering.

One way to use a three-dimensional lookup table is to
fill it with RGB values that correspond to, for instance,
HSV (Hue, Saturation, Value) values. The H, S, and V
values index the three dimensional tables. By assigning
HSV values to the vertices of a polygon linear color in-
terpolation may be carried out in HSV space rather than
RGB space. Other color spaces are easily supported.

4.9 Phong Shading

Phong shading with an infinite light and a local viewer
may be simulated using a 3D texture image as follows.
First, consider the function of x, y, and z that assigns
a brightness value to coordinates that represent a (not
necessarily unit length) vector. The vector is the reflec-
tion off of the surface of the vector from the eye to a
point on the surface, and is thus a function of the nor-
mal at that point. The brightness function depends on
the location of the light source. The 3D texture image
is a lookup table for the brightness function given a re-
flection vector. Then, for each polygon in the scene, the
reflection vector is computed at each of the polygon’s
vertices. The coordinates of this vector are interpolated
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Figure 5. 360 Degree fisheye projection.

across the polygon and index the brightness function
stored in the texture image. The brightness value so
obtained modulates the color of the polygon. Multi-
ple lights may be obtained by incorporating multiple
brightness functions into the texture image.

4.10 Environment Mapping

Environment mapping[Gre86] may be achieved
through texture mapping in one of two ways. The first
way requires six texture images, each corresponding to
a face of a cube, that represent the surrounding environ-
ment. At each vertex of a polygon to be environment
mapped, a reflection vector from the eye off of the sur-
face is computed. This reflection vector indexes one of
the six texture images. As long as all the vertices of the
polygon generate reflections into the same image, the
image is mapped onto the polygon using projective tex-
turing. If a polygon has reflections into more than one
face of the cube, then the polygon is subdivided into
pieces, each of which generates reflections into only
one face. Because a reflection vector is not computed at
each pixel, this method is not exact, but the results are
quite convincing when the polygons are small.

The second method is to generate a single texture
image of a perfectly reflecting sphere in the environ-
ment. This image consists of a circle representing the
hemisphere of the environment behind the viewer, sur-
rounded by an annulus representing the hemisphere in
front of the viewer. The image is that of a perfectly
reflecting sphere located in the environment when the
viewer is infinitely far from the sphere. At each polygon
vertex, a texture coordinate generation function gen-
erates coordinates that index this texture image, and
these are interpolated across the polygon. If the (nor-
malized) reflection vector at a vertex is r = (x y z ),
and m =

p
2(z + 1), then the generated coordinates

are x=m and y=m when the texture image is indexed

Texture
Image

(0,0,1)

(x, y, z)

z+1
2( )xt , yt ,

(xt , yt)

2(z+1)
xxt =

2(z+1)

yyt =

Note:
2(z+1)x2 + y2 + (z +1)2 =

Figure 6. Spherical reflection geometry.

by coordinates ranging from -1 to 1. (The calculation
is diagrammed in Figure 6). This method has the dis-
advantage that the texture image must be recomputed
whenever the view direction changes, but requires only
a single texture image with no special polygon subdi-
vision (Figure 7).

4.11 3D Halftoning

Normal halftoned images are created by thresholding
a source image with a halftone screen. Usually this
halftone pattern of lines or dots bears no direct rela-
tionship to the geometry of the scene. Texture map-
ping allows halftone patterns to be generated using a
3D spatial function or parametric lines of a surface (Fig-
ure 8). This permits us to make halftone patterns that
are bound to the surface geometry[ST90].
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Figure 7. Environment mapping.

Figure 8. 3D halftoning.

5 Conclusion

Many graphics systems now provide hardware that
supports texture mapping. As a result, generating a
texture mapped scene need not take longer than gener-
ating a scene without texture mapping.

We have shown that, in addition to its standard uses,
texture mapping can be used for a large number of
interesting applications, and that texture mapping is a
powerful and flexible low level graphics drawing prim-
itive.
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1 Introduction
Shadows are both an important visual cue for the perception of

spatial relationships and an essential component of realistic images.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

The real world contains mostly soft shadows due to the finite size
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it simulates
shadows at all. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visualization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for a large number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
is proportional to the number of light source samples, but while the
scene is static, it can be redisplayed in time independent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to a large number of point sources. The memory
requirements of the algorithm are also independent of the number
of light source samples.

1.1 The Idea
For diffuse scenes, our method works by precomputing, for each

polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In a diffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity algorithm. Unlike a radiosity algorithm,
however, our algorithm can compute this texture almost entirely in
hardware.

The key idea is to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with a number of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a special projective
projection from the point of view of each light sample. These views
are registered so that corresponding pixels map to identical points on

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenes in more detail,
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 Previous Work
2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
active rates. Shadow algorithms can be divided into three categories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

Computation on the Fly. Simple ray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be simulated by
tracing rays to a number of points distributed across the light source
[8].

The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann’s algorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly simple
scene required several seconds with his algorithm. His method
appears to be one of the algorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. This algorithm effectively multiplies the number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typically practical only for very small numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extra clipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow algorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final
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Figure 1: Hard shadow images from 2�2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2�2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16�16 sampling). This image is used as the texture on the receiver at left.

pass to determine if a given 3-D point is illuminated with respect to
each light source. The transformation of points from one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows can be generated on a graphics workstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for simple
scenes. Drettakis and Fiume used more sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from a light source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be done in hardware. Radiosity meshes typically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen’s incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objects to a plane.

2.2 Graphics Hardware
Current graphics hardware, such as the Silicon Graphics Reality

Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.

Typically, such hardware supports arbitrary 4�4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) is not possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading
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can be simulated by splitting polygons into small pieces on input. A
common, general form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with a texture
mapped reflectance function and attenuation:

Ic(x; y) = Tc(u; v)
X
l

cos �l cos �0e
l Llc

�+ �rl + r2
l

where c is color channel index (= r, g, or b), Ic(x; y) is the pixel
value at screen space (x; y), Tc(u; v) is a texture parameterized
by texture coordinates (u; v), which are a projective transform of
(x; y), �l is the polar angle for the ray to light source l, �0

l is the
angle away from the directional axis of the light source, e is the
spotlight exponent, Llc is the radiance of light l, rl is distance to
light source l, and �, �, and  are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems also support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typically identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that is true only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, is hardware that allows a linear combination of images
to be easily computed. It is capable of computing expressions of
the general form:

Ac(x; y) =
X
i

�iIic(x; y)

where Iic is a channel of image i, and Ac is a channel of the
accumulator array.

3 Diffuse Scenes
Our shadow generation method for diffuse scenes takes advantage

of these hardware capabilities.
Direct illumination in a scene of opaque surfaces that emit or

reflect light diffusely is given by the following formula:

Lc(x) = �c(x)

�
Lac +

Z
lights

cos+� cos+�
0

�r2
v(x;x0)Lc(x

0) dx0

�
;

where, as shown in Figure 3,
� x = (x; y; z) is a 3-D point on a reflective surface, and x0 is

a point on a light source,
� � is polar angle (angle from normal) at x, �0 is the angle at x0,
� r is the distance between x and x0,
� �, �0, and r are functions of x and x0,
� Lc(x) is outgoing radiance at point x for color channel c, due

to either emission or reflection, Lac is ambient radiance,
� �c(x) is reflectance,
� v(x;x0) is a Boolean visibility function that equals 1 if point
x is visible from point x0, else 0,

� cos+� = max(cos �; 0), for backface testing, and
� the integral is over all points on all light sources, with respect

to dx0, which is an infinitesimal area on a light source.
The inputs to the problem are the geometry, the reflectance �c(x),
and emitted radiance Lc(x

0) on all light sources, the ambient radi-
ance Lac, and the output is the reflected radiance function Lc(x).

receiver R

x'li x
θ' θ

light l

r

Figure 3: Geometry for direct illumination. The radiance at point
x on the receiver is being calculated by summing the contributions
from a set of point light sources at x0

li on light l.

3.1 Approximating Extended Light Sources
Although such integrals can be solved in closed form for planar

surfaces with no occlusion (v � 1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source l by a set of nl point light sources:

Lc(x
0) �

X
l

nlX
i=1

ali Lc(x
0) �(x0

� x
0

li);

where �(x) is a 3-D Dirac delta function, x0

li is sample point i on
light source l, and ali is the area associated with this sample point.
Typically, each sample on a light source has equal area: ali=al=nl,
where al is the area of light source l.

With this approximation, the radiance of a reflective surface point
can be computed by summing the contributions over all sample
points on all light sources:

Lc(x) = �c(x)Lac

+ �c(x)
X
l

nlX
i=1

ali
cos+�li cos+�

0

li

�r2
li

v(x;x0

li)Lc(x
0

li):
(1)

The formulas above can be generalized to linear and point light
sources, as well as area light sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function v, since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing v is necessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

3.2 Soft Shadows in Hardware
Equation (1) can be rewritten in a form suitable to hardware

computation:

Lc(x) = �c(x)Lac

+
X
l

nlX
i=1

�
ali �c(x)

�� cos+�li cos+�
0

li Lc(x
0

li)

�r2
li

�
v(x;x0

li):

(2)

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at x0

li, where x is
a function of screen (x; y).

That summand consists of the product of three factors. The first
one, which is an area times the reflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light
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Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by r2. This
can be computed in hardware by rendering the receiver polygon
with a single spotlight at x0

li turned on, using a spotlight exponent
of e = 1 and quadratic attenuation. On machines that do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on a light source and each
point on the receiver. Visibility can be computed by projecting all
polygons between light source point x0

li and the receiver onto the
receiver.

We want to simulate soft shadows as quickly as possible. To take
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixels in each hard shadow image map to the same surface point in
3-D. This would be very slow. A faster alternative is to choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point as its apex,
there is a 4�4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point i on light l is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon is illuminated by the ambient light
plus a single point light source at x0

li, using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light: (r; g; b) =
(�rLar; �gLag; �bLab). This is most quickly done with z-buffering
off, and clipping to a pyramid with the receiver polygon as its base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because all polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box
We want a projective (perspective) transformation that maps a

pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates (xo; yo; zo). It

has apex a and its parallelogram base has one vertex at b and edge
vectors ex and ey (bold lower case denotes a 3-D point or vector).
The parallelepiped lies in what we will call unit screen space, with
coordinates (xu; yu; zu). Viewed from the apex, the left and right
sides of the pyramid map to the parallel planes xu = 0 and xu = 1,
the bottom and top map to yu=0 and yu=1, and the base plane and
a plane parallel to it through the apex map to zu = 1 and zu =1,
respectively. See figure 4.

A 4�4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

M =

8>>>>>>:
m00 m01 m02 m03

m10 m11 m12 m13

0 0 0 1
m30 m31 m32 m33

9>>>>>>; ;

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:8>>>>>>:

x
y
1
w

9>>>>>>; =M

8>>>>>>:
xo

yo

zo

1

9>>>>>>; and

8>>>:
xu

yu

zu

9>>>; =

8>>>:
x=w
y=w
1=w

9>>>; :

The third row of matrixM takes this simple form because a constant
zu value is desired on the base plane. The homogeneous screen
coordinates x, y, and w are each affine functions of xo, yo, and zo

(that is, linear plus translation). The constraints above specify the
value of each of the three coordinates at four points in space – just
enough to uniquely determine the twelve unknowns inM.

The w coordinate, for example, has value 1 at the points b,
b+ex, and b+ey, and value 0 at a. Therefore, the vector nw =
ey�ex is normal to any plane of constant w, thus fixing the first
three elements of the last row of the matrix within a scale factor:
(m30;m31;m32)

T =�wnw. Settingw to 0 ata and 1 atb constrains
m33=��wnw �a and �w=1=nw �ew, where ew=b� a. The first
two rows of M can be derived similarly (see figure 4). The result
is:

M =

8>>>>>>:
�xnxx �xnxy �xnxz ��xnx �b

�ynyx �ynyy �ynyz ��yny �b

0 0 0 1
�wnwx �wnwy �wnwz ��wnw �a

9>>>>>>; ;

where

nx = ew�ey

ny = ex�ew

nw = ey�ex

and
�x = 1=nx �ex

�y = 1=ny �ey

�w = 1=nw �ew

:

Blinn [3] uses a related projective transformation for the genera-
tion of shadows on a plane, but his is a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for
clipping.

3.4 Using the Transformation
To use this transformation in our shadow algorithm, we first fit

a parallelogram around the receiver polygon. If the receiver is a
rectangle or other parallelogram, the fit is exact; if the receiver is
a triangle, then we fit the triangle into the lower left triangle of the
parallelogram; and for more general polygons with four or more
sides, a simple 2-D bounding box in the plane of the polygon can
be used. It is possible to go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL, for example).
We assume for simplicity, however, that the transformation between
texture space (the screen space in these light source projections) and
object space is affine, and so we restrict ourselves to parallelograms.

4



3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon R

choose resolution for receiver’s texture (sx�sy pixels)
clear accumulator image of sx�sy pixels to black
create temporary image of sx�sy pixels
for each light source l

first backface test: if l is entirely behind R
or R is entirely behind l, then skip to next l

for each sample point i on light source l
second backface test: if x0

li is behind R then skip to next i
compute transformation matrix M, where a=x0

li,
and the base parallelogram fits tightly around R

set current transformation matrix to scale(sx; sy; 1)�M
set clipping planes to zu;near=1 � � and zu;far=big
draw R with illumination from x0

li only, as described in
equation (2), into temp image

for each other object in scene
draw object with ambient color into temp image

add temp image into accumulator image with weight al=nl
save accumulator image as texture for polygon R

A hard shadow image is computed in each iteration of the i loop.
These are averaged together to compute a soft shadow image, which
is used as a radiance texture. Note that objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering
for each object in scene

if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 Backface Testing
The cases where cos+� cos+�

0=0 can be optimized using backface
testing.

To test if polygon p is behind polygon q, compute the signed
distances from the plane of polygon q to each of the vertices of
p (signed positive on the front of q and negative on the back). If
they are all positive, then p is entirely in front of q, if they are all
nonpositive, p is entirely in back, otherwise, part of p is in front of
q and part is in back.

To test if the apex a of the pyramid is behind the receiver R that
defines the base plane, simply test if nw �ew�0.

The above checks will ensure that cos �>0 at every point on the
receiver, but there is still the possibility that cos �0

� 0 on portions
of the receiver (i.e. that the receiver is only partially illuminated by
the light source). This final case should be handled at the polygon
level or pixel level when shading the receiver in the algorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources
The set of samples used on each light source greatly influences the

speed and quality of the results. Too few samples, or a poorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If a uniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of
m�m samples is used on a parallelogram light source, an occluder
edge coplanar with one of the light source edges will cause m big

steps, while an occluder edge in general position will cause m2

small steps.
Stochastic sampling [8] with the same number of samples yields

smoother penumbra than a uniform grid, because the steps no longer
coincide. We use a jittered uniform grid because it gives good results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of a light source is most important when the
light source subtends a large solid angle from the point of view of
the receiver, since that is when the penumbra is widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The algorithm can easily handle diffuse (non-directional) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samples in the regions
of the light source with highest radiance.

3.8 Texture Resolution
The resolution of the shadow texture should be roughly equal to

the resolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution results in visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon’s
texture, in each dimension, proportional to its size in world space us-
ing a “desired pixel size” parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texture memory for triangles can be further optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
size is too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve a good approximation.

3.9 Complexity
We now analyze the expected complexity of our algorithm (worst

case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set
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Figure 5: Shadows are computed on plane R and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with s surfaces (polygons), a total of n=

P
l
nl light

source samples, a total of t radiance texture pixels, and the output
images are rendered with p pixels. We assume the depth complexity
of the scene (the average number of surfaces intersecting a ray) is
bounded, and that t and p are roughly linearly related. The average
number of texture pixels per polygon is t=s.

With our technique, preprocessing renders the scene ns times.
A painter’s algorithm rendering of s polygons into an image of t=s
pixels takesO(s+t=s) time for scenes of bounded depth complexity.
The total preprocessing time is thus O(ns2+nt), and the required
texture memory is O(t). Display requires only z-buffered texture
mapping of s polygons to an image of p pixels, for a time cost
of O(s+p). The memory for the z-buffer and output image is
O(p)=O(t).

Our display algorithm is very fast for complex scenes. Its cost is
independent of the number of light source samples used, and also
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because all of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in s, however. In such
cases, performance can be improved by calculating shadows only on
a small number of surfaces in the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost toO(nsst+nt),
where st is the number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with n= 1, st small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
withn large, st large) is computed when they complete a movement,
and then top speed rendering (display with texture mapping) is used
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only a small fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatial data structures, entire objects can be culled with a few
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from
O(s+t=s) to O(s�+t=s), where � � :3 or so.

An alternative optimization, which would make the algorithm
more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with a single rendering, but its disadvantage is that
self-shadowing of concave objects is not simulated.

3.10 Comparison to Other Algorithms
We can compare the complexity of our algorithm to other algo-

rithms capable of simulating soft shadows at near-interactive rates.
The main alternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segal et al., and hardware hemicube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is O(ns+np), making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are O(np). This makes the algorithm
awkward for many point light sources or extended light sources
with many samples (large n). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display process is so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elements are needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large s), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our algorithm can be done in hardware, but
this is not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Scenes with General Reflectance
Shadows on specular surfaces, or surfaces with more general

reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function v(x;x0) in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illumination factors at vertices only. This method costsO(sst+
t) for precomputation, and O(s+p) for display.

Shadows from multiple point light sources can also be simulated.
After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to n light
sources can be calculated by rendering the scene n times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
is nt one-bit texture pixels and O(ns+np) display time.

Generalizing this method to extended light sources in the case of
general reflectance is more difficult, as the computation involves the
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF’s are spiky, so careful integration is required or the highlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF’s, soft shadows on surfaces with general reflectance
could be displayed with O(nt) memory and O(ns+np) time.

5 Implementation
We implemented our diffuse algorithm using the OpenGL sub-

routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4�4 matrices, and we intentionally cast our
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shading formulas in a form that maps cleanly into OpenGL’s model.
The source code is about 2,000 lines of C++. Our implementation
renders at about 900�900 resolution, and uses 24-bit textures at
sizes of 2kx �2ky pixels, for 2 � kx; ky � 8. Phong shading is
simulated by subdividing each receiver polygon into a grid of 8�8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with s= 749 polygons, st = 3 of them textured,
with two area light sources sampled with n= 8 points total, gen-
erating textures with about t = 200; 000 pixels total, and a final
picture of about p= 810; 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz rates in most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminate it. The floor and walls, for example, might specify many
light source samples, while table and chairs might specify a single
light source sample. To facilitate further testing of shadow sampling,
a slider that acts as a multiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results
The color figures illustrate high quality results achievable in a few

seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using n= 32 light samples total on two light sources.
Figure 7 illustrates the calculation of shadows on more complex
objects, with a total of st=25 shadowed polygons. For this image,
7�7 light sampling was used when shadowing the walls and floor,
while 3�3 sampling was used to compute shadows on the table top,
and 2�2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. This image was calculated in
13 seconds.

7 Conclusions
We have described a simple algorithm for generating soft shadows

at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve real time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. In coming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. This will run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity s, but we believe this can be reduced to about O(s1:3),
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.
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Figure 6: Shadows on walls and floor, computed in 5.5 seconds.

Figure 7: Shadows on walls, floor, and table, computed in 13 seconds.
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Abstract

We describe a CSG rendering algorithm that requires no evaluation of the CSG tree beyond normal-

ization and pruning. It renders directly from the normalized CSG tree and primitives described (to

the graphics system) by their facetted boundaries. It behaves correctly in the presence of user de�ned,
\near" and \far" clipping planes. It has been implemented on standard graphics workstations using

Iris GL ? and OpenGL ? graphics libraries. Modestly sized models can be evaluated and rendered at

interactive (less than a second per frame) speeds. We have combined the algorithm with an existing
B-rep based modeller to provide interactive rendering of incremental updates to large models.

1. Introduction

Constructive Solid Geometry (CSG) within an inter-
active modelling environment provides a simple and

intuitive approach to solid modelling. In conventional

modelling systems primitives are �rst positioned, a
boolean operation is performed and the results then

rendered. Often the correct position cannot be gauged

easily from display of the primitives alone. A sequence
of trial and error may be initiated or perhaps a break

from the normal modelling process to calculate the

correct position numerically. Conceptual modelling is
inhibited | usually a design is fully edged before

modelling commences. Interactive rendering o�ers the

promise of a modelling system where designers can

easily explore possibilities within the CSG paradigm.

For instance, a designer could drag a hole de�ned by a

complex solid through a workpiece, observing the new

forms that emerge.

Interactive rendering of CSG models has previ-

ously been implemented with special purpose hard-
ware ?; ?; ?. We believe that such systems should be

based on an existing, commonly available graphics li-

brary. Use of an existing graphics library simpli�es de-
velopment, protects investment in proprietary graph-

ics hardware, and leverages o� future improvements

y Supported by Informatix, Inc. Tokyo.

in the hardware supported by the library. Conversion

of the CSG tree for a model into a boundary repre-
sentation (B-rep) meets this goal but is typically too

slow for interactive modi�cation.

The surfaces in the B-rep of a model are a subset
of the surfaces of the primitives in the CSG tree for

the model. Conversion to a B-rep is then the clas-

si�cation of the surfaces of each primitive into por-
tions that are \inside", \outside", or \on" the surface

of the fully evaluated model. Display of the model

only requires classi�cation of the points on the sur-
faces which project to each pixel. Point classi�cation

is much simpler than surface classi�cation. Geomet-

rically, point classi�cation requires intersection of the
primitives with rays through each pixel, while surface

classi�cation requires intersection of the primitive sur-

faces with each other.

Thibault and Naylor ? describe a surface classi�ca-

tion based approach. They build BSP trees for each
primitive and perform the classi�cation by merging

the trees together. The resulting tree is equivalent to

a BSP tree built from the B-rep of the model. The
complete evaluation process is too slow for interac-

tive rendering. They describe an incremental version

of their algorithm which provides interactive rendering

speeds within a modelling environment.

There are variations of most rendering algorithms

which use point classi�cation. These include ray trac-

c The Eurographics Association 1997. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main

Street, Cambridge, MA 02142, USA.



2 T. F. Wiegand / Interactive Rendering of CSG Models

ing ?, scan line methods ?, and depth-bu�er methods
?; ?; ?. Much attention has been focused on optimis-

ing point classi�cation for this purpose ?. These al-
gorithms all add point classi�cation within the lowest

levels of the standard algorithms. We require an al-

gorithm which can be implemented using an existing
graphics library.

Goldfeather, Molnar, Turk and Fuchs ? describe
an algorithm that �rst normalizes a CSG tree be-

fore rendering the normalized form. It operates in a

SIMD pixel parallel way on an augmented frame bu�er
(Pixel-planes 4) which has two depth (Z) bu�ers, two

color bu�ers and ag bits per pixel. We have devel-

oped a new version of this algorithm capable of being
implemented using an existing graphics library on a

conventional graphics workstation. Our algorithm re-

quires a single depth bu�er, single color bu�er, stencil
(ag bits) bu�er and the ability to save and restore

the contents of the depth bu�er.

In section ?? we review the algorithm described by

Goldfeather et. al. ?. We have restructured the presen-

tation of the ideas to make them more amenable to im-
plementation on a conventional graphics workstation.

Our implementation is described in section ??. In sec-

tion ?? we describe the integration of user de�ned,
\near" and \far" clipping planes into the algorithm.

In section ?? we describe use of the algorithm within

an interactive modelling system. The system main-
tains fully evaluated B-rep versions of models and uses

the rendering algorithm for interactive changes to the

models. Section ?? presents performance statistics for
our current implementation using the Silicon Graphics

GL library ?.

2. Rendering a CSG tree using pixel parallel

operations

We would advise interested readers to refer to Gold-

feather et. al. ? for a fuller description of the algorithm

which we summarize in this section.

A CSG tree is either a primitive or a boolean combi-

nation of sub-trees with intersection(\), subtraction(�)

or union([) operators. A CSG tree is in normal (sum
of products) form when all intersection or subtraction

operators have a left subtree which contains no union

operators and a right subtree that is simply a primi-

tive. For example (((A\B)�C)[(D\(E�(F\G))))[H,

where A{H represent primitives, is in normal form.

We shall assume left association of operators so the

previous expression can be written as (A\B�C)[(D\

E�F\G)[H. This expression has three products. The

primitives A, B, D, E, G, H are uncomplemented, C
and F are complemented.

The normalization process recursively applies a set

of production rules to a CSG tree which use the as-

sociative and distributive properties of boolean opera-

tions. Determining an appropriate rule and applying it
uses only local information (type of current node and

child node types). The production rules and algorithm

used are :

1. X�(Y [ Z) ! (X�Y )�Z
2. X\(Y [ Z) ! (X\Y ) [ (X\Z)

3. X�(Y \Z) ! (X�Y ) [ (X�Z)

4. X\(Y \Z) ! (X\Y )\Z
5. X�(Y �Z) ! (X�Y ) [ (X\Z)

6. X\(Y �Z) ! (X\Y )�Z

7. (X�Y )\Z ! (X\Z)�Y
8. (X [ Y )�Z ! (X�Z) [ (Y �Z)

9. (X [ Y )\Z ! (X\Z) [ (Y \Z)

proc normalize(T : tree)
f

if T is a primitive f

return

g

repeat f

while T matches a rule from 1{9 f
apply �rst matching rule

g

normalize(T .left)
g until (T .op is a union) or

((T .right is a primitive) and

(T .left is not a union))
normalize(T .right)

g

Goldfeather et. al. ? show that the algorithm ter-

minates, generates a tree in normal form and does

not add redundant product terms or repeat primitives
within a product.

Normalization can add many primitive leaf nodes to

a tree with a possibly exponential increase in tree size.
In most cases, a large number of the products gener-

ated by normalization play no part in the �nal image,

because their primitives do not intersect. A limited
amount of geometric information (bounding boxes of

primitives) is used to prune CSG trees as they are

normalized. Bounding boxes are computed for each
operator node using the rules :

1. Bound(A [B) = Bound(Bound(A) [ Bound(B))
2. Bound(A\B) = Bound(Bound(A) \Bound(B))

3. Bound(A�B) = Bound(A)

Here A and B are arbitrary child nodes. After each

step of the normalization algorithm the tree is pruned

by applying the following rules to the current node :

c The Eurographics Association 1997
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1. A\B ! ;, if Bound(A) does not

intersect Bound(B).
2. A�B ! A, if Bound(A) does not

intersect Bound(B).

Normalization of the tree allows simpli�cation of the
rendering problem. The union of two or more solids

can be rendered using the standard depth (Z) bu�er

hidden surface removal algorithm used by most graph-
ics workstations. The rendering algorithm needs only

to render the correct depth and color for each product

in the normalized CSG tree and then allow the depth
bu�er to combine the results for each product.

Each product can be rendered by rendering each vis-

ible surface of a primitive and trimming (intersecting
or subtracting) the surface with the remaining primi-

tives in the product. The visible surfaces are the front

facing surfaces of uncomplemented primitives and the
back facing surfaces of complemented primitives. This

observation allows a further rewriting of the CSG tree

where each product is split into a sum of partial prod-
ucts. A convex primitive has one pair of front and back

surfaces per pixel. A non-convex primitive may have

any number of pairs of front and back surfaces per
pixel. A k-convex primitive is de�ned as one that has

at most k pairs of front and back surfaces per pixel

from any view point. We shall use the notation Ak to
represent a k-convex primitive and Afn to represent

the nth front surface (numbered 0 to k � 1) of primi-

tive Ak and Abn to represent the nth back surface of
Ak. In the common case of convex primitives, we shall

drop the numerical subscripts. Thus, A�B expands to

(Af�B)[(Bb\A) in sum of partial products form; while
A2�B expands to (Af0�B)[ (Af1�B)[ (Bb\A2). We

call the primitive whose surface is being rendered the

target primitive of the partial product. The remaining
primitives are called trimming primitives.

The sum of partial products form again simpli-

�es the rendering problem. It is now reduced to cor-
rectly rendering partial products before combining the

results with the depth bu�er. Additional di�erence

pruning may also be carried out when products have
been expanded to partial products :

3 Ab\B ! ;, if Bound(A) does not
intersect Bound(B).

A partial product is rendered by �rst rendering the

target surface of the partial product. Each pixel in

the surface is then classi�ed in parallel against each
of the trimming primitives. To be part of the partial

product surface, each pixel must be in with respect to

any uncomplemented primitives and out with respect
to any complemented ones. Those pixels which do not

meet these criteria are trimmed away (colour set to

background, depth set to initial value).
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Primitives must be formed from closed (possibly

nested) facetted shells. Pixels can then be classi�ed

against a trimming primitive by counting the number
of times a primitive fragment is closer during scan con-

version of the primitive's faces. If the result is odd the

pixel is in with respect to the primitive (�gure ??).
Pixels can be classi�ed in parallel by using a 1 bit ag

per pixel whose value is toggled whenever scan conver-

sion of a trimming primitive fragment is closer than
the pixel's depth value.

Figure ?? illustrates the process for A�B looking
along the view direction shown in �gure ??. First, Af

is rendered, classi�ed against B and trimmed (Af�B).

Then Bb is rendered, classi�ed against A and trimmed
(Bb\A). Finally, the two renders are composited to-

gether.

Rendering the appropriate surface of a convex prim-

itive is simple as there is only one pair of front and

back surfaces per pixel. Most graphics libraries sup-
port front and back face culling modes. To render all

possible surfaces of an arbitrary k-convex primitive

separately requires a log2 k bit count per pixel. To ren-
der the jth front (or back) facing surface of a primitive,

the front (or back) facing surfaces are rendered incre-

menting the count for each pixel and only enabling
writes to the colour and depth bu�ers for which the

count is equal to j.

3. Implementation on a conventional graphics

workstation

The algorithm described in section ?? maps naturally

onto a hardware architecture which can support two

depth bu�ers, two colour bu�ers and a stencil bu�er.
One pair of depth and colour bu�ers, together with the

stencil bu�er, are used to render each partial product.

The results are then composited into the other pair
of bu�ers. Unfortunately, conventional graphics work-

station hardware typically supports only one depth

bu�er. One approach is to use the hardware provided
depth, colour and stencil bu�ers to render partial

products; retrieving the results from the hardware and

compositing in local workstation memory. The �nal re-
sult can then be returned direct to the frame bu�er.

This approach does not make the best use of the work-

station hardware. Modern hardware tends to be highly

pipelined. Interrupting the pipeline to retrieve results

for each partial product will have a considerable per-

formance penalty. In addition, the hardware is typi-

cally optimized for ow of data from local memory,

through the pipeline and into the frame bu�er. Data

paths from the frame bu�er back to local memory are
likely to be slow, especially given the volume of data

to be retrieved compared to the compact instructions

given to the hardware to draw the primitives. Finally,

the compositing operation in local memory will receive

no help from the hardware.

Our approach attempts to extract the maximum

bene�t from any graphics hardware by minimizing the

tra�c between local memory and the hardware and
by making sure that the hardware can be used for all

rendering and compositing operations. The idea is to

divide the rendering process into two phases | clas-
si�cation and �nal rendering. Before rendering begins

the current depth bu�er contents are saved into local

memory. We then classify each partial product surface
in turn. An extra stencil bu�er bit (accumulator) per

surface stores the results of the classi�cation. During

this process updates to the colour bu�er are disabled.
Once classi�cation is complete, we restore the depth

bu�er to the saved state and enable updates to the

colour bu�er. Finally, each partial product surface is
rendered again using the stored classi�cation results

as a mask (or stencil) to control update of the frame

bu�er. At the same time the depth bu�er acts to com-
posite the pixels which pass the stencil test with those

already rendered.

The number of surfaces for which we can perform

classi�cation is limited by the depth of the stencil

bu�er. If the capacity of the stencil bu�er is exceeded
the surfaces must be processed in multiple passes with

the depth bu�er saved and restored during each pass.

We can reduce the amount of data that needs to be
copied by only saving the parts of the depth bu�er that

will be modi�ed by classi�cation during each pass. The

�rst pass of each frame does not need to save the depth
bu�er at all as the values are known to be those pro-

duced by the initial clear. Instead of restoring, the

depth bu�er is cleared again. Thus, for simple models
rendered at the start of a frame, no depth bu�er save

and restore is needed at all.

A surface may appear in more than one partial prod-
uct in the normalized CSG tree. We exploit this by us-

ing the same accumulator bit for all partial products

with the same surface. Classi�cation results for each
partial product are ORed with the current contents of

the accumulator.

The stencil bits are partitioned into count bits

(Scount), a parity bit (Sp) and an accumulator bit (Sa)

per surface. log2 k count bits are required where k is
the maximum convexity of any primitive with a sur-

face being classi�ed in the current pass. The count and

parity bits are used independently and may be over-
lapped. Table ?? shows the number of stencil bu�er

bits required to classify and render a single surface

for primitives of varying convexity. The algorithm re-
quires an absolute minimum of 2 bits for 1-convex and

2-convex primitives, classifying and rendering a single

surface in a pass. In practice nearly all primitives used
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Convexity 1 2 3{4 5{8 9{16 17-32 33-64 65{128

Sp 1 1 1 1 1 1 1 1

Scount 0 1 2 3 4 5 6 7

Sp and Scount 1 1 2 3 4 5 6 7
With 1 accumulator (S0) 2 2 3 4 5 6 7 8

With 3 accumulators (S0::2) 4 4 5 6 7 8 9 10

With 7 accumulators (S0::6) 8 8 9 10 11 12 13 14

Table 1: Stencil bu�er usage with primitive convexity

in pure CSG trees are 1-convex. With 8 stencil bits the

algorithm can render from 7 1-convex primitives, to 1

surface of a 128-convex primitive, in a single pass.

Partial products are gathered into groups such that

all the partial products in a group can be classi�ed

and rendered in one pass. The capacity of a group
is de�ned as the number of di�erent target surfaces

that partial products in the group may contain. Ca-

pacity is dependent on the stencil bu�er depth and
the greatest convexity of any of the target primitives

in the group (table ??). Groups are formed by adding

partial products in ascending order of target primitive
convexity. Once one partial product with a particular

target surface is added, all others with the same target

surface can be added without using any extra capac-
ity. Adding a partial product with a higher convexity

than any already in the group will reduce the group

capacity. If there is insu�cient capacity to add the
minimum convexity remaining partial product, a new

group must be started.

Each group is processed in a separate pass in which
all target surface primitives are classi�ed and then

rendered. Frame bu�er wide operations are limited to

areas de�ned by the projection of the bounding box
of the current group or partial product. We present

pseudo-code for the complete rendering process be-

low. The procedures \glPrim(prim, tests, bu�ers, ops,

pops)" and \glSet(value, tests, bu�er, ops, pops)"

should be provided by the graphics library. The �rst

renders (scan converts) a primitive where \tests" are

the tests performed at each pixel to determine if it

can be updated, \bu�ers" speci�es the set of bu�ers

enabled for writing if the \tests" pass (where C is
colour, Z is depth and S is stencil), \ops" are opera-

tions performed on the stencil bits at each pixel in the

primitive, and \pops" are operations to be performed
on the stencil bits at each pixel only if \tests" pass.

The second procedure is similar but attempts to glob-

ally set values for all pixels. Iris GL ? and OpenGL
? are two graphics libraries which provide equivalents

to the glPrim and glSet procedures described here.

We use the symbol ZP to denote the depth value at

a pixel due to the scan conversion of a primitive, P .

Hence, \ZP < Z" is the familiar Z bu�er hidden sur-

face removal test. We use Zf to represent the furthest
possible depth value.

glSet(0, ALWAYS, S, ;, ;)
glSet(\far", ALWAYS, Z, ;, ;)

for �rst group G f

classify(G)
glSet(Zf , ALWAYS, Z, ;, ;)

renderGroup(G)

g for each subsequent group G f

save depth bu�er

glSet(Zf , ALWAYS, Z, ;, ;)

classify(G)
restore depth bu�er

renderGroup(G)

g

proc classify(G : group)

f

a = 0
for each target surface B in G f

for each partial product R f

renderSurface(B)
for each trimming primitive P in R f

trim(P )

g

glSet(1, Sa = 0 & Z 6= Zf , Sa, ;, ;)

glSet(Zf , ALWAYS, Z, ;, ;)

g

a = a+ 1

g

g

proc renderGroup(G : group)

f

a = 0
for each target primitive P in G f

glPrim(P , Sa = 1 & ZP < Z, C & Z, ;, ;)

glSet(0, ALWAYS, Sa, ;, ;)

a = a+ 1

g

g
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Maximum Target Primitive Convexity
Capacity

1 2 3{4 5{8 9{16 17-32 33-64 65{128

2 1 1 - - - - - -

3 2 2 1 - - - - -

4 3 3 2 1 - - - -
Stencil Bu�er Depth 5 4 4 3 2 1 - - -

6 5 5 4 3 2 1 - -

7 6 6 5 4 3 2 1 -
8 7 7 6 5 4 3 2 1

Table 2: Group Capacity

BC

D
E

A

Figure 4: (a) Primitives, (b) Rendering (A\B [A�

C)\(A\D [A�E)

proc renderSurface(B : surface)

f

P = target primitive containing B

n = surface number of B

k = convexity of P
if P is uncomplemented f

enable back face culling

g else f

enable front face culling

g

if k = 1 f

glPrim(P , ALWAYS, Z, ;, ;)

g else f

glPrim(P , Scount = n, Z, inc Scount, ;)

glSet(0, ALWAYS, Scount, ;, ;)

g

g

proc trim(P : primitive)
f

glPrim(P , ZP < Z, ;, ;, toggle Sp)

if P is uncomplemented f
glSet(Zf , Sp = 0 , Z, ;, ;)

g else f

glSet(Zf , Sp = 1 , Z, ;, ;)
g

glSet(0, ALWAYS, Sp, ;, ;)

g

Group 0

Group 1 Group 2

Group 3 Group 4

Figure 5: Rendering each product group separately

Figure ?? shows �ve primitives and a rendered CSG

tree of the primitives. The expression ((A\B) [ (A�

C))\((A\D) [ (A�E)) normalizes to (A\B\D) [
(A\D�C) [ (A\B�E) [ (A�C�E). Expanding to

partial products and grouping gives :

0: (Af\B\D)[(Af\D�C)[(Af\B�E)[(Af�C�E)

1: (Bf\A\D)[ (Bf\A�E)

2: (Cb\A\D) [ (Cb\A�E)

3: (Df\A\B) [ (Df\A�C)

4: (Eb\A\B) [ (Eb\A�C)

Figure ?? shows the result of rendering each prod-

uct group separately. Product groups 2 and 4 are not
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visible in the combined image as they are behind the

surfaces from groups 1 and 3.

4. Clipping planes and half spaces

Interactive inspection of solid models is aided by

means of clipping planes which can help reveal inter-

nal structure. After a clipping plane has been de�ned
and activated all subsequently rendered geometry is

clipped against the plane and the parts on the out

side discarded. The rendering of solids as closed shells
means that clipping will erroneously reveal the interior

of a shell when a portion of the shell is clipped away.

Rossignac, Megahed and Schneider ? describe a stencil
bu�er based technique for \capping" shells where they

intersect a clipping plane. Their algorithm will also

highlight interferences (intersections) between solids
on the clipping plane.

Clipping a solid and then capping is equivalent to
intersection with a half space. We can trivially render

an intersection between a solid S and a halfspace H

by constructing a convex polygonal primitive P where
one face lies on the plane de�ning H and has edges

which do not intersect the bounding box of S. The

other faces of P should not intersect S at all. Render-
ing S\P is equivalent to rendering the solid de�ned

by S\H.

Rossignac, Megahed and Schneider's ? capping al-

gorithm can be easily integrated with our algorithm
to make use of auxiliary clipping planes in rendering

CSG trees involving halfspaces. As a halfspace is in�-

nite we assume that it will always be intersected with
a �nite primitive in any CSG expression. Note that

S�H is equivalent to S\H where H is simply H with

the normal of the halfspace de�ning plane reversed.

A halfspace acts as a trimming primitive by acti-

vating a clipping plane for the halfspace during the
rendering of the target primitive. The stencil bu�er

is unused. The set of halfspaces in a product can be

considered as a 1-convex target primitive. Its surface
can be rendered by rendering the de�ning plane (or

rather a su�ciently large polygon lying on the plane)

of each halfspace while clipping planes are active for
each of the other halfspaces. Each clipping plane is de-

activated while it is being rendered to prevent it from

clipping itself.

proc render(H : halfspace set)

f

for each de�ning plane P of H f

Activate clipping plane de�ned by P

g

for each front facing de�ning plane P of H f

Deactivate clipping plane de�ned by P

renderPlane(P )

Activate clipping plane de�ned by P

g

for each de�ning plane P of H f

Deactivate clipping plane de�ned by P

g

g

This approach has three advantages over rendering

halfspaces as normal primitives. Firstly, the halfspace

set only has to be rendered as a target primitive, all
trimming by halfspaces uses the clipping planes. Sec-

ondly, each target primitive is clipped, reducing the
amount of data written to the frame bu�er at the

cost of the extra geometry processing required by clip-

ping. Thirdly, a solid/halfspace intersection can be
correctly rendered using the algorithm for 1-convex

solids (k = 1), independent of actual primitive con-

vexity.

Rendering a k-convex target primitive using the al-
gorithm for 1-convex solids results in the nearest sur-

face being drawn (with depth bu�ering active). The

nearest surface (after clipping) of a concave primitive
will be visible in the intersection with a half space.

Rendering an arbitrary CSG tree using the 1-convex

algorithm will render the result of evaluating the CSG
description on the \nearest spans" (nearest front to

nearest back facing surface for each pixel) of each

primitive. For interactive use the nearest spans are of-
ten all we are interested in. If not, then clipping planes

may be used to delimit regions of interest within which

the nearest spans will be correctly rendered. Thus, a
lower cost, reduced quality mode of rendering is also

available.

In addition to user de�ned clipping planes, all ge-
ometry is usually clipped to \near" and \far" planes.

These planes are perpendicular to the viewing direc-

tion. All geometry must be further from the eye posi-
tion than the near plane and nearer than the far plane.

The near and far planes also de�ne the mapping of dis-

tances from the eye point to values stored in the depth
bu�er. Points on the near plane map to the minimum

depth bu�er value and points on the far plane map to

the maximum depth bu�er value. The algorithm de-
scribed in section ?? will fail if any primitive is clipped

by either the near or far clipping plane.

In practice the far clipping plane can always be
safely positioned beyond the primitives. The near

plane is more troublesome. Firstly, it cannot be posi-

tioned behind the eye point. Secondly, the resolution
of the depth bu�er is critically dependent on the posi-

tion of the near clip plane. It should be positioned as

far from the eye point as possible. Consider rendering
A�B and positioning the eye in the hole in A formed

by subtracting B. Near plane clipping is unavoidable.

We can extend our algorithm to cap trimming prim-

c The Eurographics Association 1997



8 T. F. Wiegand / Interactive Rendering of CSG Models

BC

D
E

A
F

Figure 6: (a) Primitives, (b) Rendering (A\B [A�

C)\(A\D [A�E)\F

itives if they will be subject to near plane clipping.

Clipping of target primitives is not a problem unless
the eye point is positioned inside the evaluated CSG

model.

The trimming primitive is rendered twice while tog-

gling Sp; �rstly, with the depth bu�er test disabled;

secondly, with the depth bu�er test enabled. The �rst
render sets the parity bit where capping is required.

The second completes the classi�cation as above.

proc trim(P : primitive)

f

glPrim(P , ALWAYS, ;, ;, toggle Sp)

glPrim(P , ZP < Z, ;, ;, toggle Sp)

if P is uncomplemented f
glSet(Zf , Sp = 0 , Z, ;, ;)

g else f

glSet(Zf , Sp = 1 , Z, ;, ;)
g

glSet(0, ALWAYS, Sp, ;, ;)

g

Figure ?? shows our earlier example intersected

with a single clipping plane / half space. The nor-

malized CSG description is (A\B\D\F )[ (A\D\
F�C) [ (A\B\F�E) [ (A\F�C�E).

The normalization and pruning algorithm described

in section ?? needs to be extended to cope with half-

space primitives. The extensions required are in the
form of additional rules for bounding box generation,

normalization and pruning (H is a halfspace) :

Bounding Box Generation

4. Bound(A\H) = Bound(A)

Normalization

0. X�H ! X\H

Pruning

4. A\H ! ;, if Bound(A) is outside H.

5. A\H ! A, if Bound(A) is inside H.

6. A\H�B ! A\H, if Bound(B) is outside H.
7. Ab\H ! Ab, if Bound(A) is inside H.

8. Hf�A ! Hf , if Bound(A) does not intersect H.

Our earlier example (�gure ??) contains many prun-
ing possibilities. The normalized CSG tree is (A\B\

D\F )[ (A\D\F�C)[ (A\B\F�E)[ (A\F�C�E).

Using rule 1 removes the product A\B\D\F as B
and D don't intersect. Rule 2 will reduce the products

A\D\F�C and A\B\F�E to A\D\F and A\B\F

as the complemented primitives do not intersect the
product. Rule 4 removes the product A\B\F , rule 5 re-

duces A\D\F to A\D and rule 6 reduces A\F�C�E

to A\F�E. The normalized and geometric pruned
CSG tree is then (A\D\F ) [ (A\F�E). Expanding

to partial products gives (Af\D\F )[ (Df\A\F )[

(Ff\A\D)[ (Af\F�E)[ (Ff\A�E)[ (Eb\A\F ).
Finally, di�erence pruning will reduce Eb\A\F to

Eb\A (rule 7) and Ff\A�E to Ff\A (rule 8).

We also prune products against the viewing volume
for the current frame and classify trimming primitive

bounding boxes against the near clipping plane to de-

termine whether the extra capping step is necessary.

5. Interactive Rendering

We have incorporated our rendering algorithm in a

simple, interactive solid modelling system built with
standard components. The main framework is pro-

vided by the Inventor object-oriented 3D toolkit ?.

A model is represented by a directed acyclic graph
of nodes. Operations on models, such as rendering

or picking, are performed by means of actions. The

toolkit may be extended by providing user written
nodes and actions. Conventional solid modelling oper-

ations are provided by the ACIS geometric modeller ?.

ACIS is an object-oriented, boundary representation,
solid modelling kernel.

Our modelling system adds new node types to In-

ventor which support ACIS modelled solids and CSG
trees of solids. We also add a new rendering action

which uses our stencil bu�er CSG display algorithm to

render CSG trees described by Inventor node graphs.
A CSG evaluate action uses ACIS to fully evaluate

a CSG tree allowing the tree to be replaced with a

single evaluated solid node. All the standard Inventor
interactive tools are available for editing models.

The system supports large CSG trees while main-
taining interactive rendering speeds. During display

and editing of a large CSG tree, only a small part of

the model will be changing at any time. We \cache"
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Cached

Uncached
.

−

Move

Figure 7: Direct rendering of a CSG tree with cached

geometry : (a) all caches valid, (b) limited direct ren-
dering when a primitive is moved

fully evaluated geometry obtained from the solid mod-
eller at each internal node in the CSG tree. As caches

become invalidated through editing of the model, por-

tions of the tree are rendered directly (see �gure ??),
while the cached geometry is re-evaluated in the back-

ground (possibly on other workstations in a common

network).

Current use of the system follows a common pat-

tern. A user will quickly position and combine prim-

itives using the solid modelling capabilities. During
this stage the model is simple enough for the user

to envisage the CSG operations required and to posi-

tion primitives correctly. Figure ?? shows an example
model of two intersecting corridors. Firstly, the space

occupied by the corridors is modelled using 5 cubes

and two cylinders which are unioned together. The
corridors are then subtracted from a block. At this

point the user wanted to position a skylight through

the intersection of the corridors. Unsure of the exact
positioning required, or the sort of results possible, the

user roughly positioned a cylinder (the hole) and sub-

tracted it from the model. A transparent instance of
the primitive is also displayed by the system for ref-

erence. A manipulator was then used to drag the hole

through the model revealing an unexpected new form.

When satis�ed with the positioning the hole is \�xed"

in position. The �xing process doesn't change the in-

ternal representation of the model (it's still a complete

CSG tree). It merely hides the apparatus used for in-

teractive manipulation of the hole. The hole can be

un�xed at any time and repositioned. This process of
rough positioning, boolean combination and precise

editing is then repeated.

6. Performance

The time complexity of our algorithm is proportional

to the number of rendering operations carried out. We

shall consider the rendering of one surface as a single

rendering operation. Each pixel oriented \bookkeep-

ing" operation is considered as an equivalent single
unit. These operations have a lower geometry over-

head than surface rendering but access more pixels.

Equivalent functionality could be achieved by per-
forming the bookkeeping operations with a repeated

surface render. As in ?, we ignore the negligible nor-

malization and pruning cost. We present the results
for our current implementation of the algorithm. For

reasons of clarity, some operations are described sep-

arately in section ??, whilst being implemented as a
single operation.

Table ?? shows the number of rendering opera-

tions required for simple steps within the algorithm.

The rendering algorithm is O((kj)2) for each product
where j is the number of primitives in the product

and k is the convexity of the primitives. The number

of products generated by tree normalization is depen-
dent on the structure of the tree and the geometry

of the primitives with a worst case exponential rela-

tionship between number of primitives and products.
In practice, both we, and Goldfeather et. al. ?, have

found that the number of products after pruning is

between O(n) and O(n2) in the total number of prim-
itives. The average product length, j, tends to be small

and independent of the total number of primitives.

Where long products arise they tend to be of the form
A�B�C�D�E::: and are susceptible to di�erence

pruning.

Table ?? provides performance statistics for the

eight sample models in �gure ??. The images are 500
by 500 pixels and were rendered on a Silicon Graphics

5 span 310/VGXT with a single 33Mhz R3000 proces-

sor. The VGXT has an 8 bit stencil bu�er. The �rst
part of the table provides statistics on normalization

and pruning. We include the number of primitives in

the CSG expression, total triangles used to represent
the primitives and the number of passes required. The

number and average length of partial products pro-

duced by normalization with and without pruning are
given. The second part of the table provides a break-

down of rendering operations into target rendering,

classi�cation & trimming and bookkeeping operations.

The third part of the table provides a breakdown of

rendering time in seconds; both for rendering opera-

tions and depth bu�er save/restore time. The depth

bu�er save/restore time is given for the general case

algorithm and for the optimization possible when the

model is the �rst thing rendered in the current frame.

Table ?? shows rendering times together with num-

ber of passes required for di�erent stencil bu�er sizes.

The increases in time are modest because the imple-

mentation only saves and restores the areas of the
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Convexity 1-convex (k = 1) k-convex
Clipping None Near None Near

Classify Target Surface k k k+ 1 k + 1

Trimming Primitive 2k + 1 4k+ 1 2k + 1 4k + 1
Render Target Surface k k k+ 1 k + 1

Table 3: Rendering Operations per Step

Model a b c d e f g h(part) h(full)

Primitives 2 4 7 31 4 8 2 12 72
Triangles 96 256 408 1532 176 496 1928 8888 5536

Partial Products 2 6 32 34 5 14 3 13 72

Average Length 2 3 4 20.4 2.6 7 2 1.2 2.6
Partial Products (pruned) 2 6 32 34 5 14 3 13 72

Average Length (pruned) 2 3 4 2.7 2.6 3 2 1.2 2.3

Passes 1 1 1 5 1 2 1 1 11

Target Render Ops 2 4 7 30 4 8 5 25 72

Classi�cation & Trimming Ops 4 18 128 92 13 42 8 8 164

Bookkeeping Render Ops 4 18 128 92 13 42 10 10 164
Total Render Ops 10 40 263 214 30 92 23 43 400

Target Time 0.005 0.003 0.038 0.039 0.008 0.017 0.031 0.009 0.118

Classi�cation & Trimming Time 0.026 0.049 0.405 0.268 0.052 0.104 0.033 0.011 0.178
Bookkeeping Time 0.023 0.056 0.180 0.197 0.024 0.108 0.016 0.078 0.098

Save and Restore Time (general) 0.103 0.100 0.114 0.239 0.088 0.217 0.039 0.009 0.236

Save and Restore Time (�rst) 0.004 0.004 0.001 0.136 0.001 0.111 0.002 0.000 0.214
Total Time (general) 0.165 0.215 0.668 0.772 0.182 0.434 0.126 0.075 0.673

Total Time (�rst) 0.066 0.119 0.555 0.669 0.095 0.328 0.089 0.067 0.650

Table 4: Rendering times (seconds) and statistics

Stencil Bits 8 7 6 5 4 3 2

Model (c) 0.668(1) 0.670(2) 0.701(2) 0.735(2) 0.763(3) 0.782(4) 0.801(7)

Model (d) 0.772(5) 0.779(5) 0.804(6) 0.818(8) 0.837(10) 0.866(15) 0.884(30)
Model (f) 0.434(2) 0.435(2) 0.442(2) 0.426(2) 0.449(3) 0.475(4) 0.504(8)

Table 5: Rendering time and number of passes with varying stencil size
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depth bu�er that are changed during the classi�cation

stage. If less work is done in each pass the changed

depth bu�er areas typically become smaller. There is
scope for further optimization of save and restore as

the variations in times for the same number of passes

shows. The di�erent stencil bu�er size causes a change
in the composition of product groups. Placing partial

products whose projected bounding boxes overlap into

the same product groups will reduce the total area to
be saved and restored.

Our algorithm performs particularly well in the sort
of situations encountered within our interactive mod-

elling system. Typically there is only ever one \dynam-

ically" rendered CSG expression, usually involving a
simple 1-convex \tool" and a more complex \work-

piece" (�gure ??(g)). Often we can achieve better per-

formance by ignoring the top most caches of complex
workpieces in order to expose more of the CSG tree

to pruning. For example, in �gure ??(h) an expres-
sion like (A [ B [ C [ D [ ::)�X can be pruned to

A�X[B[C [D[ ::. This can vastly reduce both the

number of polygons to be rendered (about 3{5 times as
many polygons have to be rendered for A�B compared

to A [ B) and the size of the screen area involved in

bookkeeping and depth bu�er save and restore opera-
tions. We provide rendering times for both cached (ta-

ble ?? h(full)) and uncached cases (table ?? h(part))

of �gure ??(h). The coloured primitives are those that
are being \moved", the other geometry can be ren-

dered from caches. The version that makes use of the

caches is about 9 times faster than the fully rendered
version. However, the triangle count is higher because

the cached geometry has a more complex boundary

than the original primitives.

Our implementation's performance compares well

with that obtained by specialized hardware and pure
software solutions. Figure ??(d) is our version of a

model rendered by Goldfeather et. al. ? on Pixel-

Planes 4. They report a total rendering time of 4:02
seconds compared with our time of 0:67 seconds. The

VGX architecture machine used for our tests was in-

troduced in 1990 when Pixel-Planes 4 was nearing the
end of its lifetime. Pixel-Planes 5 (the most recent

machine in the Pixel-Planes series ?) has performance

some 50 times better than Pixel-Planes 4 on a full
system with 32 geometry processors and 16 renderers.

Such a system would have performance 10 times that

of our implementation | at a far greater cost.

Figure ??(f) is our version of a model rendered by

Thibault and Naylor's BSP tree based algorithm ?.
Their total rendering time is 7:2 seconds for a model

with 158 polygons on a VAX 8650. Our time is 0:3

seconds for a model with 496 triangles. Our algorithm

also scales better with increasing numbers of polygons

(O(kn) compared with O(nlogn)).

6.1. Other implementations

We have also implemented the algorithm using

OpenGL ? and tested it on our VGXT, a Silicon
Graphics R3000 Indigo with starter graphics, and an

Indigo2 Extreme. The algorithm should run under any

OpenGL implementation. On the systems we tested
performance was comparable to the GL version in all

areas except depth bu�er save and restore. This oper-

ation was about 100 times slower than the GL equiv-
alent. The problem appears to be a combination of

poor performance tuning and a speci�cation which re-

quires conversion of the depth bu�er values to and
from normalized oating point. This problem should

be resolved with the release of more mature OpenGL

implementations. Single pass renders with the frame
start optimization (the common case for our interac-

tive modeller) run at full speed.

7. Conclusion

We have presented an algorithm which directly ren-

ders an arbitrary CSG tree and is suitable for use
in interactive modelling applications. Unlike Gold-

feather et. al. ?, our algorithm requires only a sin-

gle color bu�er, a single depth bu�er, a stencil bu�er
and the ability to save and restore the contents of

the depth bu�er. It can be implemented on many

graphics workstations using existing graphics libraries.
Like Rossignac, Megahed and Schneider ?, the algo-

rithm can display cross-sections of solids using clip-

ping planes but is far more exible. For instance, the
algorithm could be used to directly display interfer-

ences between solids by rendering the intersection of

the solids.

The algorithm has been implemented on an SGI
310/VGXT using the GL graphics library and has

been integrated into an experimental modelling sys-

tem. Performance compares well with specialized

hardware and pure software algorithms for complete

evaluation and rendering. The algorithm performs

particularly well for incremental updates in an inter-
active modelling environment.
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Figure 8: Dragging a hole though the model reveals an unexpected new form
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Abstract
We present a bump mapping method that requires minimal hard-
ware beyond that necessary for Phong shading. We eliminate the
costly per-pixel steps of reconstructing a tangent space and perturb-
ing the interpolated normal vector by a) interpolating vectors that
have been transformed into tangent space at polygon vertices and b)
storing a precomputed, perturbed normal map as a texture. The sav-
ings represents up to a factor of two in hardware or time compared
to a straightforward implementation of bump mapping.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION
Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colors interpolated and composited with a texture.
The drawbacks of Gouraud interpolation [9] are well known and in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by the relatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

The division of a computation into per-vertex and per-pixel com-
ponents is a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of a feature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of a new feature tends to be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify because it lays idle in applica-
tions that do not leverage it. And in low-end or game systems,where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An alternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

�
fpeercy,airey,cabralg@sgi.com
2011 N. Shoreline Boulevard
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Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
world space or interpolated, either of which requires their normal-
ization for a local viewer and light. Figure 1 shows rasterization

H interp

L interp

N interp normalize

normalize

normalize

illumination

Figure 1. One implementation of Phong shading hardware.

hardware for one implementation of Phong shading, upon which
we base this discussion.1 This adds significant cost to rasterization
hardware. However higher quality lighting is almost universally
desired in three-dimensional graphics applications, and advancing
semiconductor technology is making Phong shading hardware more
practical. We take Phong shading and texture mapping hardware as
a prerequisite for bump mapping, assuming they will be standard in
graphics hardware in the future.

Bump mapping [3] is a technique used in advancedshading appli-
cations for simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, f(u;v ),
is interpreted as a height field that perturbs the surface along its nor-
mal vector, N = (Pu � Pv)=j(Pu � Pv)j, at each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the u and v parametric directions (Pu andPv ), and the
partial derivatives of the image height field in u and v (fu and fv),
a perturbed normal vectorN0 is given by [3]:

N
0 = ((Pu � Pv) +D)=j(Pu � Pv) +Dj (1)where
D = �fu(Pv �N)� fv(N�Pu) (2)

In these equations, Pu and Pv are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surface scale becausePu�Pv changes at a different rate thanD. If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggests one way to enforce a constant bump height.

A full implementation of these equations in a rasterizer is imprac-
tical, so the computation is divided among a preprocessing step, per-
vertex, and per-pixel calculations. A natural method to implement
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute Pu � Pv , Pv � N, and
N�Pu at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized as in
Equation 1, with fu and fv read from a texture map. The resulting
normal vector is used in an illumination model.

The hardware for this method is shown in Figure 2. BecausePu
1Several different implementations of Phong shading have been suggested

[11][10][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we use this form as well as Blinn’s introduction of
the halfangle vector for clarity.
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Figure 2. A suggested implementation of bump mapping hard-
ware.

and Pv are unbounded, the three interpolators, the vector addition,
vector scaling, and normalization must have much greater range and
precision than those needed for bounded vectors. These require-
ments are noted in the figure. One approximation to this implemen-
tation has been been proposed [8], wherePv �N andN�Pu are
held constant across a polygon. While avoiding their interpolation,
this approximation is known to have artifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either a large in-
vestment in special purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Because illumination
models are a function of vector operations (such as the dot product)
between the perturbed normal vector and other vectors (such as the
light and halfangle), they can be computed relative to any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
a result, minimal hardware is added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM
We proceed by recognizing that the original bump mapping approx-
imation [3] assumes a surface is locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, N, a tangent vector,
T = Pu=jPuj, and a binormal vector, B = (N � T). T, B, and
N form an orthonormal coordinate system in which we perform the
bump mapping. In this space, the perturbed normal vector is (see
appendix):

N
0

TS
= (a; b; c)=

p
a2 + b2 + c2 (3)

a = �fu(B � Pv) (4)
b = �(fvjPuj � fu(T � Pv)) (5)
c = jPu � Pvj (6)

The coefficients a, b, and c are a function of the surface itself (via
Pu and Pv) and the height field (via fu and fv). Provided that the
bump map is fixed to a surface, the coefficients can be precomputed
for that surface at each point of the height field and stored as a texture
map (we discuss approximations that relax the surface dependence
below). The texel components lie in the range -1 to 1.

The texture map containing the perturbed normal vector is filtered
as a simple texture using, for instance, tri-linear mipmap filtering.
The texels in the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing the texels directly from Equations 3-6. It is well
known that this filtering step tends to average out the bumps at large

minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
ize it prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectors into tangent space via a 3 � 3
matrix whose columns areT,B, andN. For instance, the light vec-
tor, L, is transformed by

LTS = L

�
T B N

# # #

�
(7)

Now the diffuse term in the illumination model can be computed
from the perturbed normal vector from the texture map and the trans-
formed light: N0

TS
� LTS . The same consideration holds for the

other terms in the illumination model.
The transformations of the light and halfangle vectors should be

performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, a good approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
This is frequently a good assumption because tangent space changes
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfaces more finely in those regions to reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blake to reduce the hardware required for Phong shading
[11]. Rather than specifying a tangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectors in the same direction (such as (0; 0; 1)). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have a result similar to their approximation. It should
be noted that the highlight in this case is slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing a separate map for each surface. However, it requires only a mul-
tiplexer beyondPhong shading, avoids the interpolation of (Pv�N)
and (N�Pu), the perturbation of the normal vector at each pixel,
and the extended range and precision needed for arithmetic on un-
bounded vectors. Effectively, we have traded per-pixel calculations
cast in hardware for per-vertex calculations done in the general ge-
ometry processor. If the application is limited by the rasterization, it
will run at the same speed with bump mapping as with Phong shad-
ing.
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Figure 3. One implementation of our bump mapping algorithm.



Figure 4.The pinwheel height field is used as a bump map for the
tesselated, bicubic surface.

2.1 Object-Space Normal Map
If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
stores the perturbed normal vectors in object space, and the light and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
to the light and halfangle vectors is shared by all vertices, rather than
one transformation for each vertex. This implementation keeps the
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence
The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yet in ad-
dition, our texture map is a function of the surface, so the height field
can not be shared among surfaces with different parameterizations.
This is particularly problematic when texture memory is restricted,
as in a game system, or during design when a bump map is placed
on a new surface interactively.

All of the surface dependencies can be eliminated under the as-
sumption that, locally, the parameterization is the same as a square
patch (similar to, yet more restrictive than, the assumption Blinn
makes in removing the scale dependence [3]). Then, Pu and Pv
are orthogonal (Pu � Pv = T � Pv = 0) and equal in magnitude
(jPuj = jPv j). To remove the bump dependence on surface scale,

Figure 4. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 3-6.

we simply choose jPuj = jPvj = k, where k is a constant giving
a relative height of the bumps. This, along with the orthogonality
condition, reduce Equations 3-6 to

N
0

TS = (a; b; c)=
p

a2 + b2 + c2 (8)

a = �kfu (9)
b = �kfv (10)

c = k2 (11)

The texture map becomes a function only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption holds for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
faces because the furtherPu andPv are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to a surface. This warping is typically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES
Figures 5-7 compare software simulations of the various bump map-
ping implementations. All of the images, including the height field,
have a resolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 8-11.



chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensure thatPu and
Pv deviate appreciably from orthogonal. The texture maps were fil-
tered with trilinear mipmapping.

Figure 5 shows the image computed from the implementation of
bump mapping from Figure 2. The partial derivatives, fu and fv , in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of Pu andPv for the bicu-
bic patch. The difference between this image and Figure 5 is almost
imperceptible, even under animation, as can be seen in the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seen in the rendered image compared to Figures 5 and
6; some are visible in the inset. All three implementations have sim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION
We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

� precompute a texture of the perturbed normal in tangent space
� transform all shading vectors into tangent space per vertex
� interpolate and renormalize the shading vectors
� fetch and normalize the perturbed normal from the texture
� compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardware in the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It is important to note that the method of transforming into tangent
space for bump mapping is independent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector is trans-
formed into tangent space and interpolated rather than the halfan-
gle. As long as all necessary shading vectors for the illumination
model are transformed into tangent space and interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectors rather than partial illumination
results. We have presented a Phong shading circuit where almost no
new hardware is required, but other implementations may need extra
hardware. For example, if the light and halfangle vectors are com-
puted directly in eye space, interpolators must be added to support
our algorithm. The additional cost still will be very small compared
to a straightforward implementation.

Phong shading likely will become a standard addition to hardware
graphics system because of its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.
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APPENDIX
Here we derive the perturbed normal vector in tangent space, a ref-
erence frame given by tangent, T = Pu=jPuj; binormal, B =
(N�T); and normal,N, vectors. Pv is in the plane of the tangent
and binormal, and it can be written:

Pv = (T � Pv)T+ (B �Pv)B (12)

Therefore

Pv �N = (B �Pv)T� (T � Pv)B (13)

The normal perturbation (Equation 2) is:

D = �fu(Pv �N)� fvjPujB (14)
= �fu(B � Pv)T� (fvjPuj � fu(T �Pv))B (15)

Substituting the expression for D and Pu � Pv = jPu � PvjN
into Equation 1, normalizing, and taking TTS = (1; 0; 0), BTS =
(0; 1; 0), andNTS = (0; 0; 1) leads directly to Equations 3-6.
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Abstract
Several existing volume rendering algorithms operate by factoring
the viewing transformation into a 3D shear parallel to the data slices,
a projection to form an intermediate but distorted image, and a 2D
warp to form an undistorted final image. We extend this class of
algorithms in three ways. First, we describe a new object-order
rendering algorithm based on the factorization that is significantly
faster than published algorithms with minimal loss of image qual-
ity. Shear-warp factorizations have the property that rows of vox-
els in the volume are aligned with rows of pixels in the intermediate
image. We use this fact to construct a scanline-based algorithm that
traverses the volume and the intermediate image in synchrony, tak-
ing advantage of the spatial coherence present in both. We use spa-
tial data structures based on run-length encoding for both the vol-
ume and the intermediate image. Our implementation running on
an SGI Indigo workstation renders a 2563 voxel medical data set
in one second. Our second extension is a shear-warp factorization
for perspective viewing transformations, and we show how our ren-
dering algorithm can support this extension. Third, we introduce
a data structure for encoding spatial coherence in unclassified vol-
umes (i.e. scalar fields with no precomputed opacity). When com-
bined with our shear-warp rendering algorithm this data structure al-
lows us to classify and render a 2563 voxel volume in three seconds.
The method extends to support mixed volumes and geometry and is
parallelizable.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms.

Additional Keywords: Volume rendering, Coherence, Scientific
visualization, Medical imaging.

1 Introduction
Volume rendering is a flexible technique for visualizing scalar fields
with widespread applicability in medical imaging and scientific vi-
sualization, but its use has been limited because it is computation-
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ally expensive. Interactive rendering rates have been reported using
large parallel processors [17] [19] and using algorithms that trade off
image quality for speed [10] [8], but high-quality images take tens of
seconds or minutes to generate on current workstations. In this pa-
per we present a new algorithm which achieves near-interactive ren-
dering rates on a workstation without significantly sacrificing qual-
ity.

Many researchers have proposed methods that reduce rendering
cost without affecting image quality by exploiting coherence in the
data set. These methods rely on spatial data structures that encode
the presence or absence of high-opacity voxels so that computa-
tion can be omitted in transparent regions of the volume. These
data structures are built during a preprocessing step from a classified
volume: a volume to which an opacity transfer function has been
applied. Such spatial data structures include octrees and pyramids
[13] [12] [8] [3], k-d trees [18] and distance transforms [23]. Al-
though this type of optimization is data-dependent, researchers have
reported that in typical classified volumes 70-95% of the voxels are
transparent [12] [18].

Algorithms that use spatial data structures can be divided into two
categories according to the order in which the data structures are tra-
versed: image-order or object-order. Image-order algorithms oper-
ate by casting rays from each image pixel and processing the voxels
along each ray [9]. This processing order has the disadvantage that
the spatial data structure must be traversed once for every ray, result-
ing in redundant computation (e.g. multiple descents of an octree).
In contrast, object-order algorithms operate by splatting voxels into
the image while streaming through the volume data in storage order
[20] [8]. However, this processing order makes it difficult to imple-
ment early ray termination, an effective optimization in ray-casting
algorithms [12].

In this paper we describe a new algorithm which combines the ad-
vantages of image-order and object-order algorithms. The method
is based on a factorization of the viewing matrix into a 3D shear
parallel to the slices of the volume data, a projection to form a dis-
torted intermediate image, and a 2D warp to produce the final im-
age. Shear-warp factorizations are not new. They have been used
to simplify data communication patterns in volume rendering algo-
rithms for SIMD parallel processors [1] [17] and to simplify the gen-
eration of paths through a volume in a serial image-order algorithm
[22]. The advantage of shear-warp factorizations is that scanlines
of the volume data and scanlines of the intermediate image are al-
ways aligned. In previous efforts this property has been used to de-
velop SIMD volume rendering algorithms. We exploit the property
for a different reason: it allows efficient, synchronized access to data
structures that separately encode coherence in the volume and the
image.

The factorization also makes efficient, high-quality resampling
possible in an object-order algorithm. In our algorithm the resam-
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Figure 1: A volume is transformed to sheared object space for a par-
allel projection by translating each slice. The projection in sheared
object space is simple and efficient.

pling filter footprint is not view dependent, so the resampling com-
plications of splatting algorithms [20] are avoided. Several other
algorithms also use multipass resampling [4] [7] [19], but these
methods require three or more resampling steps. Our algorithm re-
quires only two resampling steps for an arbitrary perspective view-
ing transformation, and the second resampling is an inexpensive 2D
warp. The 3D volume is traversed only once.

Our implementation running on an SGI Indigo workstation can
render a 2563 voxel medical data set in one second, a factor of at
least five faster than previous algorithms running on comparable
hardware. Other than a slight loss due to the two-pass resampling,
our algorithm does not trade off quality for speed. This is in con-
trast to algorithms that subsample the data set and can therefore miss
small features [10] [3].

Section 2 of this paper describes the shear-warp factorization and
its important mathematical properties. We also describe a new ex-
tension of the factorization for perspective projections. Section 3
describes three variants of our volume rendering algorithm. The
first algorithm renders classified volumes with a parallel projection
using our new coherence optimizations. The second algorithm sup-
ports perspective projections. The third algorithm is a fast classifi-
cation algorithm for rendering unclassified volumes. Previous al-
gorithms that employ spatial data structures require an expensive
preprocessing step when the opacity transfer function changes. Our
third algorithm uses a classification-independent min-max octree
data structure to avoid this step. Section 4 contains our performance
results and a discussion of image quality. Finally we conclude and
discuss some extensions to the algorithm in Section 5.

2 The Shear-Warp Factorization
The arbitrary nature of the transformation from object space to im-
age space complicates efficient, high-quality filtering and projection
in object-order volume rendering algorithms. This problem can be
solved by transforming the volume to an intermediate coordinate
system for which there is a very simple mapping from the object co-
ordinate system and which allows efficient projection.

We call the intermediate coordinate system “sheared object
space” and define it as follows:

Definition 1: By construction, in sheared object space all
viewing rays are parallel to the third coordinate axis.

Figure 1 illustrates the transformation from object space to sheared
object space for a parallel projection. We assume the volume is sam-
pled on a rectilinear grid. The horizontal lines in the figure represent
slices of the volume data viewed in cross-section. After transforma-
tion the volume data has been sheared parallel to the set of slices that
is most perpendicular to the viewing direction and the viewing rays
are perpendicular to the slices. For a perspective transformation the
definition implies that each slice must be scaled as well as sheared
as shown schematically in Figure 2.

viewing rays

image
plane

volume
slices

shear and scale

project

warp

center of
projection

Figure 2: A volume is transformed to sheared object space for a per-
spective projection by translating and scaling each slice. The pro-
jection in sheared object space is again simple and efficient.

Definition 1 can be formalized as a set of equations that transform
object coordinates into sheared object coordinates. These equations
can be written as a factorization of the view transformation matrix
Mview as follows:

Mview = P � S �Mwarp

P is a permutation matrix which transposes the coordinate system in
order to make the z-axis the principal viewing axis. S transforms the
volume into sheared object space, and Mwarp transforms sheared
object coordinates into image coordinates. Cameron and Undrill [1]
and Schröder and Stoll [17] describe this factorization for the case
of rotation matrices. For a general parallel projection S has the form
of a shear perpendicular to the z-axis:

Spar =

0
B@

1 0 0 0
0 1 0 0
sx sy 1 0
0 0 0 1

1
CA

where sx and sy can be computed from the elements of Mview. For
perspective projections the transformation to sheared object space
is of the form:

Spersp =

0
B@

1 0 0 0
0 1 0 0

s0x s0y 1 s0w
0 0 0 1

1
CA

This matrix specifies that to transform a particular slice z0 of
voxel data from object space to sheared object space the slice
must be translated by (z0s

0

x; z0s
0

y) and then scaled uniformly by
1=(1 + z0s

0

w). The final term of the factorization is a matrix which
warps sheared object space into image space:

Mwarp = S�1
� P

�1
�Mview

A simple volume rendering algorithm based on the shear-warp
factorization operates as follows (see Figure 3):

1. Transform the volume data to sheared object space by translat-
ing and resampling each slice according to S. For perspective
transformations, also scale each slice. P specifies which of the
three possible slicing directions to use.

2. Composite the resampled slices together in front-to-back order
using the “over” operator [15]. This step projects the volume
into a 2D intermediate image in sheared object space.

3. Transform the intermediate image to image space by warping
it according to Mwarp. This second resampling step produces
the correct final image.
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Figure 3: The shear-warp algorithm includes three conceptual steps:
shear and resample the volume slices, project resampled voxel scan-
lines onto intermediate image scanlines, and warp the intermediate
image into the final image.

The parallel-projection version of this algorithm was first described
by Cameron and Undrill [1]. Our new optimizations are described
in the next section.

The projection in sheared object space has several geometric
properties that simplify the compositing step of the algorithm:

Property 1: Scanlines of pixels in the intermediate
image are parallel to scanlines of voxels in the volume
data.

Property 2: All voxels in a given voxel slice are
scaled by the same factor.

Property 3 (parallel projections only): Every voxel
slice has the same scale factor, and this factor can be cho-
sen arbitrarily. In particular, we can choose a unity scale
factor so that for a given voxel scanline there is a one-
to-one mapping between voxels and intermediate-image
pixels.

In the next section we make use of these properties.

3 Shear-Warp Algorithms
We have developed three volume rendering algorithms based on the
shear-warp factorization. The first algorithm is optimized for paral-
lel projections and assumes that the opacity transfer function does
not change between renderings, but the viewing and shading param-
eters can be modified. The second algorithm supports perspective
projections. The third algorithm allows the opacity transfer func-
tion to be modified as well as the viewing and shading parameters,
with a moderate performance penalty.

3.1 Parallel Projection Rendering Algorithm
Property 1 of the previous section states that voxel scanlines in the
sheared volume are aligned with pixel scanlines in the intermedi-
ate image, which means that the volume and image data structures
can both be traversed in scanline order. Scanline-based coherence
data structures are therefore a natural choice. The first data structure
we use is a run-length encoding of the voxel scanlines which allows
us to take advantage of coherence in the volume by skipping runs
of transparent voxels. The encoded scanlines consist of two types

non-opaque
pixel

opaque
pixel

Figure 4: Offsets stored with opaque pixels in the intermediate im-
age allow occluded voxels to be skipped efficiently.

of runs, transparent and non-transparent, defined by a user-specified
opacity threshold. Next, to take advantage of coherence in the im-
age, we store with each opaque intermediate image pixel an offset to
the next non-opaque pixel in the same scanline (Figure 4). An im-
age pixel is defined to be opaque when its opacity exceeds a user-
specified threshold, in which case the corresponding voxels in yet-
to-be-processed slices are occluded. The offsets associated with the
image pixels are used to skip runs of opaque pixels without exam-
ining every pixel. The pixel array and the offsets form a run-length
encoding of the intermediate image which is computed on-the-fly
during rendering.

These two data structures and Property 1 lead to a fast scanline-
based rendering algorithm (Figure 5). By marching through the vol-
ume and the image simultaneously in scanline order we reduce ad-
dressing arithmetic. By using the run-length encoding of the voxel
data to skip voxels which are transparent and the run-length encod-
ing of the image to skip voxels which are occluded, we perform
work only for voxels which are both non-transparent and visible.

For voxel runs that are not skipped we use a tightly-coded loop
that performs shading, resampling and compositing. Properties 2
and 3 allow us to simplify the resampling step in this loop. Since the
transformation applied to each slice of volume data before projec-
tion consists only of a translation (no scaling or rotation), the resam-
pling weights are the same for every voxel in a slice (Figure 6). Al-
gorithms which do not use the shear-warp factorization must recom-
pute new weights for every voxel. We use a bilinear interpolation fil-
ter and a gather-type convolution (backward projection): two voxel
scanlines are traversed simultaneously to compute a single interme-
diate image scanline at a time. Scatter-type convolution (forward
projection) is also possible. We use a lookup-table based system for
shading [6]. We also use a lookup table to correct voxel opacity for
the current viewing angle since the apparent thickness of a slice of
voxels depends on the viewing angle with respect to the orientation
of the slice.

The opaque pixel links achieve the same effect as early ray ter-
mination in ray-casting algorithms [12]. However, the effectiveness
of this optimization depends on coherence of the opaque regions of
the image. The runs of opaque pixels are typically large so that many
pixels can be skipped at once, minimizing the number of pixels that
are examined. The cost of computing the pixel offsets is low be-
cause a pixel’s offset is updated only when the pixel first becomes

transparent voxel run

non-transparent voxel run

opaque image pixel run

non-opaque image pixel run

voxel scanline:

intermediate
image
scanline:

workskip workskip skip

resample and
composite

Figure 5: Resampling and compositing are performed by streaming
through both the voxels and the intermediate image in scanline or-
der, skipping over voxels which are transparent and pixels which are
opaque.
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original voxel

resampled voxel

Figure 6: Since each slice of the volume is only translated, every
voxel in the slice has the same resampling weights.

opaque.
After the volume has been composited the intermediate image

must be warped into the final image. Since the 2D image is small
compared to the size of the volume this part of the computation
is relatively inexpensive. We use a general-purpose affine image
warper with a bilinear filter.

The rendering algorithm described in this section requires a run-
length encoded volume which must be constructed in a preprocess-
ing step, but the data structure is view-independent so the cost to
compute it can be amortized over many renderings. Three encod-
ings are computed, one for each possible principal viewing direc-
tion, so that transposing the volume is never necessary. During ren-
dering one of the three encodings is chosen depending upon the
value of the permutation matrix P in the shear-warp factorization.
Transparent voxels are not stored, so even with three-fold redun-
dancy the encoded volume is typically much smaller than the orig-
inal volume (see Section 4.1). Fast computation of the run-length
encoded data structure is discussed further at the end of Section 3.3.

In this section we have shown how the shear-warp factorization
allows us to combine optimizations based on object coherence and
image coherence with very low overhead and simple, high-quality
resampling. In the next section we extend these advantages to a per-
spective volume rendering algorithm.

3.2 Perspective Projection Rendering Algorithm
Most of the work in volume rendering has focused on parallel pro-
jections. However, perspective projections provide additional cues
for resolving depth ambiguities [14] and are essential to correctly
compute occlusions in such applications as a beam’s eye view for ra-
diation treatment planning. Perspective projections present a prob-
lem because the viewing rays diverge so it is difficult to sample
the volume uniformly. Two types of solutions have been proposed
for perspective volume rendering using ray-casters: as the distance
along a ray increases the ray can be split into multiple rays [14], or
each sample point can sample a larger portion of the volume using
a mip-map [11] [16]. The object-order splatting algorithm can also
handle perspective, but the resampling filter footprint must be re-
computed for every voxel [20].

The shear-warp factorization provides a simple and efficient solu-
tion to the sampling problem for perspective projections. Each slice
of the volume is transformed to sheared object space by a transla-
tion and a uniform scale, and the slices are then resampled and com-
posited together. These steps are equivalent to a ray-casting algo-
rithm in which rays are cast to uniformly sample the first slice of
volume data, and as each ray hits subsequent (more distant) slices
a larger portion of the slice is sampled (Figure 2). The key point is
that within each slice the sampling rate is uniform (Property 2 of the
factorization), so there is no need to implement a complicated mul-
tirate filter.

The perspective algorithm is nearly identical to the parallel pro-
jection algorithm. The only difference is that each voxel must be
scaled as well as translated during resampling, so more than two
voxel scanlines may be traversed simultaneously to produce a given
intermediate image scanline and the voxel scanlines may not be tra-
versed at the same rate as the image scanlines. We always choose a
factorization of the viewing transformation in which the slice clos-

est to the viewer is scaled by a factor of one so that no slice is ever
enlarged. To resample we use a box reconstruction filter and a box
low-pass filter, an appropriate combination for both decimation and
unity scaling. In the case of unity scaling the two filter widths are
identical and their convolution reduces to the bilinear interpolation
filter used in the parallel projection algorithm.

The perspective algorithm is more expensive than the parallel
projection algorithm because extra time is required to compute re-
sampling weights and because the many-to-one mapping from vox-
els to pixels complicates the flow of control. Nevertheless, the algo-
rithm is efficient because of the properties of the shear-warp factor-
ization: the volume and the intermediate image are both traversed
scanline by scanline, and resampling is accomplished via two sim-
ple resampling steps despite the diverging ray problem.

3.3 Fast Classification Algorithm
The previous two algorithms require a preprocessing step to run-
length encode the volume based on the opacity transfer function.
The preprocessing time is insignificant if the user wishes to generate
many images from a single classified volume, but if the user wishes
to experiment interactively with the transfer function then the pre-
processing step is unacceptably slow. In this section we present a
third variation of the shear-warp algorithm that evaluates the opac-
ity transfer function during rendering and is only moderately slower
than the previous algorithms.

A run-length encoding of the volume based upon opacity is not an
appropriate data structure when the opacity transfer function is not
fixed. Instead we apply the algorithms described in Sections 3.1–
3.2 to unencoded voxel scanlines, but with a new method to deter-
mine which portions of each scanline are non-transparent. We allow
the opacity transfer function to be any scalar function of a multi-
dimensional scalar domain:

� = f(p; q; :::)

For example, the opacity might be a function of the scalar field and
its gradient magnitude [9]:

� = f(d; jrdj)

The function f essentially partitions a multi-dimensional feature
space into transparent and non-transparent regions, and our goal is
to decide quickly which portions of a given scanline contain voxels
in the non-transparent regions of the feature space.

We solve this problem with the following recursive algorithm
which takes advantage of coherence in both the opacity transfer
function and the volume data:

Step 1: For some block of the volume that contains the current
scanline, find the extrema of the parameters of the opac-
ity transfer function (min(p);max(p);min(q);max(q); :::).
These extrema bound a rectangular region of the feature space.

Step 2: Determine if the region is transparent, i.e. f evaluated for
all parameter points in the region yields only transparent opac-
ities. If so, then discard the scanline since it must be transpar-
ent.

Step 3: Subdivide the scanline and repeat this algorithm recur-
sively. If the size of the current scanline portion is below a
threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Fig-
ure 7). First, Step 1 uses a precomputed min-max octree [21]. Each
octree node contains the extrema of the parameter values for a sub-
cube of the volume. Second, to implement Step 2 of the algorithm
we need to integrate the function f over the region of the feature
space found in Step 1. If the integral is zero then all voxels must

4



f p q,( )
R
∑ 0=

pmaxpmin

qmin

qmax

R
?

(a) (b) (c)
min-max octree

summed
area table

Figure 7: A min-max octree (a) is used to determine the range of the
parameters p; q of the opacity transfer function f(p; q) in a subcube
of the volume. A summed area table (b) is used to integrate f over
that range of p; q. If the integral is zero (c) then the subcube contains
only transparent voxels.

be transparent.� This integration can be performed in constant time
using a multi-dimensional summed-area table [2] [5]. The voxels
themselves are stored in a third data structure, a simple 3D array.

The overall algorithm for rendering unclassified data sets pro-
ceeds as follows. The min-max octree is computed at the time the
volume is first loaded since the octree is independent of the opac-
ity transfer function and the viewing parameters. Next, just before
rendering begins the opacity transfer function is used to compute
the summed area table. This computation is inexpensive provided
that the domain of the opacity transfer function is not too large.
We then use either the parallel projection or the perspective projec-
tion rendering algorithm to render voxels from an unencoded 3D
voxel array. The array is traversed scanline by scanline. For each
scanline we use the octree and the summed area table to determine
which portions of the scanline are non-transparent. Voxels in the
non-transparent portions are individually classified using a lookup
table and rendered as in the previous algorithms. Opaque regions
of the image are skipped just as before. Note that voxels that are ei-
ther transparent or occluded are never classified, which reduces the
amount of computation.

The octree traversal and summed area table lookups add over-
head to the algorithm which were not present in the previous algo-
rithms. In order to reduce this overhead we save as much computed
data as possible for later reuse: an octree node is tested for trans-
parency using the summed area table only the first time it is visited
and the result is saved for subsequent traversals, and if two adjacent
scanlines intersect the same set of octree nodes then we record this
fact and reuse information instead of making multiple traversals.

This rendering algorithm places two restrictions on the opacity
transfer function: the parameters of the function must be precom-
putable for each voxel so that the octree may be precomputed, and
the total number of possible argument tuples to the function (the
cardinality of the domain) must not be too large since the summed
area table must contain one entry for each possible tuple. Context-
sensitive segmentation (classification based upon the position and
surroundings of a voxel) does not meet these criteria unless the seg-
mentation is entirely precomputed.

The fast-classification algorithm presented here also suffers from
a problem common to many object-order algorithms: if the major
viewing axis changes then the volume data must be accessed against
the stride and performance degrades. Alternatively the 3D array
of voxels can be transposed, resulting in a delay during interactive
viewing. Unlike the algorithms based on a run-length encoded vol-
ume, it is typically not practical to maintain three copies of the unen-
coded volume since it is much larger than a run-length encoding. It
is better to use a small range of viewpoints while modifying the clas-
sification function, and then to switch to one of the previous two ren-
dering methods for rendering animation sequences. In fact, the oc-

�The user may choose a non-zero opacity threshold for transparent vox-
els, in which case a thresholded version of f must be integrated: let f 0 = f

whenever f exceeds the threshold, and f 0 = 0 otherwise.
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Figure 11: Rendering time for a parallel projection of the head data
set as the viewing angle changes.

tree and the summed-area table can be used to convert the 3D voxel
array into a run-length encoded volume without accessing transpar-
ent voxels, leading to a significant time savings (see the “Switch
Modes” arrow in Figure 12). Thus the three algorithms fit together
well to yield an interactive tool for classifying and viewing volumes.

4 Results
4.1 Speed and Memory
Our performance results for the three algorithms are summarized
in Table 1. The “Fast Classification” timings are for the algorithm
in Section 3.3 with a parallel projection. The timings were mea-
sured on an SGI Indigo R4000 without hardware graphics accel-
erators. Rendering times include all steps required to render from
a new viewpoint, including computation of the shading lookup ta-
ble, compositing and warping, but the preprocessing step is not in-
cluded. The “Avg.” field in the table is the average time in sec-
onds for rendering 360 frames at one degree angle increments, and
the “Min/Max” times are for the best and worst case angles. The
“Mem.” field gives the size in megabytes of all data structures. For
the first two algorithms the size includes the three run-length encod-
ings of the volume, the image data structures and all lookup tables.
For the third algorithm the size includes the unencoded volume, the
octree, the summed-area table, the image data structures, and the
lookup tables. The “brain” data set is an MRI scan of a human head
(Figure 8) and the “head” data set is a CT scan of a human head (Fig-
ure 9). The “brainsmall” and “headsmall” data sets are decimated
versions of the larger volumes.

The timings are nearly independent of image size because this
factor affects only the final warp which is relatively insignificant.
Rendering time is dependent on viewing angle (Figure 11) because
the effectiveness of the coherence optimizations varies with view-
point and because the size of the intermediate image increases as
the rotation angle approaches 45 degrees, so more compositing op-
erations must be performed. For the algorithms described in Sec-
tions 3.1–3.2 there is no jump in rendering time when the major
viewing axis changes, provided the three run-length encoded copies
of the volume fit into real memory simultaneously. Each copy con-
tains four bytes per non-transparent voxel and one byte per run. For
the 256x256x226 voxel head data set the three run-length encodings
total only 9.8 Mbytes. All of the images were rendered on a work-
station with 64 Mbytes of memory. To test the fast classification al-
gorithm (Section 3.3) on the 2563 data sets we used a workstation
with 96 Mbytes of memory.

Figure 12 gives a breakdown of the time required to render the
brain data set with a parallel projection using the fast classification
algorithm (left branch) and the parallel projection algorithm (right
branch). The time required to warp the intermediate image into the
final image is typically 10-20% of the total rendering time for the
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Figure 8: Volume rendering with a par-
allel projection of an MRI scan of a hu-
man brain using the shear-warp algo-
rithm (1.1 sec.).

Figure 9: Volume rendering with a par-
allel projection of a CT scan of a human
head oriented at 45 degrees relative to
the axes of the volume (1.2 sec.).

Figure 10: Volume rendering of the same
data set as in Figure 9 using a ray-caster
[12] for quality comparison (13.8 sec.).

Figure 13: Volume rendering with a par-
allel projection of the human head data
set classified with semitransparent skin
(3.0 sec.).

Figure 14: Volume rendering with a
parallel projection of an engine block
with semitransparent and opaque sur-
faces (2.3 sec.).

Figure 15: Volume rendering with a par-
allel projection of a CT scan of a human
abdomen (2.2 sec.). The blood vessels
contain a radio-opaque dye.

Figure 16: Volume rendering with a perspective projection of the
engine data set (3.8 sec.).

(a) (b) (c)

Figure 17: Comparison of image quality with bilinear and trilinear
filters for a portion of the engine data set. The images have been
enlarged. (a) Bilinear filter with binary classification. (b) Trilinear
filter with binary classification. (c) Bilinear filter with smooth clas-
sification.
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Data set Size (voxels) Parallel projection (x3.1) Perspective projection (x3.2) Fast classification (x3.3)
Avg. Min/Max Mem. Avg. Min/Max Mem. Avg. Min/Max Mem.

brainsmall 128x128x109 0.4 s. 0.37–0.48 s. 4 Mb. 1.0 s. 0.84–1.13 s. 4 Mb. 0.7 s. 0.61–0.84 s. 8 Mb.
headsmall 128x128x113 0.4 0.35–0.43 2 0.9 0.82–1.00 2 0.8 0.72–0.87 8
brain 256x256x167 1.1 0.91–1.39 19 3.0 2.44–2.98 19 2.4 1.91–2.91 46
head 256x256x225 1.2 1.04–1.33 13 3.3 2.99–3.68 13 2.8 2.43–3.23 61

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, projection
and warping. The fast classification times include rendering with a parallel projection. The “Mem.” field is the total size of the data structures
used by each algorithm.

volume
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intermediate
image

final
image

run-length
encoding

intermediate
image

final
image

77 sec.

2280 msec.

120 msec.

8.5 sec.
980 msec.
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New Classification (§3.3) New Viewpoint (§3.1)

Switch
Modes

Preprocess Dataset

Figure 12: Performance results for each stage of rendering the brain
data set with a parallel projection. The left side uses the fast classi-
fication algorithm and the right side uses the parallel projection al-
gorithm.

parallel projection algorithm. The “Switch Modes” arrow shows the
time required for all three copies of the run-length encoded volume
to be computed from the unencoded volume and the min-max octree
once the user has settled on an opacity transfer function.

The timings above are for grayscale renderings. Color renderings
take roughly twice as long for parallel projections and 1.3x longer
for perspective because of the additional resampling required for the
two extra color channels. Figure 13 is a color rendering of the head
data set classified with semitransparent skin which took 3.0 sec. to
render. Figure 14 is a rendering of a 256x256x110 voxel engine
block, classified with semi-transparent and opaque surfaces; it took
2.3 sec. to render. Figure 15 is a rendering of a 256x256x159 CT
scan of a human abdomen, rendered in 2.2 sec. The blood vessels
of the subject contain a radio-opaque dye, and the data set was clas-
sified to reveal both the dye and bone surfaces. Figure 16 is a per-
spective color rendering of the engine data set which took 3.8 sec.
to compute.

For comparison purposes we rendered the head data set with a
ray-caster that uses early ray termination and a pyramid to exploit
object coherence [12]. Because of its lower computational overhead
the shear-warp algorithm is more than five times faster for the 1283

data sets and more than ten times faster for the 2563 data sets. Our
algorithm running on a workstation is competitive with algorithms
for massively parallel processors ([17], [19] and others), although
the parallel implementations do not rely on coherence optimizations
and therefore their performance results are not data dependent as
ours are.

Our experiments show that the running time of the algorithms in
Sections 3.1–3.2 is proportional to the number of voxels which are
resampled and composited. This number is small either if a signif-
icant fraction of the voxels are transparent or if the average voxel

opacity is high. In the latter case the image quickly becomes opaque
and the remaining voxels are skipped. For the data sets and clas-
sification functions we have tried roughly n2 voxels are both non-
transparent and visible, so we observeO(n2) performance as shown
in Table 1: an eight-fold increase in the number of voxels leads to
only a four-fold increase in time for the compositing stage and just
under a four-fold increase in overall rendering time. For our render-
ing of the head data set 5% of the voxels are non-transparent, and for
the brain data set 11% of the voxels are non-transparent. Degraded
performance can be expected if a substantial fraction of the classi-
fied volume has low but non-transparent opacity, but in our experi-
ence such classification functions are less useful.

4.2 Image Quality
Figure 10 is a volume rendering of the same data set as in Figure 9,
but produced by a ray-caster using trilinear interpolation [12]. The
two images are virtually identical.

Nevertheless, there are two potential quality problems associated
with the shear-warp algorithm. First, the algorithm involves two
resampling steps: each slice is resampled during compositing, and
the intermediate image is resampled during the final warp. Multiple
resampling steps can potentially cause blurring and loss of detail.
However even in the high-detail regions of Figure 9 this effect is
not noticeable.

The second potential problem is that the shear-warp algorithm
uses a 2D rather than a 3D reconstruction filter to resample the vol-
ume data. The bilinear filter used for resampling is a first-order filter
in the plane of a voxel slice, but it is a zero-order (nearest-neighbor)
filter in the direction orthogonal to the slice. Artifacts are likely to
appear if the opacity or color attributes of the volume contain very
high frequencies (although if the frequencies exceed the Nyquist
rate then perfect reconstruction is impossible).

Figure 17 shows a case where a trilinear interpolation filter out-
performs a bilinear filter. The left-most image is a rendering by the
shear-warp algorithm of a portion of the engine data set which has
been classified with extremely sharp ramps to produce high frequen-
cies in the volume’s opacity. The viewing angle is set to 45 degrees
relative to the slices of the data set—the worst case—and aliasing is
apparent. For comparison, the middle image is a rendering produced
with a ray-caster using trilinear interpolation and otherwise identical
rendering parameters; here there is virtually no aliasing. However,
by using a smoother opacity transfer function these reconstruction
artifacts can be reduced. The right-most image is a rendering using
the shear-warp algorithm and a less-extreme opacity transfer func-
tion. Here the aliasing is barely noticeable because the high frequen-
cies in the scalar field have effectively been low-pass filtered by the
transfer function. In practice, as long as the opacity transfer function
is not a binary classification the bilinear filter produces good results.

5 Conclusion
The shear-warp factorization allows us to implement coherence op-
timizations for both the volume data and the image with low compu-
tational overhead because both data structures can be traversed si-
multaneously in scanline order. The algorithm is flexible enough to
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accommodate a wide range of user-defined shading models and can
handle perspective projections. We have also presented a variant of
the algorithm that does not assume a fixed opacity transfer function.
The result is an algorithm which produces high-quality renderings
of a 2563 volume in roughly one second on a workstation with no
specialized hardware.

We are currently extending our rendering algorithm to support
data sets containing both geometry and volume data. We have
also found that the shear-warp algorithms parallelize naturally for
MIMD shared-memory multiprocessors. We parallelized the resam-
pling and compositing steps by distributing scanlines of the inter-
mediate image to the processors. On a 16 processor SGI Challenge
multiprocessor the 256x256x223 voxel head data set can be ren-
dered at a sustained rate of 10 frames/sec.
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[19] Vézina, Guy, Peter A. Fletcher, and Philip K. Robertson. Vol-
ume rendering on the MasPar MP-1. In 1992 Workshop on
Volume Visualization, 3–8, Boston, October 1992.

[20] Westover, Lee. Footprint evaluation for volume render-
ing. Proceedings of SIGGRAPH ’90. Computer Graphics,
24(4):367–376, August 1990.

[21] Wilhelms, Jane and Allen Van Gelder. Octrees for faster
isosurface generation. Computer Graphics, 24(5):57–62,
November 1990.

[22] Yagel, Roni and Arie Kaufman. Template-based volume
viewing. In Eurographics 92, C-153–167, Cambridge, UK,
September 1992.

[23] Zuiderveld, Karel J., Anton H.J. Koning, and Max A.
Viergever. Acceleration of ray-casting using 3D distance
transforms. In Proceedings of Visualization in Biomedical
Computing 1992, 324–335, Chapel Hill, North Carolina,
October 1992.

8


