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Background 
 
The Haar transform has a rather messy looking definition, so I’ll give the 
definition and will then go carefully through an example.  
 
The transform is important for a couple of reasons: 

• It leads to efficient image compression schemes, both lossless and 
lossy, which I’ll describe later in these notes, and 

• it provides a lead-in to wavelets, which I’ll be covering in the next set 
of notes. 

 
I’ll continue to assume the image is N×N, where N is a power of 2, and that  
J = log2N. 
 
In the pyramid scheme we created a number of new images, leading to an 
increase of pixels with an upper bound of a 33% increase.  With Haar our 
transformed image will have the same dimensions as the original, and so any 
compression savings are immediately gained. 
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Computing the Haar Transform 
 
Given an N×N image F, the Haar transform will be computed as: 
 
 T = HFHT.   (Note:  Gonzalez incorrectly omits the transpose.) 
 
where H contains the Haar basis functions.  The matrix H will be defined 
with the structure: 
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The definition of these hk(z) blending functions first needs a side definition 
of two additional variables, p and q, for each row k.  They are defined using 
four rules: 
 
 k = 2p + q – 1  
 0 ≤ p ≤ J – 1  

if p = 0, then q = 0 or 1 
if p ≠ 0, then 1 ≤ q ≤ 2p 

 
These are used to define the hk(z) functions as follows. 
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I’ll build the H matrix slowly using the 4×4 matrix as an example, where N 
= 4 and so J = 2.  First I’ll get the a and b values that we need for k = 1, 2, 
and 3.  For all of these cases the second rule for p and q states that p is either 
0 or 1, since J = 2. 
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If k = 1 = 2p + q – 1, then either p = 0 and so q = 1, or p = 1 and so q = 0.  
The second option violates the fourth rule and so p = 0 and q = 1. 
 
If k = 2 = 2p + q – 1, then either p = 0 and so q = 2, or p = 1 and so q = 1.  
The first option violates the third rule and so p = 1 and q = 1. 
 
If k = 3 = 2p + q – 1, then either p = 0 and so q = 3, or p = 1 and so q = 2.  
The first option violates the third rule and so p = 1 and q = 2. 
 
Now we need the matrix: 
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Note that all of these values are multiples of 

N
1 , which is 

4
1  in this case, 

so we can pull this value ( 2
1 ) outside the matrix. 

 
The first row is easy, since every element is defined as being 

N
1 . 

 
The second row has k = 1.  As we saw above, p = 0 and q = 1.  So the 
definition says that: 
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⎪
⎩

⎪
⎨

⎧
<≤−

<≤

otherwise
zif

zif

0
1

0

2
1

2
1

2
1

2
1

. 

 
So h1(0) = 2

1 , h1( 4
1 ) = 2

1 , h1( 2
1 ) = – 2

1 , and h1( 4
3 ) = – 2

1 . 
 
 
Now consider the third row, with k = 2.  As we saw above, p = 1 and q = 1.  
The definition says that: 
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 h2(z) = h11(z) = 
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So h2(0) = 22

1 , h2( 4
1 ) = – 22

1 , h2( 2
1 ) = 0, and h2( 4

3 ) = 0. 
 
For k = 3 we found that p = 1 and q = 2.  So, using the definition, 
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So h3(0) = 0, h3( 4

1 ) = 0, h3( 2
1 ) = 22

1 , and h3( 4
3 ) = – 22

1 .  
 
Putting this all together, we finally get: 
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(Note that Gonzalez and Woods have one of these values wrong.) 
 
The 2×2 Haar transform is easier to develop since J = 1, and so 0 ≤ p ≤ 0.  
I.e., p can only be zero.  For k = 1 this gives 1 = 20 + q – 1, and so q = 1. 
 
h0(z) = 

2
1  for all z, which fixes the first row. 
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The h functions are evaluated at z = 0 and z = 2

1 , giving the matrix: 
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Gonzalez and Woods, in Figure 7.8, shows the result of applying the H4 
Haar discrete wavelet transform to an image, but doesn’t explain a lot of 
concepts that are going on in the figure.  E.g., one might get the impression 
from that figure that Haar will produce a reduced copy of the original image 
in the top left corner of the transformed image, but this doesn’t happen.  As 
I’ll discuss below, this reduced image is actually scattered through the 
transformed array, but Gonzalez and Woods have reorganized the array 
structure to make it more visually intuitive.  They also don’t show how easy 
it is to take the transformed image and restore the original.  I’ll look at the 
restoration problem first, and then describe what is going on in Figure 7.8 
and all other transformed images.  Finally I’ll look at how to use Haar in 
lossless and lossy compression schemes. 
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Restoring the Original Image from the Transform 
 
Look at the rows of H4 and H2 as vectors.  If we take the dot product of any 
pair of these row vectors then the result is zero, which means that in H4 the 
four rows form orthogonal vectors in 4-space and in H2 they form 
orthogonal vectors in 2-space.  In addition the magnitude of each row vector 
(remembering to include the 

N
1  multiplier outside the matrix) is equal to 1.  

Technically this means that these (and all other Haar matrices) are 
orthonormal, which also means that the inverse of each Haar matrix is its 
transform.  
 
The discrete Haar transform formula is, as mentioned above,  
 
 T = HFHT.    
 
Because H is orthonormal this can be rewritten as: 
 
 T = HFH-1, 
 
and so 
 
 H-1TH = F.    
 
Reusing the orthonormal property means that we can restore F from T using: 
 
 F = HTTH.    
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Producing the Transform Matrix 
 
As discussed above, the image shown in Figure 7.8 of Gonzales and Woods 
is not the Haar transform image, but has been rearranged for visual 
convenience.  This rearrangement is very standard, but you should know 
what is being done to get the image.  I’ll use H2 in the discussion below, 
since 2×2 leads to simpler descriptions, but the extension to, say, H4 and 
4×4 is trivial.  First, remember that: 
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We divide the matrix up into 2×2 blocks, and apply the transform to each 
block to get the block in the transformed image.  E.g., if the 2×2 block has  
a and b in its first row and c and d in its second row the transform will be  
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Noting that the transpose of H2 is the same as H2, which is not true for other 
Haar matrices.  This gives the transformed 2×2 block: 
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Look at what is going on here.  The top left is a lowpass or mean filter.  The 
top right is an average horizontal gradient, and the bottom left an average 
vertical gradient.  The bottom right gives diagonal curvature. 
 
Applying this to an image of Peppy on the left, below, gives the result on the 
right, which doesn’t have any of the structure shown in, say, Figure 7.8 of 
Gonzalez and Woods.  However the cat is clearly recognizable for two 
reasons.  One is that every fourth pixel in the new image is an average of 
four pixels in the original, and the other is that the image also includes the 
vertical, horizontal, and diagonal curvature filter information.  The Peppy 
image was 512×512 with 256 gray levels.  The transform produced values 
between -255 (e.g., a = b = 0, c = d = 255 on the lower left) and +510 (all 
four variables = 255) on the top left.  So the transformed image was 
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normalized to be between 0 and 255 for display by adding 255 and dividing 
by 3. 
 

  
 
  Peppy     Peppy with 2×2 Haar Transform 
 
The form in Gonzalez and Woods Figure 7.8 is the result of moving the 
pixels around.  In this 2×2 case we’ll get four tiles, each 256×256, where the 
top left corner is all of the top left pixels in each block, the top right is all of 
the top right pixels in each block, etc.  So we get the result shown below: 
 

 
 

Peppy with tiled Haar Transform 
 
I’ve done the color balancing differently here.  The top left has an intensity 
range of 0 to 510, so I’ve halved those intensities to get 0 to 255.  The other 
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three tiles have a range of -255 to +255, and so for them I’ve added 255 and 
then halved.  I.e., the adjustment is not consistent through the image.  The 
relevant code from my program for getting the original transform and the 
tiled transform, assuming obvious definitions and with SIZE #defined as 512 
is: 
 
   for (i = 0; i < SIZE; i = i + 2) { 
       for (j = 0; j < SIZE; j = j + 2) { 
           a = inarray[i][j]; 
           b = inarray[i][j + 1]; 
           c = inarray[i + 1][j]; 
           d = inarray[i + 1][j + 1]; 
 
           outarray[i][j] = (a + b + c + d) / 2; 
           outarray[i][j + 1] = (a - b + c - d) / 2; 
           outarray[i + 1][j] = (a + b - c - d) / 2; 
           outarray[i + 1][j + 1] = (a - b - c + d) / 2; 
 
           out0to255[i][j] = (outarray[i][j] + 255) / 3; 
           out0to255[i][j + 1] = (outarray[i][j + 1] + 255) / 3; 
           out0to255[i + 1][j] = (outarray[i + 1][j] + 255) / 3; 
           out0to255[i + 1][j + 1] = (outarray[i + 1][j + 1] + 255) / 3; 
 
           iby2 = i / 2; 
           jby2 = j / 2; 
           sizeby2 = SIZE / 2; 
           prettyout[iby2][jby2] = outarray[i][j] / 2; 
           prettyout[iby2][jby2 + sizeby2] = 
                    (outarray[i][j + 1] + 255) / 2; 
           prettyout[iby2 + sizeby2][jby2] = 
                    (outarray[i + 1][j] + 255) / 2; 
           prettyout[iby2 + sizeby2][jby2 + sizeby2] = 
                    (outarray[i + 1][j + 1] + 255) / 2; 
       } 
   } 

 
If I take the outarray values and use them as input to the same program I 
get Peppy back, as expected. 
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Using Haar for Lossless Compression 
 
I’ll look at lossless compression here and then I’ll look at lossy compression 
in the next part of these notes.  For lossless compression I’ll use H2 as the 
example again, although as we’ll see the compression is much better for the 
higher H transforms. 
 
With H2 we get four tiles using the tiled view.  The top left tile doesn’t 
compress any better than the input image, but the other three tiles are 
clustered very close to zero.  E.g., for Peppy over 80% of the pixels in these 
three tiles are between -10 and +10, leaving only 18% of the pixels with 
absolute values between 11 and 255.  Even better, there are only seven 
pixels with absolute values greater than 127, out of a total of 196,608 pixels.  
So using some kind of variable length coding like Huffman coding some 
huge gains can be achieved for the three filter tiles. 
 
If we were the use a higher H transform like, say, H8, then the reduced tile in 
the top left will now only contain 64

1  of the pixels in the image, and so the 
compression will be over the remaining 64

63  of the pixels.  This means that 
significant compression can be achieved with Huffman coding or similar 
systems. 
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Using Haar for Lossy Compression 
 
This is where one can win spectacularly using Haar.  Most of the output of 
the Haar transform is, as I’ve discussed before, centered around zero.  E.g., 
even for the Peppy image, which has some extreme differences in intensity, 
for H2 about 16% of the pixels in the three modified tiles are at zero, and 
81.9% are between -10 and +10.  Since these are representing relatively low 
change areas, one can take a band of them around zero and change them all 
to zero without affecting image quality when the original image is restored.  
E.g., for the image below I applied H2 to Peppy and then changed all values 
in the three filter tiles that were between -10 and +10 to zero.  Then, when I 
restored it I got the image shown. 
 

 
 
I’ve looked carefully at this image and the original Peppy side by side on my 
screen at 512×512 each, and haven’t been able to see any differences at all. 
 
This means that using H2 with this change over 80% of the values in the 
75% of the image that represents filters have the same value (zero), and so 
any image compression scheme like Huffman or run-length encoding will be 
able to make huge gains. 
 
If I were to use, say, H8, instead, I’d be able to get similar compression 
savings, but now over 64

63  of the file. 


