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ABSTRACT

A jlsheye lens is a very wide angle lens that shows places
nearby in detail while also showing remote regions in succes-
sively less detail. This paper describes a system for viewing
and browsing planar graphs using a software analog of a
fisheye lens. We first show how to implement such a view

using solely geometric transformations. Wc then describe a
more general transformation that allows hierarchical, struc-
tured information about the graph to modify the views. Our
general transformation is a fundamental extension to the
previous research in fisheye views.
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INTRODUCTION

Graphs with hundreds of vertices and edges are common in
many areas of computer science, such as network topology,
VLSI circuits, and graph theory. There are literally hundreds
of algorithms for positioning nodes to produce an aesthetic
and informative display [1]. However, once a layout is
chosen, what is an effective way to view and browse the
graph on a workstation?

Displaying all the information associated with the vertices

and edges (assuming it can even fit on a screen) shows the
global structure of the graph, but has the drawback that
details are typically too small to be seen. Alternatively,
zooming into a part of the graph and panning to other parts
does show locat details but loses the overall structure of the
graph. Researchers have found that browsing a Mrge layout
by scrolling and arc traversing tends to obscure the global
structure of the graph [6]. Two (or more) views — one view
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of the entire graph and the other of a zoomed portion —
has the advantage of seeing both the local detail and overall
structure, but has the drawbacks of requiring extra screen
space and of forcing the viewer to mentally integrate the
views. The multiple view approach also has the drawback
that parts of the graph adjacent to the enlarged area are not
visible at all in the enlarged view.

This paper explores afisheye lens approach to viewing and
browsing graphs. A fisheye view of a graph shows an area of
interest quite large and with detail, and shows the remainder
of the graph successively smaller and in less detail. Thus,
a fisheye lens seems to have all the advantages of the other
approaches and without suffering from any of the drawbacks.

Atypical graph is displayed in Figure 1, and a fisheye version
of it appears in Figure 2. In the fisheye view, the vertex with
thick border is the current point of interest to the viewer.
We call this point the focus. In our prototype system, a
viewer selects the focus by clicking with a mouse. As the
mouse is dragged, the focus changes and the display updates
in real time. The size and detail of a vertex in the fisheye
view depend on the distance of the vertex from the focus, a
preassigned importance associated with the vertex, and the
vahtes of some user-controlled parameters.

Our work extends Fumas’s pioneering work on fisheye
views [4, 5] by providing a graphical interpretation to fish-
eye views. We introduce layout considerations into the
fisheye formatism, so that the position, size, and level of
detail of objects displayed are computed based on client-
specifted functions of an object’s distance from the focus
and the object’s preassigned importance in the global struc-
ture. In Fumas’s original formulation of the fisheye view,
a component is either present in full detail or is completely
absent from the view, and there is no explicit control over
the graphical layout.

TERMINOLOGY

A graph consists of vertices and edges. The initial layout
of the graph is called the normal view of the graph, and
its coordinates are called normal coordinates. Vertices are
graphically represented by shapes whose bounding boxes
are square (chosen arbitrarily). Each vertex has a position,
specified by its normal coordinates, and a size which is the
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Figure 1: The initial layout of a graph with 134 vertices and 338 edges.

length of a side of the bounding box of the vertex. Each
vertex is also assigned a number to represent its relative
importance in the global structure. This number is called the
a priori importance, or the AH, of the vertex.

An edge is represented by either a straight line from one
vertex to another; or by a set of straight line segments
to simulate curved edges. Edges consisting of multiple
straight line segments are specified by a set of intermediate
bend points, the extreme points being the coordinates of its
corresponding vertices.

The coordinates of the graph in the fisheye view are called
the jisheye coordinates. The viewer’s point of interest is
called the~ocuw it is a point in the normal coordinates. Each
vertex is the fisheye view is defined by its position, size,
and the amount of detail to display. Finally, each vertex in
fisheye view is assigned a visual worth, or VW, computed
based on its distance to the focus (in normal coordinates)
and its a priori importance.

GENERATING FISHEYE VIEWS

Generating a fisheye view involves magnifying the vertices
of greater interest and correspondingly demagnifying the
vertices of lower interest. In addition, the positions of atl
vertices and bend points must also be recomputed in order
to allocate more space for the magnified portion so that the
entire view still occupies the same amount of screen space.

Intuitively, the position of a vertex in the fisheye view
depends on its position in the normal view and its distance

from the focus. The size of a vertex in the fisheye view
depends on its distance from the focus, its size in th~ normal
view, and its API. The amount of detail displayed in a vertex
in turn depends on its size in the fisheye view. We now
formalize these concepts.

The position of vertex v in the fisheye view is a function
of its position in normal coordinates and the position of the
focus:

Pjeue(V, f) = fl(~norm(v)> ~n.rna(.t’)) (1)

The size of vertex v in the fisheye view is a function of its
size and position in normal coordinates, the position of the
focus, and its API:

Sfeve(W, f) = Fz(snorm (v), ~norm(~), Pnorrn(.f)) A~~(v))
(2)

The amount of detail to be shown for vertex v depends on
the size of v in the fisheye view and the maximum detail that
can be displayed

D7’’Lf.ye(~j f) = ~3(sfeye(~7 f), ~~~ma.i7nt6m(v))

(3)
Finally, the visual worth of vertex v depends on the disdce
between w and the focus in normat coordinates and on v‘s
API:

VW(W, j) = Y4(Dn0,m(w, ~), API(v)) (4)

One has to choose the functions F1, TZ, Fs, 74 appropriately
to generate useful fisheye views. Readers familiar with
Furnas’s work will note that our fundamental contributions
are the existence of arbitrary functions Xl, 72, and &. In
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Figure 2: A fisheye view of the graph in Figure 1, d = 5.71, c = O, e = O, VWcutofl = O

the next section, we present the set of functions we used in
our prototype system.

FISHEYE TRANSFORMATIONS

Generating fisheye views isatwo step process. First we
apply a geometric transformation to the normal view in order
to reposition vertices and magnify and demagnify areas close
to and faraway from the focus, respectively. Second, we use
the API of vertices to obtain their final size, detail, and visual
worth. In some applications, the API of all the vertices are
equal, so the tinai size of all the vertices are equal and the
second step is therefore unnecessary.

Mapping Position

Transforming from normal coordinates to fisheye coordi-
nates, using focus position Pf . ..s requires us to implement

the function 71 in Equation 1. The function we used was

Pjeye = G(Pnorm)Dm.. + Pfocos.

where

g(l’norm) =

Note that the % and

(~+qk= ~+1
d:=+1 d + ;.:..

(5)

v dimensions are treated completely
independently in the above mapping. This mapping is called
the cartesian transformation. Later, we show a slightly dif-
ferent transformation called the polar transformation which
is based on the polar coordinate system.
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Dmaz is the distance of the boundary of the screen from the
focus. The constant din Equation 5 is called the distortion
factor. The function G(z) is monotonically increasing and
continuous for O < z < l.with G(O) = 0, and ~(l) = 1.
The derivative of G(z) fi

This indicates that for large values of d the slope of the plot
x versus ~(z) near z = O is very high. This results in high
magnification. The plot has a very low slope near z = 1
which causes high demagnification. The behavior of the
function for d = Oand d = 5 is as follows:

....... ..................................—————--——

G(X)

0 1

When d = O, the normal and the fisheye coordinates of every
point are the same.
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Figure 3: An undistorted symmetric graph, d = O
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Figure 4: Cmtesian transformation of symmetric graph,
d=4

Figure 5: Polar transformation of symmetric graph, d = 4

Mapping Size

While computing size, the square shape of the bounding
boxes of the vertices is preserved. Implementation of the
size mapping function 3Z in Equation 2 is described here

in two separate steps. The first step uses the geometric
transformation just found in order to compute the geometric

SiZe Sgeom(w, f) by ignoring ~’s ApL This mapping has
the special property that if no two vertices in the normal
view overlapped, no two vertices in the transformed view
overlap. The second step then uses Sj.Om (v, ~) and v’s

API to complete the implementation of fZ. However, the
vertices may overlap after the second step. We compute

Sgeom as fOllOWS:

,.Om = W min(MupX(z.Orm + *) - Zf.v.,s

MzpY(yn ..~ +
s
+) - Yfe,e)

where P~ ~rm = ($norm, Ynorm) and Pjeve =

(xf~y., Yf.v.). The functions MapX and MapY map the
x and y coordinates of a point respectively using the func-
tion 31 in Equation 1. This equation can be derived by
taking definite integral of Equation 6 on z and y dimensions
independently with appropriate limits, and then by making
other necessary adjustments.

Finally, the function ~j in Equation 2 is implemented by

S~eg. = Sge.m(c . API)’s (7)

where the coefficient c, exponent e, and scale factors me
constants.

Computing Detail and Visual Worth

The functions Y_sand X4 are implemented by Equation 8 and
Equation 9 below. Both equations utilize Sj.y. computed
by Equation 7.

DI’Lfeve(v, f) = min(DTLm.cimUrn (~), Q’Sfege(~, j))

(8)
where a is a constant.

VW(W,f) = Psfeye(~,.f) +7’ (9)

where /3 and ‘y are constants. The detail and the visual worth,
as calculated here, are essentially linear functions of size.

Mapping Edges

Straight line edges of the normal view get mapped to straight
line edges in the fisheye view automatically when vertices
at their end points get mapped. The edges with intermediate
bend points can be mapped by mapping each bend point sep-
arately. Figure 4 demonstrates the effect of straightforward
Cartesian transformations on a symmetric graph.

86



~ CHI’92 May3-7, 1992

Unfortunately, this straightforward approach does not pre-
serve parallelism between edges. This problem can be
circumvented by mapping a very large number of inter-
mediate points on each straight line segment individually.
However, mapping a very large a number of points may not

be computationally feasible for real time response.

The mapping, however, has the property that all the vertical
and horizontal lines remain vertical and horizontal after the
transformation. Because of this property, our transformation
is ideally suited for graphs with edges consisting of mostly
horizontal and vertical line segments, for example VLSI
circuits.

DISTORTION

Early users of our prototype system commented that trans-
formations seemed somewhat unnatural, especially when
applied to familiar objects, such as maps. Our framework
allows us to address this complaint by using domain-specific
transformations.

Consider for instance, the non-fisheye view of a map of the
United States shown in Figure 6 and a corresponding fisheye
view in Figure 7. A more natural fisheye view of such a map
might be to distort the map onto a hemisphere. To do so, we
developed a transformation based on the polar coordinate
system with the origin at the focus (see Figure 5). In this
transformation, a point with normal coordinates (r~ ~~~, 6)
is mapped to the fisheye coordinates (r j.Ve,6)where

Here, r~ac is the maximum possible value of r in the same
direction as 19. Note that d remains unchanged by this
mapping. Figure 8 shows a resulting fisheye view of the
map of the United States. This can be contrasted to Figure 7
which shows a fisheye view of the same outline using the
cartesian transformation of Equation 5.

Another factor contributing to the perceived unnaturalness
of the fisheye view is that the shapes of vertices remain
undistorted and edges remain straight lines (ignoring bend
points). We could remedy this by mapping many points on
the outline of the vertex, and mapping a large number of
intermediate points for the edges, thus allowing the vertices
and edges to become curved. However, in our prototype
browser, we chose not to do so, in order to achieve real time
performance.

THE PROTOTYPE SYSTEM

Our system displays a fisheye view of a user-specified graph,
and updates the display in real time as the user moves the
focus by dragging with the mouse. Sliders allow the user to
control of the value of the distortion factor d in Equation 5,
the coefficient c and the exponent e in Equation 7, the
vertex scaling factor s also in Equation 7, and a cutoff
point at which vertices and their incident edges should no

Figure 6: Outline of the United States

Figure 7: A cartesian transformation of Figure 6. The focus
is at the point where Missouri, Kentucky, and Tennessee
meet.

Figure 8: A polar transformation of Figure 6. The focus is
at the point where Missouri, Kentucky, and Tennessee meet.
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longer be displayed. The coefficient c and the exponent e in
Equation 7 control the effect of the API of the vertices on the
non-geometric part of the transformation, whiled affects the
geometric part of the transformation. The combined effect
of these parameters on the graph in Figure 1 are illustrated
in Figures 2, 12, and 13.

All figures in this paper are screen dumps from our system.
To save space, we’ve cropped the window dressing and user
controls from many of the images.

Implementation

‘The prototype is implemented in an event-driven style. Each

time the user moves the mouse while the button is held down,
the function Get Focus returns the position of the mouse

loop
f:= GetFocuso
if ~ # ~ofd then

foreach v c V
eval Pjeg. (v, f), Sfege(v, f), ~~Lj.y.(v] -O

end
foreach e c E

if not straightLine(e) then
foreach bp c bendPoints(e)

mapPoint(bp, j)
end

end
end
foreach v E V

eval WV(V, f)
end
foreach e e E

if V W(e .v1 ) > VWcutoff and
VW(e.vz) > VWcutoff then

repaint edge between VI and vz
end

end
sort V in order of VW
foreach v c V in nondecreasing order of VW

if VW(v) 2 VWcutoff then
repaint vertex v

end
end

en~ ~= t

The system normally ensures that the location of the focus is
the same in both normal and fisheye coordinates. However,
when the cursor is within the boundary of a vertex, the vertex
becomes the focus vertex and the view is not updated until
the cursor exits the vertex, Since the size of a vertex in focus
is usually large, exiting the focus vertex causes a relatively
large shrinkage in the size of the focus vertex and also a
relatively large variation in the fisheye view. In particular,
since the entry and exit events happen at two different
distances from the center of the focus vertex (because at
exit-time the size of the vertex is larger than its size at entry-
time), without careful coding an exit event causes the most

recent focus vertex to shift away by a large distance from
the cursor in a jerky motion. One approach to solving this
problem is to force the cursor to be positione@just outside
the boundary of the most recent focus vertex od each exit
event: ~

Sorting the vertices in order of their visual worth produces
a very useful order. First, if the position of two vertices are
in conflict, their VW can be used to resolve the conflict in
favor of displaying the vertex with higher VW. Second, the
order can be used to maintain the real time response of the
system, as we shall discuss below.

Response Time

Our prototype system is able to maintain real time response
on a DECstation 5000 for graphs of up to about 100 vertices
and about 100 horizontal or vertical edges. Computing
fisheye views takes an insignificant amount of time compared

to the time required for painting. Real time response cannot
be maintained for graphs with significantly larger number of
vertices and edges. Performance also suffers when the the
percentage of edges that are neither horizontal nor vertical is
increased.

An alternative “inner loop” is to display “approximate”
fisheye views by painting only a fixed number of vertices
and edges, irrespective of the size of the graph. Each time
there is a new focus, quickly compute the new fisheye view
for all vertices, but repaint only those nodes and edges which
will give the best approximation to the perfect fisheye view.
Nodes with highest change in their VW and nodes with
highest current VW are good candidates. One can take a
suitable mix of these two types of nodes, as well as all the
associated edges. Each update operation will then involve
erasing and painting a fixed number of nodes and edges.

System Notes

The prototype is implemented using Modula-3 and Trestle,
a portable X-toolkit [8]. This project was the first Trestle
application to be written,l beyond the handful of small
examples in the distribution package. A number of features
that we needed for red time animation (e.g., fast double
buffering), and aesthetic drawings (e.g., curves and lines
of arbitrary thickness) were not functional when the initial
prototype was developed during the summer of 1991. We
are currently upgrading to the latest release of Trestle,

GENERALIZED FISHEYE VIEWS AND RELATED WORK

Our work follows from the generalized fisheye views by
Furnas [4, 5]. Furnas gave many compelling arguments
describing tbe advantages of fisheye views, and performed a
number of experiments to validate his claims. The essence
of Fumas’s formalism is the “degree of interest” function for
an “object” relative to the “focat point” in some “structure”.
Our notion of “visual worth” (see Equation 4) is nearly iden-
tical to Furnas’s degree of interest. The difference is that we

1 A M~u~.2 “er~ion of Tmstie that doesn’t use the x-too~it has been

operational for a number of years at DECSRC.
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have (thus far) described distance as the Euclidean distance
separating two vertices in a graph, whereas Furnas defined
the distance function as an arbitrary function between two
objects in a structure. Our system supports generalized fish-
eye views by recoding the distance function used explicitly
in Equation 4 and implicitly by Equations 1–3.

For instance, consider the graph in Figure 9 (all edges point
downwards). The graphical fisheye view of the graph is
shown in Figure 10. The API of each vertex is related to its
display level (e.g., the root has the highest API of 8, node 33
has an API of 4, and node 86 has an API of 2). The distance
between vertices is their Euclidean distance. A vertex is
displayed only if its visual worth is above some threshold,
and its position, size, and level detail are computed using
Equations 1,2, and 3, respectively. A “generalized” fisheye
view of that same graph, with the same focus, is shown
in Figure 11. Here, the API is as before, but the distance
function not geometrical; it is the length of the shortest
path between a vertex and the vertex defining the focus,
as proposed by Furnas [5]. Notice that in the generalized
fisheye view, each node is either displayed or omitted; there
is no explicit way to vary size and and level of detail.

Fumas raised the question of multiple foci [5], but left it
unanswered. Our framework can be extended to multiple
foci. A simple approach is to divide the screen-space
among atl the foci (using some criteria), and then apply the
transformation independently on each portion of the screen.

Fumas cites a delightful 1973 doctoral thesis by William
Farrand [3] as one of the earliest uses of fisheye views of
information on a computer screen. The thesis suggests trans-
formations similar to ourcartesian and polar transformations,
but provides few details.

Last year at CHI ’91, Card, Mackinlay, and Robertson
presented two views of structured information that have
fisheye properties. The perspective wall [7] maps a wide 2-
dimensionat layout into a 3-dimensional visualization. The
center panel shows detail, while the two side panels, receding
in the distance, show the context. The cone free [9] displays
a tree with each node the apex of a cone, and the children of
the node positioned around the rim of the cone. The fact that
the tree is beautifully rendered in 3D, including shadows and
transparency, provides the basic fisheye property of showing
local information in detail (because when it is close to the
viewer it is large), while also showing the entire context. It
would be interesting to experimentally compare cone trees
and generalized graphical fisheye views as techniques for
visualizing hierarchical information.

It may be fruitful to combine fisheye views with other
techniques for viewing extremely large data. For example,
related nodes can be combined to form cluster nodes, and
the member nodes of a cluster node can be thought of as the
detail of the cluster node [2]. The amount of detail to be
shown can then be computed using the framework we have
presented in this paper. In situations where the information
associated with the nodes is very large, one can use fisheye
views as navigation tool while the actual information in
nodes can be displayed in separate windows.
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Figure 9: A graph with 100 vertices and 124 edges.

Figure 10 A graphical fisheye view of 9. The focus is on
the vertex labeled 48

Figure 11: A generalized (non-graphical) fisheye view of 9.
The focus is on the vertex labeled 48.
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Figure 12: A fisheye view of the graph in Figure 1, d = 2.38, c = 1.0, e = 1.14, VWcuto&= O
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of detail displayed, as a function of an object’s distance Fumas helped to improve the clarity of this presentation
from the focus and the object’s preassigned importance in considerably.

the global structure. A second contribution is the notion
of a normal coordinate system, thereby allowing layout to
be viewed as distortions of some normal structure. As we
pointed out, our contributions apply to generalized fisheye
views of arbitrary structures (by changing the interpretation
of “distance”), in addition to graphs.

It is important to realize that we do not claim that a fisheye
view is the correct way to display and explore a graph.
Rather, it is one of the many ways that are possible. Dis-
covering and quantifying the strengths and weaknesses of
fisheye view are challenges for the future.
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Figure 13: A fisheye view of the graph in Figure 1, d = 2.38, c = 1.0, e = 1.14, VWcutoI = 0.27
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