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Introduction 
 
The Marching Cubes algorithm is a method for visualizing a conceptual surface called an 
isosurface.  An isosurface is formed from a set of points in 3 space satisfying the equation 
v = f(x,y,z), where v is a specific value.  v is called the iso-value and remains constant at 
any point on the isosurface.  Therefore, an isosurface can be viewed as a surface within a 
volume where each point has the same parametric value defined by v, a user specified 
iso-value.  
  
We will start with the 2d equivalent of Marching Cubes called Marching Squares and 
then translate those concepts over to Marching Cubes.  Similar to Marching Cubes, 
Marching Squares creates a curve, referred to as an isocurve, from a set of points in 2 
space that satisfy the equation v = f(x,y), where v is a specific value. 



Marching Squares 
 
To illustrate an isocurve, imagine the first picture is a cross-section ocean image on a 2d 
grid. 
 

 
 
The picture on the left shows the ocean in a 2d grid space whereas the picture on the right 
shows the corresponding isocurve of the ocean.  The Marching Squares object is 
formation of this isocurve. 
 
However, data is often given as the set of (x, y) coordinates inside the isocurve, so the 
“image” we have to work with is  
 

 
 
where a blue vertex indicates a data point within the ocean.  To create an isocurve from 
the set of blue data points, the Marching Squares algorithm constructs conceptual squares 
and “marches” through each square drawing linear lines separating the blue vertexes from 
the rest of the square.  Squares with all blue vertexes or without any blue vertexes are 
completely in or out of the ocean and therefore are not part of the curve and require no 
drawing.  Squares with 1, 2, or 3, blue vertexes must be part of the isocurve and require 
drawing.  Drawing constitutes a line between the centers of the edges with only one blue 
vertex.   
 

 
 



Using this methodology, constructing an isocurve from our 2d image of the ocean looks 
like this: 
 

 
 
Not a great fit, but we’ll discuss shrinking the grid size for improved accuracy later.  
Right now, let’s look at a larger example. 
 
Instead of an ocean, we will look at a circle.  Our criteria for a curve this time will be 
vertexes within a circle, so the optimal result would be an isocurve matching the circle 
exactly.  The first picture shows a black circle in a 2d grid with vertexes inside the circle 
indicated by the color green.  The second picture shows red vertexes where lines will 
connect the edges to form portions of the isocurve.  Finally, the last picture shows the 
isocurve formed by all the lines between red vertexes. 
 

   
 
 
Now that you have an intuitive feel for how Marching Squares works, I’ll layout a more 
structured approach to use for implementation. 



Structured Marching Squares Approach 
 
Step 1:  Since each square has up to 4 vertexes in or out of the curve in question, 24 = 16 
squares are possible. 
 

 
 
 
For each vertex combination, 1 line, 2 lines, or no lines should be drawn between the 
edge centers of the square.  Create a table (referred to as the edge table) that maps each 
vertex combination to edges intersecting the isocurve. 
 
 
 index e1 e2 e3 e4
edgeTable = 0000 0 0 0 0
 0001 1 0 0 1
 0010 1 1 0 0
 0011 0 1 0 1
 : : : : : 
 1111 0 0 0 0
 



Step 2:  Read in two adjacent data lines to form “squares” and commence “marching” 
through the row of squares. 
 

(x, y+1)         (x+n, y+1) 

(x, y)         (x+n, y) 

          
 
 
Step 3:  At each square, assign a 1 to each vertex within the surface and a 0 to those 
outside.  Assign these values in a square index. 
 

 
 

index = v4 v3 v2 v1 
 
 
Step 4:  Using the edge table and square index, get the edges to draw lines between 
(i.e. edgeTable[index] = drawLines). 
 
 
Step 5:  Draw line(s) between edges if applicable. 
 
 
Step 6:  Go to next square. 
 
 



Pseudo Code: 
 
Create an edge table 
 
Read a line of data 
 
while(moreDataLines) 
{  

Read in next line of data 
 
while(moreSquares) 
{ 

Fill square index (Assign 1 or 0 to index elements for each vertex) 
 
edgesToDrawBetween = edgeTable[squareIndex] 

   
 Draw lines using edgesToDrawBetween 
 
 currentSquare++; 

 } 
   
 Discard data line 
} 
 
 



Vertex Combination Simplifications 
 
Through symmetries, the 24 vertex combinations reduce to 5. 
 
The first symmetry is complement vertex combinations produce the same line for 
combinations with adjacent vertexes. 
 

 
 
For nonadjacent vertexes, this symmetry does not hold. 
 

 
 
 
The second symmetry is rotational symmetry. 
 

 
 
 
These symmetrical relationships are not too important in Marching Squares since only 16 
total square possibilities exist, but they become very important in Marching Cubes.  The 
final 5 unique squares are below. 
 



Non-Boolean Data Sets 
 
Up to this point, we’ve concerned ourselves only with vertexes being inside or outside of 
a criterion.  If an edge had a one vertex inside and the other outside the criteria, the 
isocurve crossed the middle of the edge.  However, vertexes can hold specific numeric 
values beyond the Boolean value of in or out.  Those values could conceptually represent 
anything, a color, substrate density, type of body tissue, etc.  As one would suspect, 
however, when we add values to the edge vertexes, the vertex for the isocurve 
intersection should cross closer to the vertex with the value closest to the threshold 
criteria.  Let’s look at an example. 
 
Imagine a threshold criterion of less than 32° Fahrenheit and data values at each vertex 
indicating the degrees Fahrenheit at that point in the 2d space. 
 

 
 
 
Using our previous method on this square, we would get the following. 
 

 
 
Clearly, the isocurve line should go closer to the vertex with a value of 30° F than the 
vertex with 50° F, but the drawn line puts equal distance from the isocurve intersection 
and each vertex.  



Linearly interpolating between the two vertexes solves this problem and gives a result 
similar to the following.  Notice how the isocurve is pulled closer to the bottom vertex. 
 

 
 
The formula for linear interpolation is: 
 
 vi = va + (t – da) [(vb – va) / (db – da)], 
 
where 

vi is the isocurve intersection vertex, 
t is the threshold value, 
va is the vertex below t, 
vb is the vertex above t, 
da is the data at va, and 
db is the data at vb. 

 
Looking at the formula, the term [(vb – va) / (db – da)] generates a ratio of edge length per 
unit data.  This ratio maps data values to edge length values.  So (t – da) gives the 
difference in data units between the intersection vertex and the vertex inside the isocurve.  
Multiplying that difference by the ratio gives us the distance vi is from va, and since we 
started at va, we add va to that distance, which gives us the point vi.    
 
In our example, let’s assume v1 is at (0, 0), and v4 is at (0, 10).  We know the vix will be 
0, so we only need concern ourselves with viy. 
 

viy = 0 + (32 – 30) [(10 – 0) / (50 – 30)] 
                 = 1 
Therefore, the intersection of the isocurve on the edge between (0, 0) and (0, 10) should 
be (0, 1), which is much closer to v1 than v4.  Incidentally, swapping a and b variables 
will produce the same vertex.  
 

viy = 10 + (32 – 50) [(0 – 10) / (30 – 50)] 
                 = 1 
In other words, va could just as easily represented a vertex outside and vb a vertex inside 
the isocurve. 



Marching Cubes 
 
The time for 3d has finally come, and with the Marching Squares principles translating 
over, the shift should be relatively smooth one.  Logically, we move from squares to 
cubes. 
 
 

                                            
 

index = v4 v3 v2 v1 
  
 
From isocurves, we move to isosurfaces.  Thus, we will no longer be connecting 2 edges 
with lines, but instead be connecting 3 edges to form triangles. 
 
 

 
 
 
Recall in Marching Squares, each square could have up to 4 vertexes in or out of the 
isocurve in question, which led to 24 possible squares.  A cube, however, has 8 vertexes, 
which leads to 28, or 256, drawing possibilities.  Luckily, by using the same symmetries 
discussed for Marching Squares (which probably seemed like overkill at the time), we 
can considerably reduce that 256.  
 
Vertex combinations and their complements produce the same triangle(s) facets, so 256 
permutations can be reduced to 128.  Through rotational symmetry, inspection can further 
condense the triangle facet combinations from 128 to 15 patterns. 
 

index = v7 v6 v5 v4 v3 v2 v1 v0 



 
 
In the 15 cube combinations, the number of triangular surfaces drawn range from 0 to 4.   
Therefore, our edge table will now have 12 columns per entry, enough room for 4 
triangles requiring 3 vertexes each.  Recall, however, the edge table returns edges 
containing the triangles vertexes, not the vertexes themselves.  A triangle vertex is 
calculated by linear interpolation of the two vertexes of the intersecting edge.  
 
Pseudo Code: 
 
Create an edge table 
 
Read in 3 2d slices of data 
 
while(moreDataSlices) 
{  

Read in next slice of data 
 
while(moreCubes) 
{ 

Fill cube index (Assign 1 or 0 to index elements for each vertex) 
 
edgesToDrawBetween = edgeTable[cubeIndex] 

   
  Interpolate triangle vertexes from edge vertexes 
 
  Determine triangle vertex normals 
 

 Draw triangle(s) 
 
 currentCube++; 

 } 
  
 Discard data slice 
} 



On top of the obvious modifications made to the pseudo code to transform it from a 2d 
Marching Squares to a 3d Marching Cubes, you’ll notice two interesting and unexpected 
additions.  Instead of reading in 2 2d slices of data, which would be analogous to reading 
in 2 1-d lines of data in Marching Squares, we read in 4 slices.  The other addition is 
calculation of normals at the triangle vertexes.  The additions are related in that to 
calculate the normals at the triangle vertexes you need to incorporate the normals of all 
triangles using that vertex, not just the triangles in the current cube.  With the inclusion of 
vertex normals in rendering, we can smooth shade the output with Gouraud shading. 
 

     
 
 
 
Grid Size 
 
A key factor to image quality and speed of calculation is grid size.  A decrease in grid 
will increase the time of surface construction but amplify the surface detail.  Look at the 
following renderings of “bobby molecules” generated at different grid sizes. 
 

 
 



Notice the first picture with a grid size of 10.  The neck of the “bobby molecule” fits 
completely inside the cube volume and therefore not drawn. 
 
Incidentally, for those wondering if a higher degree of interpolation for triangle vertexes 
would further improve image quality, experimentation has shown little enhancement. 
 
 
Applications 
 
Although employed in many arenas, isosurface creation is heavily utilized in medical 
visualization.  Isosurfaces recreate the digitized images taken by computed tomography 
(CT), magnetic resonance (MR), and single-photon emission computed tomography.   
 
 

 


