
Perlin Noise Function

Purposes of noise functions

• Mimic Natural Phenomena
• Add complexity to a texture to make it less boring

Useful Functions

linear interpolate from a to b by a factor of t
float lerp(float t, float a, float b)
{
 return a + t*(b - a);
}

an s shaped blending function equal to 3t^2 - 2t^3
float sCurve(float t)
{
 return t*t*(3-2*t);
}

Simple Noise Function

These simple noise functions have some desirable properties.
float simpleNoise1D(int x)
{
 x = (x<<13) ^ x;
 return (1.0 - ((x * (x * x * 15731 + 789221) + 1376312589) &
0x7fffffff) / 1073741824.0);
}

float simpleNoise2D(int x, int y)
{
 int n = x + y * 257;
 n = (n<<13) ^ n;
 return (1.0 - ((n * (n * n * 15731 + 789221) + 1376312589) &
0x7fffffff) / 1073741824.0);
}

Simple noise in 2 dimensions:

Desirable properties of simple noise

• Fast
• Produces the same output for any given input (consistent). Can be used to

generate textures on the fly.

Problems with simple noise

• Not countinuous when scaled (incoherent).

Simple noise scaled:

Interpolated Noise Function

These noise functions use linear interpolation to make the noise coherent.
float lerpNoise1D(float x)
{
 int xi; //integer component
 float xf; //floating point component
 float l0, l1; //uninterpolated values

 xi = (int)x;
 xf = x - (float)xi;

 l0 = simpleNoise1D(xi);
 l1 = simpleNoise1D(xi+1);

 return lerp(xf, l0, l1); //interpolate the noise values
}

float lerpNoise2D(float x, float y)
{
 int xi,yi; //integer component
 float xf,yf; //floating point component
 float l00, l01, l10, l11; //uninterpolated values
 float l0, l1; //partially interpolated values

 xi = (int)x;
 xf = x - (float)xi;
 yi = (int)y;
 yf = y - (float)yi;

 l00 = simpleNoise2D(xi , yi);
 l01 = simpleNoise2D(xi+1, yi);
 l10 = simpleNoise2D(xi , yi+1);
 l11 = simpleNoise2D(xi+1, yi+1);

 l0 = lerp(xf, l00, l01); //interpolate across the x axis
 l1 = lerp(xf, l10, l11);

 return lerp(yf, l0, l1); //interpolate across the y axis
}

Interpolated noise in 2 dimensions:

Desirable properties of interpolated noise

• Continuous when zoomed in (coherent)

Problems with interpolated noise

• Still looks unnatural due to ridges at regular intervals.

S-curve Interpolated Noise Function

These noise functions use s-curve weighted interpolation to make the noise coherent.
float smoothNoise1D(float x)
{
 int xi; //integer component
 float xf; //floating point component
 float xs; //s-curve function result
 float l0, l1; //uninterpolated values

 xi = (int)x;
 xf = x - (float)xi;
 xs = sCurve(xf);

 l0 = simpleNoise1D(xi);
 l1 = simpleNoise1D(xi+1);

 return lerp(xf, l0, xs); //interpolate the noise values
useing the s-curve value
}

float smoothNoise2D(float x, float y)
{
 int xi,yi; //integer component
 float xf,yf; //floating point component
 float xs,ys; //s-curve function results
 float l00, l01, l10, l11; //uninterpolated values
 float l0, l1; //partially interpolated values

 xi = (int)x;
 xf = x - (float)xi;
 xs = sCurve(xf);
 yi = (int)y;
 yf = y - (float)yi;
 ys = sCurve(yf);

 l00 = simpleNoise2D(xi , yi);
 l01 = simpleNoise2D(xi+1, yi);
 l10 = simpleNoise2D(xi , yi+1);
 l11 = simpleNoise2D(xi+1, yi+1);

 l0 = lerp(xs, l00, l01); //interpolate across the x axis
using the s curve
 l1 = lerp(xs, l10, l11);

 return lerp(ys, l0, l1); //interpolate across the y axis
using the s curve
}

S-curve interpolated noise in 2 dimensions:

Comments on s-curve interpolated noise

• This results in a smooth curve, but the results still look artificial.
• Peaks and valleys will always occur at regular intervals
• Humans seem to be good at detecting peaks and valleys in a pattern

The Perlin noise function.
Perlin Noise takes a different approach to natural looking noise. Instead of defining the
value of the noise function at regular intervals, the slope of the noise function is defined
at regular intervals. This leads to peaks/valleys forming at irregular intervals.

Perlin noise in one dimension:
At each integer location, a linear weight function is defined. For non-integers values, the
results weight functions are interpolated and weighted with the scurve.

Perlin noise in higher dimensions:
At the grid points (integer valued coordinates), the slope of the noise function is defined a
an n-dimensional vector where n is the dimensionality of the noise function. This slope
vector is more commonly referred to as the gradient vector, and is randomly generated
for each grid point. The length is usually normalized to 1. The sample vector is the vector
extending from the grid point to the location being sampled. The weight function is
simply the dot product of the gradient vector and the sample vector. The weights are
interpolated in n dimensions using the s curve, just as in one dimension.

Psuedocode for Perlin noise
float perlinNoise(vector sampleVec)
begin
 foreach integer grid vector h surrounding sampleVec:
 begin
 g = psuedorandom gradient vector generated from h
 v = sampleVec - g;
 w[h] = g.v;
 end

 return s-curve weighted interpolation of all w[] values
end

Perlin noise in 2 dimensions:

Absolute value of the Perlin noise function:

Inverse of the absolute value of the Perlin noise function:

Fractal noise
Simple Perlin noise looks nice, and can simulate some natural phenomena such as water
surfaces and smooth, rolling hills. Fractal noise adds more complexity, and produces
results that are more visually appealing. Fractal noise is generated by summing together
several levels of a noise function. These levels are often called octaves. The frequency of
each octave is twice that of the previous octave. The amplitude of each octave is some
multiple p of the previous octave. The multiple p is known as the persistence.

Varying detail levels of fractal perlin noise, starting with one octave and ending with six:

Fractal Perlin noise with 8 octaves and varying persistance values of .35, .5, and .65:

Fractal perlin noise using sums of absolute values:

Fractal sum of reflected Perlin noise:

Optimizing Perlin Noise
To sample n dimensional perlin noise, 2n psuedorandom gradient vectors are required,
each with n components. This means a total of n*2n psuedorandom numbers must be
generated per sample. In addition, the noise looks best when the gradient vectors are
normalized to length 1. Using the psuedorandom number generator found in the
simpleNoise functions would be very slow when run n*2n times per sample. A permute
array is a much faster way to generate random vectors.

First, create a gradient array that contains 256 normalized n dimensional gradient vectors.
I'll call this array g[]. This only needs to be created once when the program starts.

Next, create an array of 256 unsigned bytes. Fill this array with each integer from 0 to
255 in a random, permuted order. This array will be called p[]. This also only needs to be
done once when the program starts.

One dimensional fast psuedorandom gradient vector
To generate a psuedorandom index given an integer x, simply return p[x mod 256]. Since
p is full of indexes in random order, this essentially generates a random index quickly.
This index is then used to read a vector from g[]. This can be sped up even further by
taking advantage of the fact that x mod 256 is equivalent to x & 255.
Psuedocode for one dimensional random gradient vector
vector randGrad1D(int x, byte p[], vector g[])
begin
 int i = p[x & 255];
 return g[i];
end

N dimensional fast psuedorandom gradient vector
To generate a psuedorandom gradient from a higher dimension, just repeatedly permute
the coordinates for each coordinate. Psuedocode for two and three dimensional random
gradient vector
vector randGrad2D(int x, int y, byte p[], vector g[])
begin
 int i = p[x & 255];
 int j = p[(y+i) & 255];
 return g[j];
end

vector randGrad3D(int x, int y, int z, byte p[], vector g[])
begin
 int i = p[x & 255];
 int j = p[(y+i) & 255];
 int k = p[(z+j) & 255];
 return g[k];
end

