Neural Network Toolbox | Search  Help Desk |
dmae | Examples See Also |
Mean absolute error performance derivative function
dPerf_dE = dmae('e',E,X,perf,PP)
dPerf_dX = dmae('x',E,X,perf,PP)
dmae
is the derivative function for mae
.
dmae('d',E,X,PERF,PP)
takes these arguments,
E -
Matrix or cell array of error vector(s).
X -
Vector of all weight and bias values.
perf -
Network performance (ignored).
PP -
Performance parameters (ignored).
dPerf/dE
.
dmae('x',E,X,PERF,PP)
returns the derivative dPerf/dX
.
Here we define E
and X
for a network with one 3-element output and six weight and bias values.
E = {[1; -2; 0.5]}; X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];Here we calculate the network's mean absolute error performance, and derivatives of performance.
perf = mae(E) dPerf_dE = dmae('e',E,X) dPerf_dX = dmae('x',E,X)Note that
mae
can be called with only one argument and dmae
with only three arguments because the other arguments are ignored. The other arguments exist so that mae
and dmae
conform to standard performance function argument lists.
mae