Neural Network Toolbox | Search  Help Desk |
premnmx | Examples See Also |
Preprocess data so that minimum is -1 and maximum is 1
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)
[pn,minp,maxp] = premnmx(p)
premnmx
preprocesses the network training set by normalizing the inputs and targets so that they fall in the interval [-1,1]
.
premnmx(P,T)
takes these inputs,
and returns,
PN - R
x Q
matrix of normalized input vectors.
minp- R
x 1
vector containing minimums for each P.
maxp- R
x 1
vector containing maximums for each P.
TN - S
x Q
matrix of normalized target vectors.
mint- S
x 1
vector containing minimums for each T.
maxt- S
x 1
vector containing maximums for each T.
[-1,1]
.
p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10]; t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0]; [pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);If you just want to normalize the input,
[pn,minp,maxp] = premnmx(p);
pn = 2*(p-minp)/(maxp-minp) - 1;
prestd
,
prepca
,
postmnmx