Neural Network Toolbox | Search  Help Desk |
trainrp | Examples See Also |
[net,tr] = trainrp(net,Pd,Tl,Ai,Q,TS,VV)
info = trainrp(code)
trainrp
is a network training function that updates weight and bias values according to the resilient backpropagation algorithm (RPROP).
trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV)
takes these inputs,
Ai -
Initial input delay conditions.
VV -
Either empty matrix []
or structure of validation vectors.
TV -
Either empty matrix []
or structure of test vectors.
TR -
Training record of various values over each epoch:
trainrp
's training parameters shown here with their default values:
net.trainParam.epochs 100
Maximum number of epochs to train
net.trainParam.show 25
Epochs between showing progress
net.trainParam.goal 0
Performance goal
net.trainParam.time inf
Maximum time to train in seconds
net.trainParam.min_grad 1e-6
Minimum performance gradient
net.trainParam.max_fail 5
Maximum validation failures
net.trainParam.lr 0.01
Learning rate
net.trainParam.delt_inc 1.2
Increment to weight change
net.trainParam.delt_dec 0.5
Decrement to weight change
net.trainParam.delta0 0.07
Initial weight change
net.trainParam.deltamax 50.0
Maximum weight change
Pd - No
x Ni
x TS
cell array, each element P{i,j,ts}
is a Dij
x Q
matrix.
Tl - Nl
x TS
cell array, each element P{i,ts}
is a Vi
x Q
matrix.
Ai - Nl
x LD
cell array, each element Ai{i,k}
is an Si
x Q
matrix.
Dij = Ri * length(net.inputWeights{i,j}.delays)
VV
is not []
, it must be a structure of validation vectors,
VV.PD -
Validation delayed inputs.
VV.Tl -
Validation layer targets.
VV.Ai -
Validation initial input conditions.
VV.TS -
Validation time steps.
max_fail
epochs in a row.
If TV
is not []
, it must be a structure of validation vectors,
TV.PD -
Validation delayed inputs.
TV.Tl -
Validation layer targets.
TV.Ai -
Validation initial input conditions.
TV.TS -
Validation time steps.
trainrp(code)
returns useful information for each code
string:
Here is a problem consisting of inputs P
and targets T
that we would like to solve with a network.
P = [0 1 2 3 4 5]; T = [0 0 0 1 1 1];Here a two-layer feed-forward network is created. The network's input ranges from
[0 to 10]
. The first layer has two tansig neurons, and the second layer has one logsig neuron. The trainrp
network training function is to be used.
Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp
');
a = sim(net,p)
Train and Retest the Network
net.trainParam.epochs = 50; net.trainParam.show = 10; net.trainParam.goal = 0.1; net = train(net,p,t); a = sim(net,p)See
newff
,
newcf
, and newelm
for other examples.
You can create a standard network that uses trainrp
with newff
, newcf
, or newelm
.
To prepare a custom network to be trained with trainrp
:
.net.trainFcn
to 'trainrp
'. This will set net.trainParam
to trainrp
's
default parameters.
.net.trainParam
properties to desired values.
trainrp
.
trainrp
can train any network as long as its weight, net input, and transfer functions have derivative functions.
Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X
. Each variable is adjusted according to the following:
dX = deltaX.*sign(gX);where the elements of
deltaX
are all initialized to delta0
and gX
is the gradient. At each iteration the elements of deltaX
are modified. If an element of gX
changes sign from one iteration to the next, then the corresponding element of deltaX
is decreased by delta_dec
. If an element of gX
maintains the same sign from one iteration to the next, then the corresponding element of deltaX
is increased by delta_inc
. See Reidmiller and Braun, Proceedings of the IEEE International Conference on Neural Networks,, 1993, pp. 586-591.
Training stops when any of these conditions occur:
.epochs
(repetitions) is reached.
.time
has been exceeded.
.goal
.
.mingrad
.
.max_fail
times since the
last time it decreased (when using validation).
newff
,
newcf
,
traingdm
,
traingda
,
traingdx
,
trainlm
,
traincgp
,
traincgf
,
traincgb
,
trainscg
,
trainoss
,
trainbfg
Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks, San Francisco,1993.