
Animation and Visualization in the Curriculum:  
Opportunities, Challenges, and Successes 

 
Thomas Naps 

  Computer Science Dept 
U Wisconsin Oshkosh 
naps@uwosh.edu 

Susan Rodger 
Computer Science Dept 

Duke University 
rodger@cs.duke.edu 

Guido Rößling 
Computer Science Dept 

Darmstadt U of 
Technology, Germany 
roessling@acm.org 

Rockford Ross 
(moderator) 

Computer Science Dept 
Montana State University 

ross@cs.montana.edu 
  
SUMMARY 
This panel is intended for all instructors who have had a desire to 
incorporate animation and visualization tools into their courses, 
for those who may not even be aware of such tools and of their 
potential benefits for instruction and student learning but want to 
investigate them, and for those who may want to become involved 
in the design and implementation of effective animations or 
visualizations.  First, some background. 
 
Software systems for animating or visualizing important computer 
science concepts have long held strong allure for educators.  It is 
sometimes difficult to convey the often complex and dynamic 
nature of computer science in the classroom satisfactorily; 
algorithms, models of computation, machine execution, and a 
virtually uncountable number of other topics beg to be animated.  
In most cases, an instructor is the animating agent, using a 
whiteboard, various colored pens, an eraser, and sometimes 
inscrutable body gyrations to convey the dynamics of the process 
being described.  As talented as an instructor might be at this task, 
students invariably leave the classroom with little more than static 
notes and questionable impressions of the presentation.   
 
The promise of animation and visualization is that software can 
serve as the animating agent for such dynamic processes. A 
student could interact with such software as often and in as much 
depth as desired until the topic was learned—algorithms would 
become clear, models of computation would be understood, and 
machine execution processes assimilated.  An instructor could run 
the same software in the classroom to convey the dynamics of the 
topics under consideration in repeatable, error-free fashion. 
 
That has always been the promise.  However, a number of very 
good software systems (and many more “toy” systems) have been 
developed over the years that never did see widespread use in the 
classroom. What happened?  In retrospect, a number of issues are 
evident.  Early systems were inherently platform dependent and 
would not run at many sites other than the creator’s. Most of these 
systems died as new computing platforms replaced the ones on 
which the systems were developed. More recent systems were 
designed to be platform independent, but still suffered from lack 
of widespread use.  The main issues were time and support.  An 
instructor who would have liked to use animation and 
visualization software in a course had to (1) be made aware of its 

existence (2) locate it (usually through a web search or published 
URL), (3) probably download and install it, (4) learn to use it, (5) 
possibly create some animations with it, (6) integrate it into an 
existing course that likely used different notation than the 
software, (7) teach its use to students, and (8) assign and grade 
exercises using it.  For instructors who had no time or interest in 
developing custom animations for their own classroom, the 
situation was often hopeless.  For those who did want to become 
involved in the design of animations or visualizations using 
existing systems, the outlook wasn’t much better, as extant 
systems often were poorly documented and unsupported. 
 
If that sounds daunting, there is good news!  Recent 
advancements in the understanding and development of animation 
and visualization systems have addressed (or are addressing) 
many of these issues. Thanks to the concerted efforts of a number 
of researchers, often with generous support from the National 
Science Foundation and other granting agencies, there has never 
been a better time to consider integrating animation and 
visualization tools into the curriculum, or to become involved in 
the design and development of such tools. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer science education. 

General Terms 
Algorithms, Design, Human Factors, Theory. 

Keywords 
Algorithm animation, algorithm visualization, visualization, 
hypertextbooks, active learning, interactive learning applets. 

1. Tom Naps 
Tom Naps is Professor of Computer Science at the University of 
Wisconsin Oshkosh.  He has published in the area of animation 
and visualization since the late 1980s and is well-known 
internationally for his algorithm visualization systems.  His most 
recent system is known as JHAVÉ.  Tom is a regular participant 
in the SIGCSE and ITiCSE communities. His work can be found 
at http://jhave.org/.  His most recent work is supported through 
NSF-CCLI grant DUE-0126494, with Scott Grissom and Myles 
McNally. 

There are many reasons why algorithm visualization (AV) has not 
been effective as an educational resource despite the 
overwhelming "belief" among CS educators that it should be.  

 
Copyright is held by the author/owner(s). 

SIGCSE’06, March 1-5, 2006, Houston, Texas, USA. 

ACM 1-59593-259-3/06/0003. 



Among these reasons are students being too passive in their 
interaction with such systems and the lack of convenience and 
reliability that such systems offer instructors.  Consequently our 
work in trying to make AV more effective should be aimed at 
correcting these deficiencies rather than adding more graphical 
flourishes to AV systems.  To more actively engage students with 
visualizations, AV systems need to include "engagement hooks" 
such as (1) allowing students to provide meaningful input sets to 
control the direction of algorithms they are watching, (2) asking 
students non-trivial questions about the visualizations they are 
watching, and (3) incorporating the delivery of the visualization 
into a course management system so that instructors can monitor 
how their students are using the visualization.  If such systems are 
to be provided for instructors in ways that are reliable and 
convenient, it will be important for these systems and 
visualizations produced by them to have an existence beyond an 
amorphous collection of applets that are found by Google when 
an instructor teaches one iteration of a course but then are gone 
six months later.  One way of ensuring this reliability is to 
develop effective deployment methods for keeping instructors and 
their students in touch with the most recent versions of systems.  
Java Web Start methodology is one way to solve the deployment 
problem, and CVS repositories can be used to build collections of 
visualizations that many visualization designers and users will 
have a vested interest in reviewing and maintaining. JHAVÉ 
serves as a successful example of this approach. 

2. Susan Rodger 
Susan Rodger is Associate Professor of the Practice in the 
Department of Computer Science at Duke University. She has 
been teaching computer science with visualizations for sixteen 
years.  She has developed software tools for animation and 
computer science concepts, including the well-known JFLAP 
animation software for teaching the automata theory course, and 
JAWAA, software for creating animations on the Web. She is a 
co-author of the book JFLAP—An Interactive Formal Languages 
and Automata Package, to be published in 2006. She is currently 
the PI of the NSF DUE CCLI grant 0442513 entitled "An 
Interactive Approach to Formal Languages and Automata with 
JFLAP."  This project can be found at www.jflap.org.  
 
To be effective, animations must be integrated into the fabric of a 
course.  One successful approach to teaching computer science 
courses is to incorporate animation software into an interactive 
lecture format in which students interact with other students and 
the instructor during lecture. In one example, such a lecture 
consists of a series of mini-lectures. Each mini-lecture has three 
phases. First, the instructor introduces a new concept with the 
animation software; second, students work on a related problem 
in small groups either with the animation software or on paper; 
and third, the problem is discussed and solved by the class as a 
whole with the instructor using the animation software. This 
approach has been used in a variety of courses from introductory 
programming courses to the automata theory course. In 
integrating animation software into a course, supporting 
materials—such as tutorials and a user manual with a variety of 
exercises—and possibly even modifications to the software may 
be needed. For problem solving it is helpful to have examples 

already built for the animation software that students can load 
and experiment with, before they attempt to build their own 
animations.  The software should also have capabilities for 
saving files for electronic submission and support for grading. 
JFLAP serves as an example of this approach. 

3. Guido Rößling 
Guido Rößling is a faculty member at Darmstadt University of 
Technology, Germany.  A relative newcomer to the field, Guido 
has quickly established an international reputation as a result of 
his tireless work with the animation and visualization community.  
His most notable contribution, called ANIMAL, can be found at  
http://www.animal.ahrgr.de/index.php3,  

Instructors and students who wish to learn better by designing 
effective animations—in contrast to just viewing them—need to be 
encouraged to create animations of concepts, as opposed to just 
interacting with already-created instances. Powerful tools are 
needed to make the animation or visualization creation task as 
easy as possible.  Such tools must be well-documented, well-
supported, well-grounded in known animation and visualization 
techniques, and be straightforward to learn and use. ANIMAL is 
one such system that continues to evolve as more is learned about 
the effectiveness of animations and visualizations on student 
learning; it will serve as an example.   

4. Rocky Ross 
Rocky Ross is Professor of Computer Science at Montana State 
University.  He has been working in the area of computer science 
animation and visualization since the late 1970s.  His current 
work is in producing hypertextbooks for the Web.  Check 
www.cs.montana.edu/webworks/projects/theoryportal  for more 
information. Some of his most recent work was funded by NSF 
grants 0088728 and 0089397. 
One way to ensure that instructors are encouraged to use 
animation and visualization software in their courses, and also to 
ensure that students actively engage with this software, is to 
incorporate it into the primary teaching and learning resource for 
a course.  Called hypertextbooks, such resources interweave 
standard textual presentations with arbitrarily many images, 
audio explanations, slide shows with narration, narrated video 
clips, and, most importantly, active  learning applets (animations 
and visualizations) of the primary concepts of the course. 
Hypertextbooks can be constructed with different paths through 
the material for students at different academic levels and learning 
styles. They are also intended to be minimally dependent on plug-
ins and to be accessible through standard web browsers, making 
them available to virtually anyone virtually anywhere at minimal 
cost. Hypertextbooks are particularly well-suited for instructors 
who have no time to develop animations or visualizations on their 
own. Hypertextbooks are under construction for the theory of 
computing and for the non-computing topic of biofilms.  The tools 
used in their construction will be presented as examples of this 
approach to incorporating animation and visualization into the 
curriculum 

. 


