
CS 201
Eclipse CDT Tutorial

Eclipse is a framework for IDEs. It provides the infrastructure for the IDE, and then the IDE
is completed by using a plug-in for a particular programming language. Plug-ins exist for
Java (which was its first application), C/C++, Python, Perl and many others. Eclipse is
multi-platform, runnable on Linux, Windows , etc. Eclipse came out of the Websphere
project at IBM. Though the Eclipse project is now fully open-source, it is still strongly
supported by IBM.

In this tutorial, we will describe in step by step how to edit, compile and execute a C project
using Eclipse in your EPS 254 lab computer.

Step 1: Staring Eclipse

Log in to the Linux side of your machine. Start up Eclipse by typing eclipse in a command
window. A Workspace Launcher window will appear as shown in Fig.1 which will ask you to
specify a directory to use. Choose your working directory and select OK.

Fig.1 Workspace Launcher

Step 2: Eclipse Perspectives and views

Eclipse is launched and your screen should look like Fig.2 . The main kinds of components in
Eclipse are:

● perspectives
● views

The current perspective is the environment under which your Eclipse screen is currently
operating. The current perspective consists of a number of subwindows, called views. For
example, currently we are in C/C++ perspective as shown in the snapshot of Fig. 2. If you
are not in C/C++ perspective, you can go there by choosing Window | Open perspective
| Other | C/C++ and then pressing OK. Take some time to familiarize with different views
available in C/C++ perspective such as listing your various C/C++ projects (and files within
those projects), an editor view for each file you currently are editing, an outline view
showing each of the major components of your code (functions, global variables, etc.), a
Console view in which standard input/output would be done, and so on. During your work
on your C/C++ code, you will use the debugger, in which case you will temporarily switch to
the Debug perspective.

Fig.2 Eclipse perspective and views

Step 3: Creating a C project

As with many IDEs, Eclipse organizes things into projects. A project is a directory within
your workspace. To make a new project:

• Select File | New | Project
• Select Standard Make C Project as we are creating a C project and will be writing

our own makefile. If you want Eclipse to generate the makefile for you, you can
select Managed Make C project.

• A New Project dialog box will appear. Enter your project name (in my case, I
entered helloworld as project name) and hit Finish unless you know the advanced
stuff.

• If you are not already in the C/C++ perspective, it will ask you if you want to go to
that perspective; say Yes

To go to a project, either previously existing or one you just created: You can double-click
the project name in the Navigator view or the C/C++ view, etc. If you don't see that view,
select Window | Show View. You may have to right-click on the project name, and select
Open Project. At this stage, the screen will look like Fig. 3 with the newly created project
helloworld.

Step 4: Creating/Editing C Source Files

To make a new file, say hello.c under the project helloworld

• right-click on the project name, then select New | Source File
• make sure that the project name in Source Folder is helloworld; enter the file

name, hello.c ; hit Finish
• the editor will now open a subview for editing hello.c

To edit an existing file:
• go to Navigator (or C/C++ Projects, if doing C/C++)
• if the files don't appear, click on the arrow next to the project name
• double-click on the file you want

Fig.3 Project helloworld has been created

Fig.4 Adding code to hello.c

Step 5: Adding Source Code

Add the source code to hello.c as shown in Fig.4 and save it.

Step 6: Creating makefile

You have to create a makefile for each project. To create a makefile, right click on the
appropriate project and select New | File (remember makefile is an ordinary file, not a
source file). In the editor, create your makefile as follows. Be aware that your makefile
must have entries all: for successful compilation. Please visit the Some Useful Links in
your course web page to know more about makefiles.

all: hello

hello: hello.o
 gcc -o hello hello.o

hello.o: hello.c
 gcc -c hello.c

of course, there are TABs in there; don't forget to save the file.

Step 6: Compiling your project

To compile, save your files if needed, right-click the project name, then select Build
Project, which will run make. If there were any compilation errors, they'll show up in
several places:

• In the Console view, which will show the result of the make
• In the Problems view; if you click on any problem, the mouse pointer will be moved

to the offending line in your editor view

Fig.5 After compilation

• In the editor view itself, where the compilation errors will be flagged with red disks
just to the left of source code lines in your editor subviews; if you move the mouse
pointer to one of the red disks, a yellow window will pop up to tell you what errors
were found at that line

Once compiled successfully, other related files will be created under project helloworld as
shown in Fig. 5. Don't worry about the “warning: no newline at end of file” appears in the
console window.

Step 6: Run your project

If there were no compiler errors, run your code:

• Select Run | Run...; you will be asked for a run configuration
• If you already have one for this program, click on it in the Configurations: view.
• If you don't have one, click on (C/C++ local application) and then on New; choose a

configuration name, and fill in your project and executable file names (on C/C++
application area, click on the Search Project and it should show the executable's
name. Fig. 6 shows a new configuration helloworld with project name and
executables filled up properly.

• Hit Run
• Your program's output will appear in the Console view as shown in Fig.7.

Note that once you have your run configuration set up, you can bypass a step in future runs
by selecting Run | Run Last Launched.

• If there were compiler errors, you can go to the error line either via using the mouse
pointer in the editor, or by clicking on the error message in the Problems view

• to invoke the debugger, right-click on the project name, and select Debug | Debug
highlight your executable name on the left, set any arguments, and hit Debug;
you'll be asked whether you want to switch to the Debug perspective--say yes.

• to go back to edit/compile/run mode, go back to the C/C++ perspective

Fig. 6 Run configuration

Fig. 7 Execution of hello

