
1

1

CS 201
Constants and Data Types

Debzani Deb

2

Exam 1(out of 58) Grade distribution

• Highest: 52
• Lowest: 18
• Average: 36.5
• See Lecture 11 for exam review.

3

Constant Declarations

• Up to now we have used #define to define a named
constant.

• Another way is to define a constant inside the regular
code.

• e.g. const double PI = 3.14159;
• PI = 3.0; is now illegal!
• The keyword const indicates a variable that does not

change.
• Constants are useful for parameters which are used in

the program but are do not need to be changed after
the program is compiled.

4

const Restrictions

• Constants must be initialized when they are
defined.

• Constant values can never be changed.
• They can never appear on the left of an

assignment operator, =

5

const vs. #define
• Constants that are defined by using const are

understood & checked by the C compiler itself
immediately. So error messages are much more
helpful.

• The #define directive is just substituted by the
preprocessor and is not checked until the macro is
used.

• const uses typical C syntax, while #define has its
own syntax.

• const follows normal C scope rules, while
constants defined by a #define directive continue
on forever.

6

const vs. #define (cont.)

• The #define directive can only define
simple constants.

• The const statement can define almost any
type of C constant, including things like
structures.

• The #define directive is essential for things
like conditional compilation and other
specialized uses.

2

7

Conditional Compilation
• One use is to “comment out” a bunch of

code. Suppose you had:
…
i=12;
/* This is a one line comment */
J = 15; /* This is a comment at the end of
a line */
K = -10;
X = sqrt (102.34);
/* Another one line comment */
…

8

Conditional Compilation
• You would like to eliminate all this code temporarily.

Comment before and after? No, that doesn’t work.

/*
i=12;
/* This is a one line comment */
J = 15; /* This is a comment at the end of
a line */
K = -10;
X = sqrt (102.34);
/* Another one line comment */
*/

Terminates the
comment here.

9

Conditional Compilation
• You can use a pre-processor statement to do

this easily.
#ifdef _FLAG_01
i=12;
/* This is a one line comment */
J = 15; /* This is a comment at the end of a
line */
K = -10;
X = sqrt (102.34);
/* Another one line comment */
#endif None of this will be compiled into your

program because you haven’t ever defined
a variable called _FLAG_01

10

Conditional Compilation
• Want to quickly turn on all the segments so

marked? Simply define _FLAG_01.

#define _FLAG_01
#ifdef _FLAG_01
i=12;
/* This is a one line comment */
J = 15; /* This is a comment at
the end of a line */
K = -10;
X = sqrt (102.34);
/* Another one line comment */
#endif

All this will be part of
your program. And, any
other section marked
with _FLAG_01.

11

Other Base Constants

0xF01715

0x90119

0x6066

Base 16Base 8Base 10

12

const Pointers

• const int * num_ptr;
• Does NOT tell C that the variable num_ptr is a

constant! Instead, it tells C that the data
pointed to by num_ptr is a constant.

• Variable pointer to Constant data.
• The data cannot be changed, but the pointer

can.
• int const * num_ptr does the same.

3

13

Pointer Is Constant

• If we put the const after the *, we tell C that
the pointer is constant.

• int * const num_ptr;
• Constant pointer to variable data.
• The data can be changed, but the memory that

contains the data is unmovable.

14

Or Both Unchangeable

• To make them both constants, put two const in.
• const int * const num_ptr;
• Constant pointer to constant data.
• The data cannot be changed, and the pointer

cannot be changed.

15

WHY use Constants?

• Languages like Ada and Java provide
automatic protection for the programmer.
Similar to guards and safety switches on a
table saw.

• C is like a spinning blade in space.
• Using const carefully can protect your code

from unintended side effects.

16

Side Effects?
• One of the worst habits of so called “programmers” is being

proud of their mastery of C’s side effects! “Look how clever I
am!”-type approach. You will see a lot of code written like
that.

• However, no one can read the code!!!. So please don’t be like
them.

• Also codes with side effects may produce undefined results
Any combination of increment, decrement, and assignment
operators (++, --, =, +=, -=, etc.) in a single expression which
causes the same object either to be modified twice or modified
and then inspected.
We have looked at one: i++* i++, another one is i = i++.
See http://c-faq.com/expr/ for some interesting discussion.

• It is good to know this tricks, but just for READING, not for
CODING.

17

More Examples…

variable = other_variable ++;
• Main effect, assign the value of other_variable

to variable.
• Side effect, increment other_variable.

18

More Examples…
if(variable = expression) x=0;

• Main effect: assign 0 to x if the value of the
assignment is true (!= 0).

• Side effect: assign the value of expression
to variable.

• Side effects are sort-of hidden actions taken
by the language.

• Try to avoid them. If you use them, add
comments!

4

19

Data Types

20

Primitive Data Types

• So far, we have used 3 data types
int
char
double

• We have also seen some ways that these data types
are related

int and double are both numbers, so we can perform math
between them
We’ve used int values to store true or false (1 or 0)

• These data types are all consider simple or scalar
data types because they only hold a single value.

21

Why we need different numeric data types?
• Operations involving integers are much faster to execute than

those involving numbers of type double.
Depending on the computer, this difference may be very
significant

• Integers take up less space than doubles.
int = 4 bytes
double = 8 bytes

• Operations with integers are always precise, whereas some
loss of accuracy or round-off error may occur when dealing
with type double numbers.

• These differences result from the way numbers are represented
in the computer’s memory.

The integer 13 is stored as 00000000 00000000 00000000 00001101
The double 13.0 is stored as 01000000 00101010 00000000 00000000
00000000 00000000 00000000 00000000

22

Representation of int
• Integers are stored in normal binary.

13 = 1101 = 1*23 + 1*22 + 0*21 + 1*20

When we perform math on integers, we just do simple
binary arithmetic, which is very efficient and exact.

122 11 −⎯→⎯− −− nton

INT_MAXINT_MIN

#include limits.h• int on linux
4 bytes used.
(Where n = 32)

[-2147483648, 2147483647]

• 24x8 = 232 = 4294967296
• 4294967296/2 = 2147483648

23

Important!!!
• Don’t depend on your assumptions for size.
• Use the internal variables INT_MAX, INT_MIN to

verify what you believe to be true.
• Make sure you use large enough data types to prevent

overflow.
i = INT_MAX;

printf(“%d %d\n”, i, i+1); // What is the output?

We call is Arithmetic Overflow

2147483647 -2147483648

24

Representation of double

• Double values are stored in floating point format, which is
like scientific notation.

• The storage area is divided into two sections: mantissa and
exponent.

The mantissa is between .5 and 1.0 for positive numbers
and -.5 and -1.0 for negative numbers
The exponent is an integer

• These numbers are chosen so the following formula is true:
real number = mantissa * 2exponent

• Because of the way they are stored, not all numbers can be
represented exactly.

5

25

Representation (cont.)
• double

8 bytes used.
#include float.h

On my machine, linux:
DBL_MIN=2.225074e-308
DBL_MAX=1.797693e+308

On my laptop, Windows Xp Pro:
DBL_MIN=2.225074e-308
DBL_MAX=1.797693e+308

26

Size of int/double

0 ... 4,294,967,295unsigned long int
-2,147,483,647 ... 2,147,483,647long int
0 ... 4,294,967,295unsigned int
-2,147,483,647 ... 2,147,483,647int
0 ... 65,535unsigned short
-32,767 ... 32,767short
Range in Typical ComputerType

10−4931 ... 104932long double
10−307 ... 10308double
10-37 ... 1038float

Approximate RangeType

27

Numerical Inaccuracies
• Not all numbers can be exactly represented by the double

format
Just as certain fractions cannot be represented exactly in the
decimal number system (e.g., 1/3 is 0.3333...), some fractions
cannot be represented exactly as binary numbers.
Think about representation of 1.55 in binary form

1 = 1*20 (obvious)
.55 = .(1*2-1 + 0*2-2 + 0*2-3 + 0*2-4 + 1*2-5 + 1*2-6 + …)

= .(0.5 + 0.03125 + 0.015625+ …)
• Accuracy is totally dependent on the number of binary digits

used to represent numbers: the more bits, the smaller the error.
• We call this the representation error (sometimes called round-

off error)
• Because of this kind of error, an equality comparison of two

type double values can lead to surprising results.

28

Numerical Inaccuracy: Example
int main(void)
{

double y = .99, x = .33;
while(y != 0)
{

y = y - x;
printf("loop\n");

}
return 0;

}

What will be the Output?

29

Numerical Inaccuracy: Example

double sum = 0.0;

for(i=0; i<1000; i++)
sum = sum + 1.55;

printf("sum 1.55 1000 times = %f\n", sum);

sum 1.55 1000 times = 1550.010864

30

Other Inaccuracies

• When you add a large number and a small number, the larger
number may “cancel out” the smaller number, resulting in a
cancellation error.

For example, 1000.0 + 0.0000001234 is equal to 1000.0 on
some computers

• If two very small numbers are multiplied, the result may be too
small to be represented accurately, so it will be represented as
zero.

• This phenomenon is call arithmetic underflow.
• Similarly, if two large numbers are multiplied, the result may

be too large to be represented.
• This phenomenon, called arithmetic overflow, is handled in

different ways by different C compliers.

6

31

Automatic Conversion of Data Types

• In Chapter 2, we saw several cases in which data of one
numeric type were automatically converted to another numeric
type.
Example: Given
int k = 5, m = 4, n;
double x = 1.5, y = 2.1, z;

k + x : x is of type double, so k is converted to double
z = k / m : since k and m are both of type int, so we get 1, and

then convert that to 1.0 (double) to store in z.
n = x * y : we compute x * y to get 3.15 and then convert it to

type int, so 3 is stored in n.

32

Explicit Conversion of Data Types

• In addition to automatic conversions, C also provides
an explicit type conversion operation called a cast.
z = (double)k / (double)m;

• Placing the name of the desired type in parentheses
immediately before the value to be converted causes
the value to be changed to the desired data format
before it is used in the expression.

• Because this explicit conversion is a very high
precedence operation, it is performed before the
division.

• We could not achieve our goal by doing
z = (double)(k / m); Why?

33

Representation and Conversion of char

• We have declared variables of type char and have
used type char constants consisting of a single
character enclosed in apostrophes.

• Each character has its own unique numeric code, the
binary form of this code is stored in a memory cell
that has a character value

One Byte per character
Collating sequence. ‘a’<‘b’, ‘A’ < ‘B’, ‘0’ < ‘1’.
How does C compute ’A’ < ’Z’? Ans: ’A’ equals 65 and
’Z’ equals 90, so ’A’ < ’Z’ is true.
How about ‘a’ < ‘A’ or ‘A’ < ‘a’??? Never be sure, always
check on your machine.

34

Enumerated Types(1)
• Good solutions to many programming problems require new

data types other than the primitive types.
• For example, in a calendar program you might need to

distinguish between the different months: january, february,
march, april, may, june, july, august, september, october,
november, december.

• C allows you to associate a numeric code with each category
by creating an enumerated type that has its own list of
meaningful values.

typedef enum {january, february, march, april, may,
june, july, august, september, october, november,
december} month_t;

month_t month;
Defines a new type month_t

Defines a variable month of type month_t

35

Enumerated Types(2)
• Defining type month_t as shown causes the enumeration

constant january to be represented as the integer 0, constant
february to be represented as integer 1, and so on.

• Variable month and the twelve enumeration constants can be
manipulated just as one would handle any other integers.

• Now you can write…..
month_t c_month, n_month;
c_month = january;
c_month++;
if (c_month == december)

n_month = january;
else

n_month = month_t(c_month + 1);
for(c_month = january; c_month <= july; ++c_month) { … }

36

Enumerated Rules
• Enumerated constants must be identifiers. They can’t be

Numeric (1,3,-4)
Character (‘s’, ‘t’, ‘p’)
Or String (“This is a string”) Literals.

• An identifier cannot appear in more than one enumerated type
definition.

• The identifiers you use can’t be used again for variable names
I couldn’t have a month_t type january and a variable january

• Relational, assignment, and even arithmetic operators can be
used, just as with other integers.

• C provides no range checking to verify that the value stored in
an enumerated type variable is valid.

n_month = december + 3; won’t cause any run-time error
even though it is clearly invalid.

