
1

1

CS 201
Structure & Union

Debzani Deb

2

Structures in C
• In C, we can create our own, complex data types.
• This is very convenient for modeling real-life objects by

defining our own data types that represent structured
collections of data pertaining to particular objects.

• int, double, char are types of variables defined in C. by using
structures, you can create your own types – a nice way to
extend your programming languages.

• Unlike array, a structure can have individual components that
contain data of different types.

• Each of these data items is stored in a separate component of
the structure and can be referred by using the component
name.

3

Defining structure using struct

include <stdio.h>
struct line {

int x1, y1; // Coordinates of one endpoint of a line
int x2, y2; // Coordinates of other endpoint of a line

};
int main() {

struct line line1;
}
• Variables may also be declared in the structure definition.
struct line {

int x1, y1, x2, y2;
} line1, line2;

This defines the variable line1
to be a variable of type line

Structure line has 4 Components of type int

4

Defining structure using typedef
• typedef allows us to associate a name with a

structure. (where else we saw typedef ?)
typedef struct {

int x1, y1; // Coordinates of one endpoint of a line
int x2, y2; // Coordinates of other endpoint of a line

} line_t;

int main() {
line_t line1;

}
• The typedef statement itself allocates no memory.
• A variable declaration is required to allocate storage

space for a structured data object.

line1 is now a variable of type line_t.

5

Accessing components of a structure
• To access a component of a structure, we can use the direct

component selection operator, which is a dot/period.
int main() {

line_t line1;
line1.x1 = 3;
line1.y1 = 5;
if(line1.y2 == 3) {

printf(“Y co-ord of end is 3\n”);
}

}
• Direct component selection operator has the highest

precedence. See table 11.1 in the text for the operator
precedence.

6

Assigning values to the components of a
structure (from text)

typedef struct {

char name[10];

double diameter;

int moons;

double orbit_time,

retation_time;

} planet_t;

2

7

Using Structures
• Structures can contain any C type, including arrays,

pointers or even other structures as components.
• Initialization of structures: (similar to arrays)

line_t line1 = {3, 5, 6, 7};
• Assignment of entire structures:

line2 = line1; // assign to each component of line2 a value of
// the corresponding component of line1.

Although C permits copying of entire structure, the equality
and inequality operator can not be applied to a structured
type as a unit.
if (line1 == line2) // Invalid

Also you can’t use structures as argument to printf and
scanf statement.

8

Structures as Input parameter
• We can pass structure as input argument to a function.
• We have to make sure that the function prototype is introduced

to compiler after the structure is declared.
typedef struct {

char name[10];
double diameter;
int moons;
double orbit_time,
retation_time;

} planet_t;

void print_planet (planet_t p1);

int main() {
…
print_planet(current_planet);
…

}

current_planet is passed as input
argument and all the component values
of current_planet are copied to
corresponding formal parameter p1
in function print_planet.

9

Structure as output parameter
• Structures may contain large amount of data.
• If a function needs to modify the content of a structure

Use pointers to pass address of the structure to functions instead of
passing the structure by value. Example,

status = scan_planet(¤t_planet); // Statement in function main

10

Figure 11.5 Data Areas of main and scan_planet
during Execution of status = scan_planet

(¤t_planet);

11

Few notes about structure
• Simple structure declaration

Syntax: structName varName; Example, planet_p p1;
• A pointer to a structure

Syntax: structName * ptrName; Example: planet_p * p1_ptr;
• Accessing a component of a structure

Syntax: varName.componentname; Example: p1.name
• Accessing a component of a pointer to a structure

Syntax: (*ptrName).componentname;
Example: (*p1_ptr).name /* The brackets are important cause “.” has

higher priority than “*” */
• Indirect component selection operator

C provides a single operator that combines the function of the indirection
(pointer dereference) and component selection operator.
For a pointer to a structure, a component can be accessed by using
indirection operator “->”
Syntax: ptrName -> componentName; Example: p1_ptr -> name;

12

Structure as return type of a function
• So far, we have seen that the structures are treated mostly like C’s

simple data types (int, char etc.). One exception though (Anybody?)
• Comparatively, C’s processing of array differs a lot from its handling

of simple data types. For example, array can’t be returned as a
function result.

• However, we can return structure as the function result. Returning a
structure from a function means returning the values of all
components.

3

13

Structures as components of structures (1)

Structures can contain other structures as members.
Example: Employee data base
typedef struct {

char dept_name[25];
int dept_no;

} department_t;

typedef struct {
char name[25];
int employee_id;
department_t dept;
address_t * add_ptr;
double salary;

} emp_data_t;

Member structures must be
defined beforehand, since the
compiler must know their size.

The size of a pointer to a structure
is just the size of the memory
address and therefore is known.
So struct address_t can be defined
Later.

14

Structures as components of structures (2)
• Send structure emp1 as input

argument, modify it and then
return the modified structure to
the calling routine.

e = update1(emp1); // in main
…
emp_data_t update1(emp_data_t emp)
{

printf(“Enter department number: “);
scanf(“%d”, &n);
emp.dept.dept_no = n;
…
return emp;

}
• Involves lots of copying of

structure components to and
from the function.

• Passing a pointer to a structure
is more efficient.

update2 (&emp1); // in main
…
void update2 (emp_data_t *p)
{

printf(“Enter department number: “);
scanf(“%d”, &n);
p ->dept.dept_no = n;
…

}
• Use -> instead of . to access

components of the structure,
because p is a pointer to a
structure.

15

Array of Structures

typedef struct {

int id;

double gpa;

} student_t;

student_t stulist[50];

Accessing array elements

for (i = 0; i < 50; i++)

printf (“%d\n”, stulist[i].id);

16

Self-referencing Structures
• Structures may contain pointers to variables of their own type

(recursive declaration).
struct list {

int data;
struct list *next;

} a, b, c, d;
• This may look initially strange, but in real life it is a very very

useful construction.
• By using self-referencing structures, variables of that structure

type may be linked as follows

data
*next

a
data
*next

b
data
*next

c
data
*next

d

17

Union (1)

• C provides a data structure called union to deal with
situations in which a data object can be interpreted an
a variety of ways.

• Like structure, union is a derived data type. On the
other hand, union allows its components to share the
same storage.

• Example
typedef union {

int i;
float f;

} int_or_float;
int_or_float a, b, c, d;

18

Union (2)
• Union provides a space in memory that can be interpreted in

multiple ways.
union i_or_c {

int i;
char ch[4];

} n1, n2;
• You can access n1 and n2 as either as an int or a char[].

n1.i = 10; n2.ch[1] = ‘g’;
• Memory of a union is allocated according to the largest

interpretation.
max(sizeof(int), 4*sizeof(char))

• Union can help you save space in memory – allocate one space
in memory and use it in multiple ways.

4

19

Union (3)
• Unions are useful only if it is possible to determine within the

program which interpretation is currently the valid
interpretation.

• Unions are mostly used as component of a larger structure, and
the larger structure typically contains another component that
determines which interpretation of the union is correct at the
present time.

typedef union {
int wear_wig;
char color[10];

} hair_t;

typedef struct {
int bald;
hair_t h;

} hair_info_t;

0 ? ? ? ? ? ? ? ?

r e d d i s h \0 ?

?

?

h.wear_wig

h.color

Two interpretations of union h

20

Two interpretation of parameter hair

Referencing the appropriate union component is programmer’s responsibility.

21

struct Summary
• struct is a simple tool – combines simpler

types into one larger type.
• Powerful for all sort of uses – used throughout

C programs and operating systems.
• It makes modeling the real-life scenario easier.
• FILE * is a typedef’d struct, but you can use it

without knowing what’s inside it.
• You can extend the language by defining your

own types.

22

union Summary

• Pros
Very tight memory allocation
Kind of polymorphism for types
Useful for maintaining memory that can be interpreted in
multiple ways

• Cons
You have to be careful with interpretation since types are
very different at lower level.
Can make code very confusing if used without enough
documentation or improperly.

23

structs with union

• The program in the next three slides creates a
union status and makes it a component of
struct personal which is, in turn becomes a
component of struct identity.

• The union uses the same storage space for
either component rank (int) or deg (char
string) depending on the answer to the user
prompt for student status in function main.

24

structs with union(cont.)
union status {

int rank;

char deg[4];

} ;

struct personal {

long id;

float gpa;

union status level;

} ;

struct identity {
char name[30];
struct personal student;

} ;

5

25

structs with union (cont.)
int main() {

struct identity jb = {“Joe Brown”}, *ptr = &jb;
char u_g;
jb.student.id = 123456;
jb.student.gpa = 3.4;

printf (“Enter Student Status – u or g\n”);
scanf (“%c”, &u_g);
if (u_g == ‘u’) {

printf (“Enter rank – 1, 2, 3, 4 or 5\n”);
scanf (“%d”, &jb.student.level.rank);
printf (“%s is level %d\n”, jb.name, jb.student.level.rank);

} /* end of if

26

structs with union (cont.)
else {

printf (“Enter degree sought – ms or phd\n”);
scanf (“%s”, &jb.student.level.deg);
printf (“%s is a %s candidate\n”, jb.name,
jb.student.level.deg);

} /* end of else

printf (“%s %d %f\n”, jb.name, jb.student.id, jb.student.gpa);
printf (“%s %d %f\n”, ptr->name,

ptr->student.id,
ptr->student.gpa);

return 0;
} // end of main

