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CS 201
Structure & Union
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Structures in C
• In C, we can create our own, complex data types.
• This is very convenient for modeling real-life objects by 

defining our own data types that represent structured 
collections of data pertaining to particular objects. 

• int, double, char are types of variables defined in C. by using 
structures, you can create your own types – a nice way to 
extend your programming languages.

• Unlike array, a structure can have individual components that 
contain data of different types.

• Each of these data items is stored in a separate component of 
the structure and can be referred by using the component 
name.  
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Defining structure using struct

# include <stdio.h>
struct line {

int x1, y1; // Coordinates of one endpoint of a line 
int x2, y2; // Coordinates of other endpoint of a line 

};
int main() {

struct line line1;
}
• Variables may also be declared in the structure definition.
struct line {

int x1, y1, x2, y2;
} line1, line2;

This defines the variable line1
to be a variable of type line

Structure line has 4 Components of type int
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Defining structure using typedef
• typedef allows us to associate a name with a 

structure. (where else we saw typedef ?)
typedef struct {

int x1, y1; // Coordinates of one endpoint of a line 
int x2, y2; // Coordinates of other endpoint of a line 

} line_t;

int main() {
line_t line1;

}
• The typedef statement itself allocates no memory.
• A variable declaration is required to allocate storage 

space for a structured data object.

line1 is now a variable of type line_t.
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Accessing components of a structure
• To access a component of a structure, we can use the direct 

component selection operator, which is a dot/period.
int main() {

line_t line1;
line1.x1 = 3; 
line1.y1 = 5; 
if(line1.y2 == 3) {

printf(“Y co-ord of end is 3\n”);
}

}
• Direct component selection operator has the highest 

precedence. See table 11.1 in the text for the operator 
precedence.
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Assigning values to the components of a 
structure (from text)

typedef struct {

char name[10];

double diameter;

int moons;

double orbit_time,               

retation_time;

} planet_t;



2

7

Using Structures
• Structures can contain any C type, including arrays, 

pointers or even other structures as components.
• Initialization of structures: (similar to arrays)

line_t line1 = {3, 5, 6, 7};
• Assignment of entire structures: 

line2 = line1; // assign to each component of line2 a value of 
// the corresponding component of line1. 

Although C permits copying of entire structure, the equality 
and inequality operator can not be applied to a structured 
type as a unit.
if (line1 == line2) // Invalid

Also you can’t use structures as argument to printf and 
scanf statement.
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Structures as Input parameter
• We can pass structure as input argument to a function. 
• We have to make sure that the function prototype is introduced 

to compiler after the structure is declared.
typedef struct {

char name[10];
double diameter;
int moons;
double orbit_time,               
retation_time;

} planet_t;

void print_planet (planet_t p1);

int main() {
…
print_planet(current_planet);
…

}

current_planet is passed as input 
argument and all the component values 
of current_planet are copied to 
corresponding formal parameter p1
in function print_planet. 
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Structure as output parameter
• Structures may contain large amount of data. 
• If a function needs to modify the content of a structure

Use pointers to pass address of the structure to functions instead of 
passing the structure by value. Example,

status = scan_planet(&current_planet); // Statement in function main
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Figure 11.5 Data Areas of main and scan_planet 
during Execution of status = scan_planet 

(&current_planet);
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Few notes about structure
• Simple structure declaration

Syntax: structName varName; Example, planet_p p1;
• A pointer to a structure

Syntax: structName * ptrName; Example: planet_p * p1_ptr;
• Accessing a component of a structure

Syntax: varName.componentname; Example: p1.name
• Accessing a component of a pointer to a structure

Syntax: (*ptrName).componentname; 
Example: (*p1_ptr).name  /* The brackets are important cause “.” has 

higher priority than “*” */
• Indirect component selection operator

C provides a single operator that combines the function of the indirection 
(pointer dereference) and component selection operator.
For a pointer to a structure, a component can be accessed by using 
indirection operator “->”
Syntax: ptrName -> componentName; Example: p1_ptr -> name;  
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Structure as return type of a function
• So far, we have seen that the structures are treated mostly like C’s 

simple data types (int, char etc.). One exception though (Anybody?)
• Comparatively, C’s processing of array differs a lot from its handling 

of simple data types. For example, array can’t be returned as a 
function result.

• However, we can return structure as the function result. Returning a 
structure from a function means returning the values of all 
components.
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Structures as components of structures (1)

Structures can contain other structures as members.
Example: Employee data base
typedef struct {

char dept_name[25];
int dept_no;

} department_t;

typedef struct {
char name[25];
int employee_id;
department_t dept;
address_t * add_ptr;
double salary;

} emp_data_t;

Member structures must be
defined beforehand, since the 
compiler must know their size.

The size of a pointer to a structure
is just the size of the memory
address and therefore is known.
So struct address_t can be defined 
Later.
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Structures as components of structures (2)
• Send structure emp1 as input 

argument, modify it and then 
return the modified structure to 
the calling routine.

e = update1(emp1); // in main
…
emp_data_t update1(emp_data_t emp)
{

printf(“Enter department number: “);
scanf(“%d”, &n);
emp.dept.dept_no = n;
…
return emp;

}
• Involves lots of copying of 

structure components to and 
from the function.

• Passing a pointer to a structure 
is more efficient.

update2 (&emp1); // in main
…
void update2 (emp_data_t *p)
{

printf(“Enter department number: “);
scanf(“%d”, &n);
p ->dept.dept_no = n;
…

}
• Use -> instead of . to access 

components of the structure, 
because p is a pointer to a 
structure.
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Array of Structures

typedef struct {

int id;

double gpa;

} student_t;

student_t stulist[50]; 

Accessing array elements

for (i = 0; i < 50; i++)

printf (“%d\n”, stulist[i].id);
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Self-referencing Structures
• Structures may contain pointers to variables of their own type 

(recursive declaration).
struct list {

int data;
struct list *next;

} a, b, c, d;
• This may look initially strange, but in real life it is a very very

useful construction.
• By using self-referencing structures, variables of that structure 

type may be linked as follows

data
*next

a
data
*next

b
data
*next

c
data
*next

d
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Union (1)

• C provides a data structure called union to deal with 
situations in which a data object can be interpreted an 
a variety of ways.

• Like structure, union is a derived data type. On the 
other hand, union allows its components to share the 
same storage.

• Example
typedef union {

int i;
float f;

} int_or_float;
int_or_float a, b, c, d; 
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Union (2)
• Union provides a space in memory that can be interpreted in 

multiple ways.
union i_or_c {

int i;
char ch[4];

} n1, n2;
• You can access n1 and n2 as either as an int or a char[].

n1.i = 10; n2.ch[1] = ‘g’;
• Memory of a union is allocated according to the largest 

interpretation.
max(sizeof(int), 4*sizeof(char))

• Union can help you save space in memory – allocate one space 
in memory and use it in multiple ways.
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Union (3)
• Unions are useful only if it is possible to determine within the

program which interpretation is currently the valid 
interpretation.

• Unions are mostly used as component of a larger structure, and 
the larger structure typically contains another component that 
determines which interpretation of the union is correct at the 
present time.

typedef union {
int wear_wig;
char color[10];

} hair_t;

typedef struct {
int bald;
hair_t h;

} hair_info_t;

0 ? ? ? ? ? ? ? ?

r e d d i s h \0 ?

?

?

h.wear_wig

h.color

Two interpretations of union h

20

Two interpretation of parameter hair

Referencing the appropriate union component is programmer’s responsibility.
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struct Summary
• struct is a simple tool – combines simpler 

types into one larger type.
• Powerful for all sort of uses – used throughout 

C programs and operating systems.
• It makes modeling the real-life scenario easier.
• FILE * is a typedef’d struct, but you can use it 

without knowing what’s inside it. 
• You can extend the language by defining your 

own types.
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union Summary

• Pros
Very tight memory allocation
Kind of polymorphism for types
Useful for maintaining memory that can be interpreted in 
multiple ways

• Cons
You have to be careful with interpretation since types are 
very different at lower level.
Can make code very confusing if used without enough 
documentation or improperly.
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structs with union

• The program in the next three slides creates a 
union status and makes it a component of 
struct personal which is, in turn becomes a 
component of struct identity.

• The union uses the same storage space for 
either component rank (int) or deg (char 
string) depending on the answer to the user 
prompt for student status in function main. 
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structs with union(cont.)
union status {

int rank;

char deg[4];

} ;

struct personal {

long id;

float gpa;

union status level;

} ;

struct identity {
char name[30];
struct personal student;

} ;
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structs with union (cont.)
int main() {

struct identity jb = {“Joe Brown”}, *ptr = &jb;
char u_g;
jb.student.id = 123456;
jb.student.gpa = 3.4;

printf (“Enter Student Status – u or g\n”);
scanf (“%c”, &u_g);
if (u_g == ‘u’) {

printf (“Enter rank – 1, 2, 3, 4 or 5\n”);
scanf (“%d”, &jb.student.level.rank);
printf (“%s is level %d\n”, jb.name, jb.student.level.rank);

} /* end of if
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structs with union (cont.)
else {

printf (“Enter degree sought – ms or phd\n”);
scanf (“%s”, &jb.student.level.deg);
printf (“%s is a %s candidate\n”, jb.name, 
jb.student.level.deg);

} /* end of else

printf (“%s  %d  %f\n”, jb.name, jb.student.id, jb.student.gpa);
printf (“%s  %d  %f\n”, ptr->name, 

ptr->student.id, 
ptr->student.gpa);

return 0;
} // end of main


