Sound

Digital Multimedia, 2nd edition
Nigel Chapman & Jenny Chapman
Chapter 9

This presentation © 2004, MacAvon Media Productions
The Nature of Sound

- Conversion of energy into vibrations in the air (or some other elastic medium)
- Most sound sources vibrate in complex ways leading to sounds with components at several different frequencies
- *Frequency spectrum* – relative amplitudes of the frequency components
- Range of human hearing: roughly 20Hz–20kHz, falling off with age
Waveforms

• Sounds change over time
 • e.g. musical note has attack and decay, speech changes constantly

• Frequency spectrum alters as sound changes

• Waveform is a plot of amplitude against time
 • Provides a graphical view of characteristics of a changing sound
 • Can identify syllables of speech, rhythm of music, quiet and loud passages, etc
Digitization – Sampling

• Sampling Theorem implies minimum rate of 40kHz to reproduce sound up to limit of hearing

• CD: 44.1kHz

 • Sub-multiples often used for low bandwidth – e.g. 22.05kHz for Internet audio

• DAT: 48kHz

 (Hence mixing sounds from CD and DAT will require some resampling, best avoided)
Digitization – Quantization

- 16 bits, 65536 quantization levels, CD quality
- 8 bits: audible quantization noise, can only use if some distortion is acceptable, e.g. voice communication
- Dithering – introduce small amount of random noise before sampling
 - Noise causes samples to alternate rapidly between quantization levels, effectively smoothing sharp transitions
Undersampling & Dithering
Data Size

• Sampling rate r is the number of samples per second

• Sample size s bits

• Each second of digitized audio requires $rs/8$ bytes

• CD quality: $r = 44100$, $s = 16$, hence each second requires just over 86 kbytes ($k=1024$), each minute roughly 5Mbytes (mono)
Clipping

• If recording level is set too high, signal amplitude will exceed maximum that can be recorded, leading to unpleasant distortion

• But if level is set too low, dynamic range will be restricted
Sound Editing

- Timeline divided into *tracks*
- Sound on each track displayed as a waveform
- 'Scrub' over part of a track e.g. to find pauses
- Cut and paste, drag and drop
- May combine many tracks from different recordings (mix-down)
Effects and Filters

- Noise gate
- Low pass and high pass filters
- Notch filter
- De-esser
- Click repairer
- Reverb
- Graphic equalizer
- Envelope Shaping
- Pitch alteration and time stretching
- etc
Compression

• In general, lossy methods required because of complex and unpredictable nature of audio data

• CD quality, stereo, 3-minute song requires over 25 Mbytes

• Data rate exceeds bandwidth of dial-up Internet connection

• Difference in the way we perceive sound and image means different approach from image compression is needed
Companding

- Non-linear quantization
- Higher quantization levels spaced further apart than lower ones
- Quiet sounds represented in greater detail than loud ones
- µ-law, A-law
ADPCM

- Differential Pulse Code Modulation
 - Similar to video inter-frame compression
 - Compute a predicted value for next sample, store the difference between prediction and actual value

- *Adaptive* Differential Pulse Code Modulation
 - Dynamically vary step size used to store quantized differences
Perceptually-Based Compression

- Identify and discard data that doesn't affect the perception of the signal
- Needs a *psycho-acoustical model*, since ear and brain do not respond to sound waves in a simple way
 - *Threshold of hearing* – sounds too quiet to hear
 - *Masking* – sound obscured by some other sound
The Threshold of Hearing
Masking

![Graph showing sound pressure level against frequency, highlighting a masking tone.](diagram.png)
Compression Algorithm

- Split signal into bands of frequencies using filters
 - Commonly use 32 bands
- Compute *masking level* for each band, based on its average value and a psycho-acoustical model
 - i.e. approximate masking curve by a single value for each band
- Discard signal if it is below masking level
- Otherwise quantize using the minimum number of bits that will mask quantization noise
MP3

- **MPEG Audio, Layer 3**
- Three *layers* of audio compression in MPEG-1 (MPEG-2 essentially identical)
- Layer 1 → Layer 3, encoding process increases in complexity, data rate for same quality decreases
 - e.g. Same quality 192kbps at Layer 1, 128kbps at Layer 2, 64kbps at Layer 3
- 10:1 compression ratio at high quality
- Variable bit rate coding (VBR)
AAC

- Advanced Audio Coding
- Defined in MPEG-2 standard, extended and incorporated into MPEG-4
- Not backward compatible with earlier standards
- Higher compression ratios and lower bit rates than MP3
- Subjectively better quality than MP3 at the same bit rate
Audio Formats

- Platform-specific file formats
 - AIFF, WAV, AU
- Multimedia formats used as 'container formats' for sound compressed with different codecs
 - QuickTime, Windows Media, RealAudio
- MP3 has its own file format, but MP3 data can be included as audio tracks in QuickTime movies and SWFs
MIDI

• *Musical Instruments Digital Interface*

• Instructions about how to produce music, which can be interpreted by suitable hardware and/or software

 • cf. vector graphics as drawing instructions

• Standard protocol for communicating between electronic instruments (synthesizers, samplers, drum machines)

• Allows instruments to be controlled by hardware or software *sequencers*
MIDI and Computers

- MIDI interface allows computer to send MIDI data to instruments
- Store MIDI sequences in files, exchange them between computers, incorporate into multimedia
- Computer can synthesize sounds on a sound card, or play back samples from disk in response to MIDI instructions
- Computer becomes primitive musical instrument (quality of sound inferior to dedicated instruments)
MIDI Messages

• Instructions that control some aspect of the performance of an instrument

• *Status byte* – indicates type of message

• 2 *data bytes* – values of parameters
 • e.g. Note On + note number (0..127) + key velocity

• Running status – omit status byte if it is the same as preceding one
General MIDI

- Synths and samplers provide a variety of voices
- MIDI Program Change message selects a new voice, but mapping from values to voices is not defined in the MIDI standard
- General MIDI (addendum to standard) specifies 128 standard voices for Program Change values
 - Actually GM specifies voice names, no guarantee that identical sounds will be produced on different instruments