
XML.com: A Web Services Primer Page 1 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

 Published on XML.com http://www.xml.com/pub/a/2001/04/04/webservices/index.html

See this if you're having trouble printing code examples

A Web Services Primer
By Venu Vasudevan

Introduction

Looking back over the last six years, it is hard to imagine networked
computing without the Web. The reason why the Web succeeded
where earlier hypertext schemes failed can be traced to a couple of
basic factors: simplicity and ubiquity. From a service provider's (e.g.
an e-shop) point of view, if they can set up a web site they can join
the global community. From a client's point of view, if you can type,
you can access services. From a service API point of view, the
majority of the web's work is done by 3 methods (GET, POST, and PUT)
and a simple markup language. The web services movement is about the fact that the advantages of
the Web as a platform apply not only to information but to services.

By "services", I don't mean monolithic coarse-grained services like Amazon.com, but, rather,
component services that others might use to build bigger services. Microsoft's Passport, for
instance, offers an authentication function exported on the Web. So hypothetically, an electronic
newspaper like the Washington Post can avoid creating its own user authentication service,
delegating it to Passport.

Oracle's dynamic services whitepaper provides other examples of component services that are
reusable building blocks: currency conversion, language translation, shipping, and claims
processing, A more formal definition of a web service may be borrowed from IBM's tutorial on
the topic.

Web services are a new breed of Web application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked across
the Web. Web services perform functions, which can be anything from simple
requests to complicated business processes...Once a Web service is deployed, other
applications (and other Web services) can discover and invoke the deployed service.

IBM's web services tutorial goes on to say that the notion of a web service would have been too
inefficient to be interesting a few years ago. But the trends like cheaper bandwidth and storage,
more dynamic content, the pervasiveness and diversity of computing devices with different access
platforms make the need for a glue more important, while at the same time making the costs
(bandwidth and storage) less objectionable.

Why bother with the Web, you say, when I've got my favorite middleware platform (RMI, Jini,
CORBA, DCOM etc.)? While middleware platforms provide great implementation vehicles for
services, none of them is a clear winner. The strengths of the Web as an information distributor,
namely simplicity of access and ubiquity, are important in resolving the fragmented middleware

Table of Contents

•The Web Services
Platform
•SOAP
•UDDI
•XLANG
•XAML
•XKMS
•XFS

XML.com: A Web Services Primer Page 2 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

world where interoperability is hard to come by. The Web complements these platforms by
providing a uniform and widely accessible interface and access glue over services that are more
efficiently implemented in a traditional middleware platform.

Viewed from an n-tier application architecture perspective, the web service is a veneer for
programmatic access to a service which is then implemented by other kinds of middleware. Access
consists of service-agnostic request handling (a listener) and a facade that exposes the operations
supported by the business logic. The logic itself is implemented by a traditional middleware
platform.

Generic Web Service Architecture

The Web Services Platform

So what is the web service platform? The basic platform is XML plus HTTP. HTTP is a ubiquitous
protocol, running practically everywhere on the Internet. XML provides a metalanguage in which
you can write specialized languages to express complex interactions between clients and services
or between components of a composite service. Behind the facade of a web server, the XML
message gets converted to a middleware request and the results converted back to XML.

Wait a minute, you say, access and invocation are only the bare bones, that would be like saying
CORBA is only IDL plus remote procedure calls. What about the platform support services --
discovery, transactions, security, authentication and so on -- the usual raft of services that make a
platform a platform? That's where you step up to the next level.

The Web needs to be augmented with a few other platform services, which maintain the ubiquity
and simplicity of the Web, to constitute a more functional platform. The full-function web services
platform can be thought of as XML plus HTTP plus SOAP plus WSDL plus UDDI. At higher
levels, one might also add technologies such as XAML, XLANG, XKMS, and XFS -- services that
are not universally accepted as mandatory.

Below is a brief description of the platform elements. It should be noted that while vendors try to
present the emergent web services platform as coherent, it's really a series of in-development
technologies. Often at the higher levels there are, and may remain, multiple approaches to the same
problem.

? SOAP (remote invocation)
? UDDI (trader, directory service)

XML.com: A Web Services Primer Page 3 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

? WSDL (expression of service characteristics)
? XLANG/XAML (transactional support for complex web transactions involving multiple web

services)
? XKMS (XML Key Management Specification) - ongoing work by Microsoft and Verisign to

support authentication and registration

SOAP

SOAP is a protocol specification that defines a uniform way of passing XML-encoded data. In also
defines a way to perform remote procedure calls (RPCs) using HTTP as the underlying
communication protocol.

SOAP arises from the realization that no matter how nifty the current middleware offerings are,
they need a WAN wrapper. Architecturally, sending messages as plain XML has advantages in
terms of ensuring interoperability (and debugging, as I can well attest). The middleware players
seem willing to put up with the costs of parsing and serializing XML in order to scale their
approach to wider networks.

Submitted in 2000 to the W3C as a Note by IBM, Microsoft, UserLand, and DevelopMentor, the
further development of SOAP is now in the care of the W3C's XML Protocols Working Group.
This effectively means that SOAP is frozen and stable until such time as the W3C Working Group
delivers a specification.

See also Don Box's Brief History of SOAP.

UDDI (Universal Description, Discovery and Integration Service)

UDDI provides a mechanism for clients to dynamically find other web services. Using a UDDI
interface, businesses can dynamically connect to services provided by external business partners. A
UDDI registry is similar to a CORBA trader, or it can be thought of as a DNS service for business
applications. A UDDI registry has two kinds of clients: businesses that want to publish a service
(and its usage interfaces), and clients who want to obtain services of a certain kind and bind
programmatically to them. The table below is an overview of what UDDI provides. UDDI is
layered over SOAP and assumes that requests and responses are UDDI objects sent around as
SOAP messages. A sample query is included below.

Information Operations Detailed information (supported by lower-
level API)

White pages: Information
such as the name, address,
telephone number, and
other contact information of
a given business

Publish: How the
provider of a Web
service registers itself.

Business information: Contained in a
BusinessEntity object, which in turn
contains information about services,
categories, contacts, URLs, and other
things necessary to interact with a given
business.

Yellow pages: Information
that categorizes businesses.
This is based on existing
(non-electronic) standards

Find: How an
application finds a
particular Web service.

Service information: Describes a group of
Web services. These are contained in a
BusinessService object

XML.com: A Web Services Primer Page 4 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

There is no near-term plan in UDDI to support full-featured discovery (e.g. geography-limited
searches or bidding and contract negotiation supported by vendors like eLance). UDDI expects to
be the basis for higher level services supported by some other standard. There are plans for UDDI
to support more complex business logic, including support for hierarchical business organizations.
UDDI has fairly broad support; IBM, Ariba, and Microsoft are driving it. It's not yet an open
standard.

UDDI Example

Query: The following query, when placed inside the body of the SOAP envelope, returns details on
Microsoft.

<find_business generic="1.0" xmlns="urn:uddi-org:api">
 <name>Microsoft</name>
</find_business>

Result: detailed listing of <businessInfo> elements currently registered for Microsoft, which
includes information about the UDDI service itself.

 <businessList generic="1.0"
 operator="Microsoft Corporation"
 truncated="false"
 xmlns="urn:uddi-org:api">
 <businessInfos>
 <businessInfo
 businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3">
 <name>Microsoft Corporation</name>
 <description xml:lang="en">
 Empowering people through great software -
 any time, any place and on any device is Microsoft's
 vision. As the worldwide leader in software for personal
 and business computing, we strive to produce innovative
 products and services that meet our customer's
 </description>
 <serviceInfos>
 <serviceInfo
 businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
 serviceKey="1FFE1F71-2AF3-45FB-B788-09AF7FF151A4">
 <name>Web services for smart searching</name>
 </serviceInfo>
 <serviceInfo
 businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
 serviceKey="8BF2F51F-8ED4-43FE-B665-38D8205D1333">
 <name>Electronic Business Integration Services</name>
 </serviceInfo>
 <serviceInfo

Green pages: Technical
information about the Web
services provided by a
given business.

Bind: How an
application connects
to, and interacts with,
a Web service after it's
been found

Binding information: The technical details
necessary to invoke a Web service. This
includes URLs, information about method
names, argument types, and so on. The
BindingTemplate object represents this
data.

Service Specification Detail: This is
metadata about the various specifications
implemented by a given Web service. These
are called tModels in the UDDI
specification

XML.com: A Web Services Primer Page 5 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

 businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
 serviceKey="611C5867-384E-4FFD-B49C-28F93A7B4F9B">
 <name>Volume Licensing Select Program</name>
 </serviceInfo>
 <serviceInfo
 businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
 serviceKey="A8E4999A-21A3-47FA-802E-EE50A88B266F">
 <name>UDDI Web Sites</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 </businessInfos>
 </businessList>

by Venu Vasudevan

WSDL (Web Services Definition Language)

WSDL provides a way for service providers to describe the basic format of web service requests
over different protocols or encodings. WSDL is used to describe what a web service can do, where
it resides, and how to invoke it. While the claim of SOAP/HTTP independence is made in various
specifications, WSDL makes the most sense if it assumes SOAP/HTTP/MIME as the remote
object invocation mechanism. UDDI registries describe numerous aspects of web services,
including the binding details of the service. WSDL fits into the subset of a UDDI service
description.

WSDL defines services as collections of network endpoints or ports. In WSDL the abstract
definition of endpoints and messages is separated from their concrete network deployment or data
format bindings. This allows the reuse of abstract definitions of messages, which are abstract
descriptions of the data being exchanged, and port types, which are abstract collections of
operations. The concrete protocol and data format specifications for a particular port type
constitute a reusable binding. A port is defined by associating a network address with a reusable
binding; a collection of ports define a service. And, thus, a WSDL document uses the following
elements in the definition of network services:

? Types -- a container for data type definitions using some type system (such as
XSD).

? Message -- an abstract, typed definition of the data being communicated.
? Operation -- an abstract description of an action supported by the service.
? Port Type -- an abstract set of operations supported by one or more endpoints.
? Binding -- a concrete protocol and data format specification for a particular port

type.
? Port -- a single endpoint defined as a combination of a binding and a network

address.
? Service -- a collection of related endpoints.

So, in plain English, WSDL is a template for how services should be described and bound by
clients.

In what follows, I've described a stock quote service advertisement and a sample request/response
pair for the service, which seeks the current quote on Motorola (ticker: MOT).

Service Advertisement

XML.com: A Web Services Primer Page 6 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/1999/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>
 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePriceResult"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding"
 type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation
 soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"
 namespace="http://example.com/stockquote.xsd"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://example.com/stockquote.xsd"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>

XML.com: A Web Services Primer Page 7 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

 </service>

 </definitions>

 <binding name="StockQuoteServiceBinding"
 type="StockQuoteServiceType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getQuote">
 <soap:operation
 soapAction="http://www.getquote.com/GetQuote"/>
 <input>
 <soap:body type="InMessageRequest"
 namespace="urn:live-stock-quotes"
 encoding="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body type="OutMessageResponse"
 encoding="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service
 </documentation>
 <port name="StockQuotePort"
 binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>
</definitions>

A SOAP enveloped request to the StockQuote service

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice
 xmlns:m="Some-URI">
 <symbol>MOT</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A SOAP enveloped response to the StockQuote service

HTTP/1.1 200 OK Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse
 xmlns:m="Some-URI">
 <Price>14.5</Price>
 </m:GetLastTradePriceResponse>

XML.com: A Web Services Primer Page 8 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

by Venu Vasudevan

XLANG

The traditional notion of a database transaction is an atomic, that is, all-or-none action; either the
entire action happens or it doesn't. Providing this kind of guarantee in a distributed infrastructure
involves an expensive process called two-phase commit. An alternative optimistic model has been
proposed in database research (originally called sagas and proposed by Hector Garcia-Molina),
where actions have explicit compensatory actions which negate the effect of the action. In the real
world of actions, the existence of compensatory actions is quite common. For instance if I debit a
credit card $52, the compensatory action is to credit the credit card $52. If I sent out an e-mail
saying "you'll get the product you ordered in seven days", the compensatory action is to send an e-
mail saying, "oops, it's going to take longer". XLang is a notation for expressing the compensatory
actions for any request that needs to be undone. The web services infrastructure can leverage
XLang specifications to perform complex undo operations.

XAML

Transaction Authority Markup Language (XAML) provides a more traditional two-phase commit
style transactional semantics over web services. A business-to-business web transaction to
purchase benzene follows -- a working example from the XAML specification. XAML does not
completely restrict itself to two-phase commits, and it leaves open the possibility that some action
"undos" will be compensatory actions like XLang. While two-phase commit is clearly useful in
enterprise integration, a number of web transactions (e.g business-to-consumer transactions) are
well captured by the computationally cheaper compensatory action model. Until XAML makes
compensatory actions a first class citizen of their model, it would seem that XLang has ample
justification to exist.

Scenario

The following scenario demonstrates a business-level transaction involving a set of web services
that would utilize XAML. Consider an industrial company that purchases benzene from a chemical
manufacturer on the Web. In order for the buyer to purchase the benzene, she requires additional
value-added services provided by third parties, such as shipping with specific delivery terms,
payment financing, casualty insurance, and government compliance for safe transport. The buyer
will not agree to the purchase of benzene until all of these services are available, and until all of
them meet her requirements. She will purchase all of them or none of them. In other words, all of
these related requirements need to be satisfied in order for the business transaction to be
completed.

The software providing the top-level business transaction needs to coordinate with each of the
participating web services. These include (1) the chemical provider's inventory system; (2) an
insurance policy service to insure the product being shipped; (3) a financing service to ensure
payment according to vendor terms; (4) a transportation service to guarantee timely shipment and
delivery of product; and (5) a regulatory service to ensure compliance with government safety
requirements.

XKMS (XML Key Management Specification)

XML.com: A Web Services Primer Page 9 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

XKMS is an effort by Microsoft and Verisign to integrate PKI and digital certificates (which are
used for securing Internet transactions) with XML applications. The key idea is to delegate the
signature processing to a trust server on the Web, so that thin or mobile clients don't have to carry
around the smarts to do all this themselves. XKMS relies on the XML Signature specification
already being worked on by W3C and on anticipated work at W3C on an XML encryption
specification.

XKMS consists of two parts: the XML Key Information Service Specification (X-KISS) and the
XML Key Registration Service Specification (X-KRSS). The X-KISS specification defines a
protocol for a trust service that resolves public key information contained in XML-SIG elements.
The X-KISS protocol allows a client of such a service to delegate part or all of the tasks required
to process <ds:KeyInfo> elements (information about the key signer). A chief objective of the
protocol design is to minimize the complexity of application implementations by allowing them to
become clients, thereby shielded from the complexity and syntax of the underlying PKI used to
establish trust relationships. These may be based upon a different specification such as
X.509/PKIX, SPKI, or PGP. X-KRSS describes how public key information is registered.

While there are no inviolable ties in these proposals to protocols and transports, the current
XKMS specification relies on XML, SOAP, and WSDL.

Other initiatives in this area include S2ML (Security Services Markup Language) and AuthXML,
which are being unified under the auspices of OASIS's XML Security Services committee.

Other useful initiatives

The web services platform is an evolving ecosystem in which Darwinian processes are still at work.
As with all things Darwinian, there is constant evolution, bio-diversity, competition, and, yes, even
confusion. The list below is a small sample of such complementary or competing initiatives.

ADS (Advertisement and Discovery of Services Protocol)

Given the existence of UDDI registries, ADS asks the question "how do I facilitate the building of
a UDDI crawler that can pull UDDI advertisements off the Web, without people having to push
ads to the registry?" Furthermore, while ADS accepts WSDL as the XML format for a service, it
also wants to deal with discovering services that don't have the XML capabilities to build WSDL
descriptions. For the XML world, it standardizes on a svcsadvt.xml file placed in the root of a web
server, which then collectively advertises all the services available on that web site. This takes
away the burden on each service to advertise itself, and it provides service crawlers a single place
to look for advertisements. For the mom and pop e-shops of the world that want to advertise their
services without the XML overhead, ADS proposes an augmented HTML META tag with
name=<serviceDescriptionLocation >and content=<valid URL of document containing
service advertisements> . In case of HTML based service crawling, the crawler makes some
conclusions about the service properties based on the traversal context.

XFS

The XMethods filesystem service enables you to post and read files via a SOAP interface. This
system enables developers to create services that utilize centralized, persistent data. Ideally, this
type of filesystem can be used to centralize the storage of information which can be accessed by
multiple nodes. For example, one could use this space to support automatic patch updates. XFS
provides a client tool that integrates the XFS web service into a Windows Explorer shell. Windows
Explorer is then integrated with the XML-SOAP-based file system. XFS is an open-source

XML.com: A Web Services Primer Page 10 of 10

http://www.xml.com/lpt/a/2001/04/04/webservices/index.html 08/06/2001

initiative by xmethods.com, the momentum of which is unclear. However, the idea is technically
attractive.

Related Reading

? Web Services - The Web's next revolution
? A Platform for Web Services
? .Net has XML on its Menu
? Oracle9i Dynamic Services
? XLANG from Microsoft
? BEA touts support for Web services standards
? Introduction to XSI and XSD
? XKMS
? XMethods - lists publicly available web services and their SOAP access interfaces
? XML Trust Services
? SOAP Developer's Site
? ADS - The Advertisement and Discovery of Services (ADS) protocol for Web services
? ebXML
? UDDI4J: Matchmaking for Web Services
? IBM's Web Services Toolkit
? An introduction to WSDL for SOAP programmers
? W3C's XML protocols matrix
? Understanding ebXML, UDDI and XML/edi
? Jon Bosak's (Sun) vision of a service grid
? W3C mailing list discussion in response to Jon Bosak's comments on ebXML vs SOAP vs

UDDI
? XAML

Disclaimer: The opinions expressed herein are those of the author and do not necessarily reflect
the opinion, position, or stance of Motorola, Inc. with regard to this subject.

XML.com Copyright © 2000 O'Reilly & Associates, Inc.

