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Network Software 
Implementations

• Number of computers on the Internet doubling 
yearly since 1981, nearing 200 million

• Estimated that more than 600 million people use 
the Internet

• Number of bits transmitted over the Internet 
surpassed volume in voice phone network in 
2001

• Made possible by a good network architecture, 
plus an adaptable interface for new network 
applications
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OS Network APIs
• Application programs interface with an OS networking 

subsystem through an API
• Some of these APIs have become widely adopted

– Best example may be the socket interface introduced 
in Berkeley Unix 

– Implemented in many other operating systems, 
including most or all variants of Unix and Windows

– Widespread availability makes it easy to port 
applications between different OSes (at least the 
networking portion of the app)
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Protocols vs. APIs

• Each protocol supported by the OS 
provides a set of abstract services.

• The network API provides a syntax by 
which those services can be invoked.

• Desirable to choose a syntax that is 
applicable across different protocols
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The socket API

• The socket is the “point” where a local 
application process attaches to the network

• Some common operations provided by APIs 
(see /usr/include/sys/socket.h):
– Create a socket

• int socket( int domain, int type, int protocol)
• domain examples:  PF_INET, PF_UNIX, PF_PACKET
• type examples:  SOCK_STREAM, SOCK_DGRAM
• protocol examples:  PF_INET, PF_BLUETOOTH
• Returns a handle that refers to the socket, used on 

subsequent API calls
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The socket API (cont.)
– Open the socket (TCP, server side)

• int bind( int socket, struct sockaddr * address,
int addr_len )

Assigns a local address to the socket
• int listen( int socket, int backlog )

Indicates that the server is ready to accept connections on 
the socket; backlog indicates maximum number to buffer

• int accept( int socket, struct sockaddr * address,
int * addr_len )

Waits for a new connection request.  This returns a new 
socket that can be used to communicate with the client; the 
original socket can be used to continue to listen for new 
connections.  Client’s address is also returned
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Socket addresses
• Each socket is identified by an address that includes 

both the machine identifier and a demux key.
• struct sockaddr is actually a union of different socket 

address sub-structures, each with fields appropriate to 
the protocol
– For the Internet protocol family (PF_INET), the sockaddr_in

structure contains the IP address of the server, as four unsigned 
bytes, and a 16-bit port number that identifies the application.

– Ports can be well-known pre-assigned numbers (like port 80 for 
HTTP - see /etc/services for a list), chosen by agreement 
between the client and server, or can be chosen randomly and 
somehow communicated OOB.
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Client socket open
– Open the socket (TCP, client side)

• int connect( int socket, struct sockaddr * address,
int addr_len )

Opens the socket and connects it to the specified server 
address.  Blocks until connection established.

– Send data over the socket
• int send( int socket, char * msg, int msg_len,

int flags )

– Receive data from the socket
• int recv( int socket, char * buffer, int buf_len,

int flags)
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Example Application

• Implements a network-based talk (simple 
chat program)

• Client details
– Uses gethostbyname() to translate from a 

host name (i.e. esus.cs.montana.edu) to an IP 
address (i.e. 153.90.199.47).

– Uses a #defined constant port number – to 
use a well-known service, you can call 
getservbyname().
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Example Application (cont.)

• Server details
– Uses all zeroes for local IP address; causes 

OS to fill in value.
– Specifies same #defined constant for port
– After creating socket, binding address, and 

listening, it accepts a connection, reads data 
until the connection closes, then goes back to 
accept().

• Not a very good server design – why?
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Byte Ordering

• Notice calls in example app to htons()
– Abbreviation for “Host to Net Short”
– API also includes htonl(), ntohs(), and ntohl()
– Functions convert multi-byte numeric values 

between local byte order and network byte 
order (MSB first)

– On big-endian machines, these are just 
macros that return the input value

– Easy to forget, and hard to find errors!
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Protocol Implementation 
Issues

• Process models
– Process-per-protocol

• Conceptually simpler – isolates each protocol
– Process-per-message

• Better performance – fewer context switches

• Message buffering
– Copying messages between buffers can be a 

relatively costly operation
• Memory is still fairly slow compared to processor

– Many APIs include a buffer abstraction to avoid 
copying buffers
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Performance Measures
• Bandwidth (throughput) – measure of theoretical 

(practical) maximum data rate in units of 
bits/time (i.e. 10 Mbps for Ethernet)

• Latency (delay) – measure of end-to-end transit 
time
– One-way or round-trip
– Composed of propagation delay, time to transmit 

data, and queuing delays
– Latency = Propagation + Transmit + Queue

= distance/speed of light + size / bandwidth +
queue
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Response Time Graph
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Delay x Bandwidth Product

• Measure of the amount of data the link can 
hold
– One-way latency of 10 ms * bandwidth of 10 

Mbps = 100,000 bits, or 12,500 bytes
• Also measures how many bits source 

must send before first bit reaches sink
• Multiply by 2 if sender needs to hear from 

receiver (for round-trip time, RTT) –
number of bits “in flight”
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High-Speed Networks

• Bandwidth continues to increase rapidly
• Propagation delay is fixed, regardless of 

bandwidth
• The RTT becomes much more significant 

as the time to actually transmit the data 
(size / bandwidth) shrinks 
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