
Sep. 02, 2005 CS 440 Lecture Notes 1

Network Software 
Implementations

• Number of computers on the Internet doubling 
yearly since 1981, nearing 200 million

• Estimated that more than 600 million people use 
the Internet

• Number of bits transmitted over the Internet 
surpassed volume in voice phone network in 
2001

• Made possible by a good network architecture, 
plus an adaptable interface for new network 
applications



Sep. 02, 2005 CS 440 Lecture Notes 2

OS Network APIs
• Application programs interface with an OS networking 

subsystem through an API
• Some of these APIs have become widely adopted

– Best example may be the socket interface introduced 
in Berkeley Unix 

– Implemented in many other operating systems, 
including most or all variants of Unix and Windows

– Widespread availability makes it easy to port 
applications between different OSes (at least the 
networking portion of the app)



Sep. 02, 2005 CS 440 Lecture Notes 3

Protocols vs. APIs

• Each protocol supported by the OS 
provides a set of abstract services.

• The network API provides a syntax by 
which those services can be invoked.

• Desirable to choose a syntax that is 
applicable across different protocols



Sep. 02, 2005 CS 440 Lecture Notes 4

The socket API

• The socket is the “point” where a local 
application process attaches to the network

• Some common operations provided by APIs 
(see /usr/include/sys/socket.h):
– Create a socket

• int socket( int domain, int type, int protocol)
• domain examples:  PF_INET, PF_UNIX, PF_PACKET
• type examples:  SOCK_STREAM, SOCK_DGRAM
• protocol examples:  PF_INET, PF_BLUETOOTH
• Returns a handle that refers to the socket, used on 

subsequent API calls



Sep. 02, 2005 CS 440 Lecture Notes 5

The socket API (cont.)
– Open the socket (TCP, server side)

• int bind( int socket, struct sockaddr * address,
int addr_len )

Assigns a local address to the socket
• int listen( int socket, int backlog )

Indicates that the server is ready to accept connections on 
the socket; backlog indicates maximum number to buffer

• int accept( int socket, struct sockaddr * address,
int * addr_len )

Waits for a new connection request.  This returns a new 
socket that can be used to communicate with the client; the 
original socket can be used to continue to listen for new 
connections.  Client’s address is also returned



Sep. 02, 2005 CS 440 Lecture Notes 6

Socket addresses
• Each socket is identified by an address that includes 

both the machine identifier and a demux key.
• struct sockaddr is actually a union of different socket 

address sub-structures, each with fields appropriate to 
the protocol
– For the Internet protocol family (PF_INET), the sockaddr_in

structure contains the IP address of the server, as four unsigned 
bytes, and a 16-bit port number that identifies the application.

– Ports can be well-known pre-assigned numbers (like port 80 for 
HTTP - see /etc/services for a list), chosen by agreement 
between the client and server, or can be chosen randomly and 
somehow communicated OOB.



Sep. 02, 2005 CS 440 Lecture Notes 7

Client socket open
– Open the socket (TCP, client side)

• int connect( int socket, struct sockaddr * address,
int addr_len )

Opens the socket and connects it to the specified server 
address.  Blocks until connection established.

– Send data over the socket
• int send( int socket, char * msg, int msg_len,

int flags )

– Receive data from the socket
• int recv( int socket, char * buffer, int buf_len,

int flags)



Sep. 02, 2005 CS 440 Lecture Notes 8

Example Application

• Implements a network-based talk (simple 
chat program)

• Client details
– Uses gethostbyname() to translate from a 

host name (i.e. esus.cs.montana.edu) to an IP 
address (i.e. 153.90.199.47).

– Uses a #defined constant port number – to 
use a well-known service, you can call 
getservbyname().



Sep. 02, 2005 CS 440 Lecture Notes 9

Example Application (cont.)

• Server details
– Uses all zeroes for local IP address; causes 

OS to fill in value.
– Specifies same #defined constant for port
– After creating socket, binding address, and 

listening, it accepts a connection, reads data 
until the connection closes, then goes back to 
accept().

• Not a very good server design – why?



Sep. 02, 2005 CS 440 Lecture Notes 10

Byte Ordering

• Notice calls in example app to htons()
– Abbreviation for “Host to Net Short”
– API also includes htonl(), ntohs(), and ntohl()
– Functions convert multi-byte numeric values 

between local byte order and network byte 
order (MSB first)

– On big-endian machines, these are just 
macros that return the input value

– Easy to forget, and hard to find errors!



Sep. 02, 2005 CS 440 Lecture Notes 11

Protocol Implementation 
Issues

• Process models
– Process-per-protocol

• Conceptually simpler – isolates each protocol
– Process-per-message

• Better performance – fewer context switches

• Message buffering
– Copying messages between buffers can be a 

relatively costly operation
• Memory is still fairly slow compared to processor

– Many APIs include a buffer abstraction to avoid 
copying buffers



Sep. 02, 2005 CS 440 Lecture Notes 12

Performance Measures
• Bandwidth (throughput) – measure of theoretical 

(practical) maximum data rate in units of 
bits/time (i.e. 10 Mbps for Ethernet)

• Latency (delay) – measure of end-to-end transit 
time
– One-way or round-trip
– Composed of propagation delay, time to transmit 

data, and queuing delays
– Latency = Propagation + Transmit + Queue

= distance/speed of light + size / bandwidth +
queue



Sep. 02, 2005 CS 440 Lecture Notes 13

Response Time Graph



Sep. 02, 2005 CS 440 Lecture Notes 14

Delay x Bandwidth Product

• Measure of the amount of data the link can 
hold
– One-way latency of 10 ms * bandwidth of 10 

Mbps = 100,000 bits, or 12,500 bytes
• Also measures how many bits source 

must send before first bit reaches sink
• Multiply by 2 if sender needs to hear from 

receiver (for round-trip time, RTT) –
number of bits “in flight”



Sep. 02, 2005 CS 440 Lecture Notes 15

High-Speed Networks

• Bandwidth continues to increase rapidly
• Propagation delay is fixed, regardless of 

bandwidth
• The RTT becomes much more significant 

as the time to actually transmit the data 
(size / bandwidth) shrinks 


	Network Software Implementations
	OS Network APIs
	Protocols vs. APIs
	The socket API
	The socket API (cont.)
	Socket addresses
	Client socket open
	Example Application
	Example Application (cont.)
	Byte Ordering
	Protocol Implementation Issues
	Performance Measures
	Response Time Graph
	Delay x Bandwidth Product
	High-Speed Networks

