

Direct Link Networks

- Problems to solve to connect two links
 - Physical connection medium
 - Encoding of data on medium
 - *Framing* delineating sequences of bits into messages or frames
 - Error detection identifying corrupted frames
 - Reliability of link
 - Media access control, if link is shared

Building Blocks

- Networks are composed of nodes and links
- Node: workstation, PC, switch, router
 - Typically includes a processor, memory, an I/O bus, and a *network adapter*
 - The network adapter is connection to the link
 - A software device driver controls the adapter
 - Processing is typically limited by memory size and speed, so memory efficiency is very important
 - Special nodes called Interface Message Processors (IMPs) were used in the original ARPANET – see http://www.livinginternet.com/i/ii_imp.htm

Building Blocks (cont.)

- Links
 - Different physical media: twisted pair (that's the "T" in "10Base-T"), coaxial cable, optical fiber, space
 - Media used to propagating electromagnetic waves that carry the data signal
 - EM waves have frequency f and wavelength λ ; speed of wave $c = f \lambda$.

Building Blocks (cont.)

- Need to encode binary data onto signal

- Modulate signal's frequency, amplitude, and/or phase to somehow represent "0" and "1"
- Links can be differentiated by number of bit streams that are supported simultaneously
 - Half-duplex: signal travels in only one direction at a time
 - *Full-duplex*: signals can travel in both directions simultaneously

More on Physical Media

10-100Mbps

10-100 Mbps

- Link types
 Cable
 - Cat-5
 - Thin-net coax
 - Thick-net coax 10-100 Mbps
 - Multimode fiber 100 Mbps
 - Single-mode fiber 100-2400 Mbps
 40 km
 - Cat-5 is the standard for within-building wiring; try to use this for new standards like Gigabit Ethernet

100 m

200 m

500 m

2 km

Physical Media (cont.)

- Leased Lines
 - DS1 / T1 1.544 Mbps
 - -DS3 / T344.736 Mbps
 - STS-1
 - 51.840 Mbps **N*STS-1** -STS-N
- T1 bandwidth represents 24 digital voice circuits of 64 kbps each; T3 is 28 T1s.

Physical Media (cont.)

- Last-Mile Links
 - POTS 28.8-56 Kbps (Plain Old Telephone Service)
 - ISDN 64-128 Kbps
 (Integrated Services Digital Network)
 - xDSL 16Kbps 55.2 Mbps
 (Asymetric/Symmetric Digital Subscriber Line)
 - CATV 20-40 Mbps (Cable Television)

Physical Media (cont.)

- Wireless links
 - Cell phone networks: AMPS (Advanced Mobile Phone System), PCS(Personal Communication Services), GSM (Global System for Mobile Communication)
 - Local area 2.45, 5.2, 17 GHz
 - IEEE 802.11 and Bluetooth use 2.4 GHz
 - Other "Metropolitan Area" frequencies 900 MHz, 1.4 GHz

Shannon's Theorem

- Claude Shannon's Capacity Theorem:
 - C = B log₂ (1 + S/N)
 C: Capacity B: Bandwidth S/N: Signal/noise
 - For example, if B = 3 kHz and S/N = 30 dB, 30 dB = 10 \log_{10} S/N, so S/N = 1000 C = 3000 $\log_2 (1001) \approx 30$ kbps
 - Or if B = 1 MHz and S/N = 80 dB, C = 1MHz log₂ $10^8 \approx 30$ Mbps

