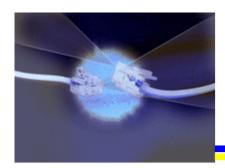
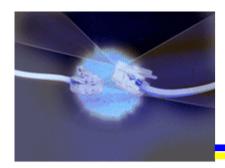


Link-State Routing


- Same assumptions as distance vector routing
 - Each node can determine its neighbors
 - Each node can assign a cost to the link
- Basic algorithm: if every node knows how to reach its neighbors, and this information is distributed to entire network, every node can figure out shortest paths

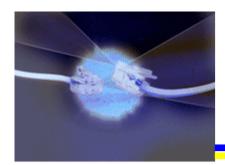
Link-State Routing (cont.)

- Requires two mechanism
 - Reliably distribute link-state information
 - Compute routes from this information
- First mechanism uses reliable flooding
 - Each node sends information out on all links
 - Each node that receives forwards information on all other links

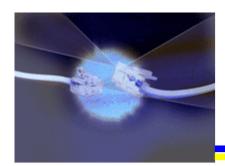


Link State Packets

- LSPs contain the following:
 - ID of node that created LSP
 - List of directly connected nodes, with costs
 - Sequence number
 - TTL
- Last two fields added to improve reliability of flooding



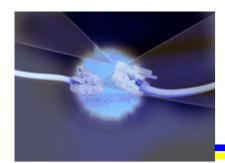
Reliability


- Exchange of LSP with neighbors uses reliable protocol
- When node receives LSP
 - Stores if it doesn't already have on from that source
 - If it already has the LSP and new seq # greater than stored value, updates entry and forwards to all other neighbors

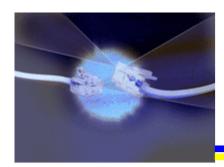
Generating LSPs

- Done in two circumstances:
 - Periodically
 - When topology changes
 - Same techniques to detect as used in distance vector routing
- To reduce LSP traffic, use long timers for periodic updates; since LSPs are reliably distributed, don't need to be updated very often

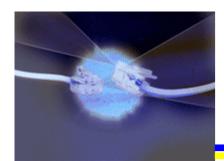
Generating LSPs (cont.)


- Every time LSP is updated, seq. # incremented
 - Starts at 0 when node reboots
 - Node may receive its own updated LSP from another node – just starts using that seq #
- LSPs discarded when TTL expires

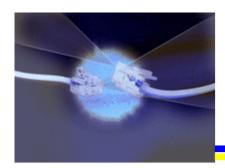
 TTL decremented before node floods to neighbors, ages when stored in node. When TTL is 0, node discards LSP


Route Calculation

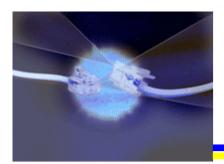
- Entire network topology known from LSPs
- Node uses Dijkstra's shortest-path algorithm to compute routes
 - Constructs graph of network from LSPs
 - Algorithm uses *adjacency matrix* to represent graph: *N* is set of nodes, I(i,j) is cost of edge from *i* to *j*, *i*, *j* in *N*, cost = ∞ if no connection
 - Also keeps *M*, set of nodes incorporated so far, and *C(n)*, cost of path from start node *s* to node *n*


Dijkstra's Algorithm

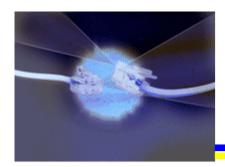
• M = [s]for each n in N-sC(n) = I(s, n)while $(N \neq M)$ $M = M \cup \{w\}$, where C(w) minimum for all w in (N - M)for each *n* in (N - M) $C(n) = \min(C(n), C(w) + l(w, n))$


Forward Search Algorithm

- Modified version of Dijkstra's algorithm that builds routes directly from LSPs – forward search algorithm
 - Doesn't require creation of graph from LSPs
 - Maintains two lists, *Tentative* and *Confirmed*.
 Each list has entries (Dest, Cost, NextHop)


Forward Search (cont.)

- 1. Initialize *Confirmed* with entry for current node (S, 0, -)
- 2. For node just added, Next, select its LSP
- 3. For each neighbor *N* of *Next*, *cost*(*s*,*N*) = *cost*(*s*,*Next*) + *cost*(*Next*,*N*)
 - 1. If *N* not in *Confirmed* or *Tentative*, add (*N*, *cost*, *NextHop*) to *Tentative*
 - 2. If *N* in *Tentative* and *cost*<current cost, replace with new entry
- 4. If *Tentative* empty, stop. Otherwise, pick *Tentative* entry with least cost, move to *Confirmed*, select as *Next*, and go to 2


Link-State Tradeoffs

- Advantages:
 - Does not generate much routing table traffic
 - Responds quickly to topology changes
- Disadvantages
 - Requires a lot of storage in each router
- Link-state vs. distance vector:
 - Link-state talks to everyone, only tells them what it knows definitely
 - Distance vector talks only to neighbors, tells them everything it thinks it has learned

Open Shortest Path First Protocol (OSPF)

- Most common link-state protocol
- Adds the following to basic link-state:
 - Authenticate routing messages
 - Additional hierarchy partition routing domain into areas. For other nodes outside a router's area, router only needs to know how to get to area
 - Load balancing –multiple routes can have same cost and both be used by router

OSPF Messages

- Five types: "Hello" to let neighbors know router is alive, plus messages to request, send, and acknowledge data
- Based on Link-State Advertisement messages (LSAs)
 - One to send cost of links between routers
 - One to send networks to which router is directly connected
 - One to send area information