
Nov. 14. 2005 CS 440 Lecture Notes 1

User Datagram Protocol 
(UDP)

• Standard connectionless protocol for the 
transport layer of the Internet architecture

• Only adds demultiplexing capability to 
basic best-effort delivery provided by IP

• Needs to identify target process for msg
– Could use some direct identifier like process 

ID, but that might not work with all OSes
– Instead uses indirect handle, the port number
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UDP  (cont.)

• UDP header contains source port, 
destination port, length, and checksum (all 
two bytes)

• Source and destination ports are only 
unique on the respective hosts – key is 
pair of (host, port) values
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UDP  (cont.)

• UDP does ensure correctness of packet 
using checksum.
– Optional in current UDP, required in IPv6
– Checksum computed over message data, 

UDP header, and pseudoheader – protocol 
number and source and destination IP 
addresses, plus UDP length

– Uses same checksum as IP
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Obtaining Port Numbers

• Need host IP and port to talk to server
– Once server has address, it can respond to address 

in packet it received
• Different techniques for getting port #

– Use a well-known port (i.e. DNS uses 53)
• Values found in /etc/services

– Use a port mapper – single process that runs on the 
server and knows the ports for different services

– Use a directory service that runs on the network and 
knows the port numbers for services on any host



Nov. 14. 2005 CS 440 Lecture Notes 5

Implementation

• Typically, a port is implemented by OS as 
a message queue
– Incoming messages added to queue for 

specified port
– Messages removed by application when it 

reads the port
– Messages discarded if queue is full
– Process blocks if queue is empty when it 

reads
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Transmission Control 
Protocol  (TCP)

• Standard connection-oriented protocol 
used in Internet architecture

• Guarantees reliable, in-order delivery of 
byte stream
– Stream is full-duplex, and each direction 

provides flow control so receiver can limit 
amount of data sender can transmit

• Like UDP, TCP uses ports to select app
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TCP  (cont.)

• TCP also includes congestion control
– Flow control keeps sender from overrunning 

receiver
– Congestion control keeps sender from 

overrunning network
• Uses a sliding window protocol for 

reliability
– Requires connection setup (like VC setup) 

and connection teardown phases
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TCP Sliding Windows

• RTT might vary widely over different 
connections, and even with same 
connection over time, so retransmit 
timeout must be adaptive

• Packets may be reordered crossing 
internet, which can’t happen on point-to-
point links
– TCP knows that packets will expire, so it 

assumes maximum segment lifetime (MSL) –
currently 120 sec.
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TCP Sliding Windows  
(cont.)

• Can’t tailor size of window to link’s gain-
bandwidth product, so sender must learn 
how many resources like buffers receiver 
has (flow control problem)

• Sender may also overload a slow 
intermediate network link, so it must learn 
where bottlenecks are (congestion 
problem)
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TCP Segments

• TCP provides byte stream service to apps, 
but breaks stream into segments for 
transmission
– TCP provides send and receive buffers to 

handle this for the app
• TCP uses same ports as UDP to identify 

target process
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TCP Segment Header

• At least 20 byte header
Source Port Destination Port

HdrLen

Sequence Number

Checksum

Acknowledgement

Options (variable length)

0            4                8              12             16  19               24                          31

0 Flags Advertised Window

Urgent Pointer
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TCP Header  (cont.)

• Connection identified by (src IP, src port, 
dest IP, dest port)
– Connection might be created, destroyed, and 

recreated; can have multiple incarnations
• Sequence Num, Acknowledgement, and 

Advertised Window used by sliding 
window protocol
– Each byte has sequence – header field is 

value for first byte of data in segment
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TCP Header  (cont.)
– Acknowledgement and advertised window used to 

return data from receiver to sender
• Flags include SYN, FIN, RESET, PUSH, URG, 

and ACK
– SYN for establishing connection
– FIN for tearing down connection
– ACK set whenever Acknowledgement valid
– URG indicates segment contains urgent data
– PUSH causes receiver to notify app (OOB data)
– RESET allows receiver to panic and kill connection
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Connection Setup

• Client exchanges messages with server to 
establish connection
– Client is doing active open, while server has 

done passive open
• Three-way handshake process

– Client sends SYN with starting sequence #, x
– Server returns msg with ACK, ack = x + 1, 

SYN, and starting sequence #, y
– Client sends ACK, ack = y + 1
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Connection Setup  (cont.)

• Ack indicates “next seq # expected”
• Timer started for each segment –

retransmits if response not received
• Starting sequence must be chosen at 

random, to minimize the chance of second 
incarnation of connection mistaking an old 
packet from earlier incarnation
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State Transition

• See Fig. 5.7 in text, p. 386
– Arcs labeled by event / action
– Events can be network-related or application 

generated
• Note that last ACK from client to server 

can be lost – server still in ESTABLISHED 
state
– All following segments contain ACK and 

Acknowledged even if no new data received
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State Transition  (cont.)

• Diagram should also include arcs for 
timeouts – each state will retry send 
several times.  If it fails, return to CLOSED 
state
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Connection Teardown

• Each side of connection must close its half 
of connection

• Cannot close connection without waiting 
two MSLs after sending ACK
– Waiting to make sure other side doesn’t 

retransmit FIN
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Sliding Window

• TCP adds flow control to basic sliding 
window protocol

• Receiver advertises window size to sender
– Sender can have no more than that many 

unacknowledged bytes of data outstanding
• Sender maintains LastByteAcked, 

LastByteSent, LastByteWritten
• Receiver maintains LastByteRead, 

NextByteExpected, LastByteRcvd
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Sliding Window  (cont.)

• If sender computes EffectiveWindow = 
AdvertisedWindow – (LastByteSent –
LastByte Acked) and this value is 0, it 
cannot send
– It may send TCP message anyway to ACK, 

but data length will be 0
• Sender must also block application to 

make sure it doesn’t overflow 
MaxSendBuffer



Nov. 14. 2005 CS 440 Lecture Notes 21

Sliding Window  (cont.)

• When receiver shuts window down to 0, 
sender continues sending 1-byte 
messages periodically, so receiver can 
respond with ack when buffer space freed

• Wrap-around of seq. #s can occur, even 
with 32-bit numbers, on very fast networks 
within a short period of time
– New version of TCP will extend numbers
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Sliding Window  (cont.)

• Worse problem with AdvertisedWindow –
it isn’t big enough to allow pipe to be kept 
full if round trip time isn’t large
– New TCP version also extends this number
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Sliding Window  (cont.)

• Also have MaxSendBuffer and 
MaxRcvBuffer
– Receiver requires LastByteRcvd –

LastByteRead <= MaxRcvBuffer
– It sets AdvertisedWindow = MaxRcvBuffer –

((NextByteExpected – 1) – LastByteRcvd) to 
slow down sender

– Sender must guarantee that LastByteSent –
LastByteAcked <= AdvertisedWindow
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Triggering Transmission

• TCP must decide when to send segment
– Buffering bytes for outgoing stream, so there 

is no absolute event like sendto() to trigger
• TCP has three mechanisms:

– When Max Segment Size (MSS) bytes ready
• MSS usually set to largest value to fit in MTU

– When sending process requests push to flush 
buffer

– When transmit timer expires
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Silly Window Syndrome

• TCP must also consider flow control 
(receiver’s advertised window size)

• If window is closed (window size = 0) and 
MSS bytes are accumulated, then window 
opens to MSS/2 bytes, should sender 
immediately send a half-full segment?
– Greedy sending causes silly window 

syndrome, where sender sends small packet, 
receiver acks, sender immediately sends 
another small packet, etc.
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Silly Window Syndrome  
(cont.)

– Inefficient use of network, because of TCP overhead 
for each packet and ACK

• Receiver could wait until it has at least MSS 
bytes free before advertising open window

• Receiver could also try to consolidate small 
segments into larger ones by delaying ACKs, 
sending a single ACK for several small 
segments instead of individual ACKs, but it does 
not know how long it can wait
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Nagle’s Algorithm

• Sender needs to decide when to send a 
segment
– Too much delay is bad for interactive apps
– Too little delay hurts network performance

• Use timer to decide; instead of clock-
based timer, use Nagle’s self-clocking 
scheme
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Nagle’s Algorithm  (cont.)

• Send a full segment if window allows
• Send small segment if there is nothing in 

flight
• If data already in flight, wait for ACK to 

send next segment
– Can disable using the TCP_NODELAY option 

on the socket
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Adaptive Retransmission

• TCP retransmits if no ACK received within 
timeout period
– Timeout is function of RTT
– RTT might vary widely between connections 

or on the same connection over time
– Need to adapt timeout
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Adaptive Retransmission –
Original Algorithm

• Maintain running average of RTT
– Record time when each segment is sent, time when 

ACK is received
– Difference is sample RTT – compute weighted 

average as
EstRTT = α * EstRTT + (1-α)*SampleRTT

– α is smoothing parameter; small value weights more 
on latest sample, large value more stable but less 
adaptable.  Typically use value between .8 and .9

– Timeout = 2 * EstRTT
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Karn/Partridge Algorithm

• Original algorithm had a problem; ACK 
doesn’t acknowledge transmission, only 
receipt of data
– If segment is retransmitted then ACK arrives, 

it is not possible to tell if the ACK is for the 
first or second transmission of the segment

– If you associate the ACK with the wrong 
transmission of the segment, it skews it one 
way or the other
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Karn/Partridge Algorithm  
(cont.)

• To resolve, TCP doesn’t measure sample 
RTT when it has to retransmit

• Karn/Partridge also added exponential 
backoff on timeout time
– Next timeout is twice last timeout if 

retransmitting
– Makes sender react more cautiously as 

segments are lost, which helps in the case of 
network congestion
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Jacobsen/Karels Algorithm

• Karn/Partridge improved congestion problem, 
but did not eliminate it

• Jacobson/Karels was bigger change to TCP to 
address congestion
– Want to avoid retransmitting unnecessarily
– Keep track of variance among samples, and use it to 

scale the timeout adjustment
Diff = SampleRTT – EstRTT
EstRTT = EstRTT + (δ * Diff)
Dev = Dev + δ (|Diff| - Dev)

– Timeout = μ * EstRTT + φ * Dev (typically μ=1, φ=4)
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Record Boundaries

• Two mechanisms for inserting record 
markers in stream
– Using the “Urgent data” feature, UrgPtr
– Using the “push” operation – partial segment 

sent with PUSH flag set; receiver must notify 
app that it was a push
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TCP Extensions

• Both sides of connection agree on which 
extensions to allow during connection 
setup
– Sender puts send timestamp into extension 

header, receiver echoes value in ACK, sender 
compare value with current time to compute 
difference

– To increase SequenceNum, prepend
timestamp to number.  Modified field only 
used to prevent wrapping, not for ordering
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TCP Extensions

– Advertise larger window than provided by 16-
bit field in header – both sides agree on 
scaling factor, so window is in chunks instead 
of bytes
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