
Nov. 14. 2005 CS 440 Lecture Notes 1

User Datagram Protocol
(UDP)

• Standard connectionless protocol for the
transport layer of the Internet architecture

• Only adds demultiplexing capability to
basic best-effort delivery provided by IP

• Needs to identify target process for msg
– Could use some direct identifier like process

ID, but that might not work with all OSes
– Instead uses indirect handle, the port number

Nov. 14. 2005 CS 440 Lecture Notes 2

UDP (cont.)

• UDP header contains source port,
destination port, length, and checksum (all
two bytes)

• Source and destination ports are only
unique on the respective hosts – key is
pair of (host, port) values

Nov. 14. 2005 CS 440 Lecture Notes 3

UDP (cont.)

• UDP does ensure correctness of packet
using checksum.
– Optional in current UDP, required in IPv6
– Checksum computed over message data,

UDP header, and pseudoheader – protocol
number and source and destination IP
addresses, plus UDP length

– Uses same checksum as IP

Nov. 14. 2005 CS 440 Lecture Notes 4

Obtaining Port Numbers

• Need host IP and port to talk to server
– Once server has address, it can respond to address

in packet it received
• Different techniques for getting port #

– Use a well-known port (i.e. DNS uses 53)
• Values found in /etc/services

– Use a port mapper – single process that runs on the
server and knows the ports for different services

– Use a directory service that runs on the network and
knows the port numbers for services on any host

Nov. 14. 2005 CS 440 Lecture Notes 5

Implementation

• Typically, a port is implemented by OS as
a message queue
– Incoming messages added to queue for

specified port
– Messages removed by application when it

reads the port
– Messages discarded if queue is full
– Process blocks if queue is empty when it

reads

Nov. 14. 2005 CS 440 Lecture Notes 6

Transmission Control
Protocol (TCP)

• Standard connection-oriented protocol
used in Internet architecture

• Guarantees reliable, in-order delivery of
byte stream
– Stream is full-duplex, and each direction

provides flow control so receiver can limit
amount of data sender can transmit

• Like UDP, TCP uses ports to select app

Nov. 14. 2005 CS 440 Lecture Notes 7

TCP (cont.)

• TCP also includes congestion control
– Flow control keeps sender from overrunning

receiver
– Congestion control keeps sender from

overrunning network
• Uses a sliding window protocol for

reliability
– Requires connection setup (like VC setup)

and connection teardown phases

Nov. 14. 2005 CS 440 Lecture Notes 8

TCP Sliding Windows

• RTT might vary widely over different
connections, and even with same
connection over time, so retransmit
timeout must be adaptive

• Packets may be reordered crossing
internet, which can’t happen on point-to-
point links
– TCP knows that packets will expire, so it

assumes maximum segment lifetime (MSL) –
currently 120 sec.

Nov. 14. 2005 CS 440 Lecture Notes 9

TCP Sliding Windows
(cont.)

• Can’t tailor size of window to link’s gain-
bandwidth product, so sender must learn
how many resources like buffers receiver
has (flow control problem)

• Sender may also overload a slow
intermediate network link, so it must learn
where bottlenecks are (congestion
problem)

Nov. 14. 2005 CS 440 Lecture Notes 10

TCP Segments

• TCP provides byte stream service to apps,
but breaks stream into segments for
transmission
– TCP provides send and receive buffers to

handle this for the app
• TCP uses same ports as UDP to identify

target process

Nov. 14. 2005 CS 440 Lecture Notes 11

TCP Segment Header

• At least 20 byte header
Source Port Destination Port

HdrLen

Sequence Number

Checksum

Acknowledgement

Options (variable length)

0 4 8 12 16 19 24 31

0 Flags Advertised Window

Urgent Pointer

Nov. 14. 2005 CS 440 Lecture Notes 12

TCP Header (cont.)

• Connection identified by (src IP, src port,
dest IP, dest port)
– Connection might be created, destroyed, and

recreated; can have multiple incarnations
• Sequence Num, Acknowledgement, and

Advertised Window used by sliding
window protocol
– Each byte has sequence – header field is

value for first byte of data in segment

Nov. 14. 2005 CS 440 Lecture Notes 13

TCP Header (cont.)
– Acknowledgement and advertised window used to

return data from receiver to sender
• Flags include SYN, FIN, RESET, PUSH, URG,

and ACK
– SYN for establishing connection
– FIN for tearing down connection
– ACK set whenever Acknowledgement valid
– URG indicates segment contains urgent data
– PUSH causes receiver to notify app (OOB data)
– RESET allows receiver to panic and kill connection

Nov. 14. 2005 CS 440 Lecture Notes 14

Connection Setup

• Client exchanges messages with server to
establish connection
– Client is doing active open, while server has

done passive open
• Three-way handshake process

– Client sends SYN with starting sequence #, x
– Server returns msg with ACK, ack = x + 1,

SYN, and starting sequence #, y
– Client sends ACK, ack = y + 1

Nov. 14. 2005 CS 440 Lecture Notes 15

Connection Setup (cont.)

• Ack indicates “next seq # expected”
• Timer started for each segment –

retransmits if response not received
• Starting sequence must be chosen at

random, to minimize the chance of second
incarnation of connection mistaking an old
packet from earlier incarnation

Nov. 14. 2005 CS 440 Lecture Notes 16

State Transition

• See Fig. 5.7 in text, p. 386
– Arcs labeled by event / action
– Events can be network-related or application

generated
• Note that last ACK from client to server

can be lost – server still in ESTABLISHED
state
– All following segments contain ACK and

Acknowledged even if no new data received

Nov. 14. 2005 CS 440 Lecture Notes 17

State Transition (cont.)

• Diagram should also include arcs for
timeouts – each state will retry send
several times. If it fails, return to CLOSED
state

Nov. 14. 2005 CS 440 Lecture Notes 18

Connection Teardown

• Each side of connection must close its half
of connection

• Cannot close connection without waiting
two MSLs after sending ACK
– Waiting to make sure other side doesn’t

retransmit FIN

Nov. 14. 2005 CS 440 Lecture Notes 19

Sliding Window

• TCP adds flow control to basic sliding
window protocol

• Receiver advertises window size to sender
– Sender can have no more than that many

unacknowledged bytes of data outstanding
• Sender maintains LastByteAcked,

LastByteSent, LastByteWritten
• Receiver maintains LastByteRead,

NextByteExpected, LastByteRcvd

Nov. 14. 2005 CS 440 Lecture Notes 20

Sliding Window (cont.)

• If sender computes EffectiveWindow =
AdvertisedWindow – (LastByteSent –
LastByte Acked) and this value is 0, it
cannot send
– It may send TCP message anyway to ACK,

but data length will be 0
• Sender must also block application to

make sure it doesn’t overflow
MaxSendBuffer

Nov. 14. 2005 CS 440 Lecture Notes 21

Sliding Window (cont.)

• When receiver shuts window down to 0,
sender continues sending 1-byte
messages periodically, so receiver can
respond with ack when buffer space freed

• Wrap-around of seq. #s can occur, even
with 32-bit numbers, on very fast networks
within a short period of time
– New version of TCP will extend numbers

Nov. 14. 2005 CS 440 Lecture Notes 22

Sliding Window (cont.)

• Worse problem with AdvertisedWindow –
it isn’t big enough to allow pipe to be kept
full if round trip time isn’t large
– New TCP version also extends this number

Nov. 14. 2005 CS 440 Lecture Notes 23

Sliding Window (cont.)

• Also have MaxSendBuffer and
MaxRcvBuffer
– Receiver requires LastByteRcvd –

LastByteRead <= MaxRcvBuffer
– It sets AdvertisedWindow = MaxRcvBuffer –

((NextByteExpected – 1) – LastByteRcvd) to
slow down sender

– Sender must guarantee that LastByteSent –
LastByteAcked <= AdvertisedWindow

Nov. 14. 2005 CS 440 Lecture Notes 24

Triggering Transmission

• TCP must decide when to send segment
– Buffering bytes for outgoing stream, so there

is no absolute event like sendto() to trigger
• TCP has three mechanisms:

– When Max Segment Size (MSS) bytes ready
• MSS usually set to largest value to fit in MTU

– When sending process requests push to flush
buffer

– When transmit timer expires

Nov. 14. 2005 CS 440 Lecture Notes 25

Silly Window Syndrome

• TCP must also consider flow control
(receiver’s advertised window size)

• If window is closed (window size = 0) and
MSS bytes are accumulated, then window
opens to MSS/2 bytes, should sender
immediately send a half-full segment?
– Greedy sending causes silly window

syndrome, where sender sends small packet,
receiver acks, sender immediately sends
another small packet, etc.

Nov. 14. 2005 CS 440 Lecture Notes 26

Silly Window Syndrome
(cont.)

– Inefficient use of network, because of TCP overhead
for each packet and ACK

• Receiver could wait until it has at least MSS
bytes free before advertising open window

• Receiver could also try to consolidate small
segments into larger ones by delaying ACKs,
sending a single ACK for several small
segments instead of individual ACKs, but it does
not know how long it can wait

Nov. 14. 2005 CS 440 Lecture Notes 27

Nagle’s Algorithm

• Sender needs to decide when to send a
segment
– Too much delay is bad for interactive apps
– Too little delay hurts network performance

• Use timer to decide; instead of clock-
based timer, use Nagle’s self-clocking
scheme

Nov. 14. 2005 CS 440 Lecture Notes 28

Nagle’s Algorithm (cont.)

• Send a full segment if window allows
• Send small segment if there is nothing in

flight
• If data already in flight, wait for ACK to

send next segment
– Can disable using the TCP_NODELAY option

on the socket

Nov. 14. 2005 CS 440 Lecture Notes 29

Adaptive Retransmission

• TCP retransmits if no ACK received within
timeout period
– Timeout is function of RTT
– RTT might vary widely between connections

or on the same connection over time
– Need to adapt timeout

Nov. 14. 2005 CS 440 Lecture Notes 30

Adaptive Retransmission –
Original Algorithm

• Maintain running average of RTT
– Record time when each segment is sent, time when

ACK is received
– Difference is sample RTT – compute weighted

average as
EstRTT = α * EstRTT + (1-α)*SampleRTT

– α is smoothing parameter; small value weights more
on latest sample, large value more stable but less
adaptable. Typically use value between .8 and .9

– Timeout = 2 * EstRTT

Nov. 14. 2005 CS 440 Lecture Notes 31

Karn/Partridge Algorithm

• Original algorithm had a problem; ACK
doesn’t acknowledge transmission, only
receipt of data
– If segment is retransmitted then ACK arrives,

it is not possible to tell if the ACK is for the
first or second transmission of the segment

– If you associate the ACK with the wrong
transmission of the segment, it skews it one
way or the other

Nov. 14. 2005 CS 440 Lecture Notes 32

Karn/Partridge Algorithm
(cont.)

• To resolve, TCP doesn’t measure sample
RTT when it has to retransmit

• Karn/Partridge also added exponential
backoff on timeout time
– Next timeout is twice last timeout if

retransmitting
– Makes sender react more cautiously as

segments are lost, which helps in the case of
network congestion

Nov. 14. 2005 CS 440 Lecture Notes 33

Jacobsen/Karels Algorithm

• Karn/Partridge improved congestion problem,
but did not eliminate it

• Jacobson/Karels was bigger change to TCP to
address congestion
– Want to avoid retransmitting unnecessarily
– Keep track of variance among samples, and use it to

scale the timeout adjustment
Diff = SampleRTT – EstRTT
EstRTT = EstRTT + (δ * Diff)
Dev = Dev + δ (|Diff| - Dev)

– Timeout = μ * EstRTT + φ * Dev (typically μ=1, φ=4)

Nov. 14. 2005 CS 440 Lecture Notes 34

Record Boundaries

• Two mechanisms for inserting record
markers in stream
– Using the “Urgent data” feature, UrgPtr
– Using the “push” operation – partial segment

sent with PUSH flag set; receiver must notify
app that it was a push

Nov. 14. 2005 CS 440 Lecture Notes 35

TCP Extensions

• Both sides of connection agree on which
extensions to allow during connection
setup
– Sender puts send timestamp into extension

header, receiver echoes value in ACK, sender
compare value with current time to compute
difference

– To increase SequenceNum, prepend
timestamp to number. Modified field only
used to prevent wrapping, not for ordering

Nov. 14. 2005 CS 440 Lecture Notes 36

TCP Extensions

– Advertise larger window than provided by 16-
bit field in header – both sides agree on
scaling factor, so window is in chunks instead
of bytes

	User Datagram Protocol (UDP)
	UDP (cont.)
	UDP (cont.)
	Obtaining Port Numbers
	Implementation
	Transmission Control Protocol (TCP)
	TCP (cont.)
	TCP Sliding Windows
	TCP Sliding Windows (cont.)
	TCP Segments
	TCP Segment Header
	TCP Header (cont.)
	TCP Header (cont.)
	Connection Setup
	Connection Setup (cont.)
	State Transition
	State Transition (cont.)
	Connection Teardown
	Sliding Window
	Sliding Window (cont.)
	Sliding Window (cont.)
	Sliding Window (cont.)
	Sliding Window (cont.)
	Triggering Transmission
	Silly Window Syndrome
	Silly Window Syndrome (cont.)
	Nagle’s Algorithm
	Nagle’s Algorithm (cont.)
	Adaptive Retransmission
	Adaptive Retransmission – Original Algorithm
	Karn/Partridge Algorithm
	Karn/Partridge Algorithm (cont.)
	Jacobsen/Karels Algorithm
	Record Boundaries
	TCP Extensions
	TCP Extensions

